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ABSTRACT. Making use of a linear operator, which is defined here by
means of the Hadamard product (or convolution), we define a subclass
Tp(a,c,v,A; h) of meromorphically multivalent functions. The main ob-
ject of this paper is to investigate some important properties for the class.
We also derive many results for the Hadamard products of functions be-
longing to the class.
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1. Introduction

Let X, denote the class of meromorphically multivalent function f(z) of the
form

(1.1) f2) =27+ anz" P (neN={1,2,3,})

which are analytic in the punctured open unit dis U*={z € C: 0 < |z| < 1} =
U\{0}. For functions f(z) € ¥, given by (1.1) and ¢(z) € £, given by

g(z)=2"P+ > by2z" P (neN),
n=1

we define the Hadamard product (or convolution) of f(z) and g(z) by

(fxg)(z) =27P+ i::l b, 2" 7P (n € N).
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Let the function ¢,(a, c; z) be defined by

o0

(1.2) oo, 2) = 2P+ Y <())

where (a), = a(la+1)---(a+n—1),n € N. Corresponding to the function
¢p(a,c; z), Liu [6] and Liu and Srivastava [7] have introduced a linear operator
Ly(a,c) which is defined by means of the following Hadamard product (or
convolution)

(1.3) Ly(a,c)f(2) = ppla, c;2) = f(2) (f(2) € Ep).
Just as in [6] and [7], it is easily verified from the definitions (1.2) and (1.3)
that
2(Lp(a,0)f(2)) = alp(a+1,0)f(2) = (a+p)Lp(a, c) f(2).
The operator £,(a, ¢) is also studied by many authors(see examples in [11,12],
[14]. We note, for any integer n > —p and for f(z) € 3, that
Lp(n+p,1)f(z) = D" f(z) = W * f(2),

where D"*P~1 is the differential operator studied by (for detail, see [2,4,5])
Uralegaddi and Somanatha [13] and Aouf [1].
Let

(1.4)
FraenF2) = (1= 1) Lple () + Lallyla, () (F € S0 <7< 3).

The operator F, 4.~ is introduced by Aouf [3] . We easily obtain that

(13)  Fpaanf() = (=207 + 3 (1=49 22 ) 2

since f(z) € ¥, is given by (1.1). From (1.5), it is easily verified that
(16) ]:p,a,c,Of(z) = ‘CP<O’7 C)f(2)7

and
(1.7)
Z(]:p,a,c,'yf(z))/ = afp,a+1,c,'yf(z) - (a’ +p)fp,a,c,'yf(z) = ]:p,a,c,'y(zf/(z))'

Let Q be the class of functions h(z) with h(0) = 1, which are analytic and
convex univalent in the open unit disk U. For functions f(z) and g(z) analytic
in U, we say that f(z) is subordinate to g(z), written f(z) < g(z), if g(z) is
univalent in U, f(0) = ¢g(0) and f(U) C g(U).

Let A be the class of functions of the form

(1.8) h(z)=z+ Z anz",
n=2

n=1
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which are analytic in U. A function h(z) is said to be in the class S*(a), if

zh/ (2
Re{ h(i))} >a(zel)
for some a (¢ < 1). When 0 < o < 1,.8*(«x) is the class of starlike functions of
order «w in U. A function h(z) € A is said to be prestarlike of order « in U, if
aooe=e * h(2) € §7(a) (a < 1).

We denote this class by R(«) (see [9]). A function h(z) € A is in the class R(0)
if and only if h(z) is convex univalent in U and

R(3) = 5*(3)-
In this paper, we introduce and investigate the following subclass of 3,,.

Definition 1.1. A function f(z) € X, is said to be in the class T,(a, c,v, A\; h)
if it satisfies the subordination condition
1 A

v 4 _
(1L9) (4N =g Fpaend () + 5 7=

where 0 < v < 3, A € C,h(2) € Q.

P Fpa,eqf(2)) < h(z),

The special class Tp(a,c,0,A;h) = My(a,c, A; h) was investigated by Yang
and Liu [15]. In order to prove our main results, we need the following lemmas.

Lemma 1.2. (see [4]) Let g(z) be analytic in U and h(z) be analytic and
convex univalent in U with h(0) = g(0). If

(1.10) (=) + izg/(z) < (),

where Re ;1 > 0 and p # 0, then

9(2) < h(z) = pz—* / tH=Lh(t)dt < h(z),
0
and h(z) is the best dominant of (1.10).

Lemma 1.3. (see [9])Let a < 1, f(2) € S* () and g(z) € R(«). Then, for any
analytic function F(z) in U,

L) (P ),
where co(F(U)) denotes the convex hull of F(U).

2. Main results

In this section, we obtain some results of 7,(a,c,v,A;h). The first set of
inclusion relationships are given below.
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2.1. Inclusion relations.
Theorem 2.1. Let 0 < \; < \g, then
7;7(&7 ¢, )‘2; h) C 7;)(0’3 ¢, 7, >‘1; h)

Proof. Let 0 < A1 < Ag, and suppose that

1
(2.1) H(z) = ﬁzp}'p,aycﬁf(z)
for f(z) € T,(a,c,v,A2;h). Then the function H(z) is analytic in U with
H(0) = 1. Differentiating both sides of (2.1) with respect to z and using (1.7),
we have

(2.2)

A p 1 A 1 /
H(Z)+?22H (2) = (1+/\2)mz’7]—'p,a,wf(z)+?2 mzwl(]‘-p,a,mf(z)) < h(2).
From Lemma 1.2 with p = £ > 0, we get
(2.3) H(2) < h(z).

Noting that 0 < i—; < 1 and that H(z) is convex univalent in U, it follows from
(2.1)-(2.3) that

L Mol e /
(4 M g P D) + 2 P (B £(2)
— ﬂ L P & L p+1 /
= M) e P 2) + 22 (R £(2)
+(1 - 2 H(2) < h(z)
A2
ThUS, f(Z) 67;)(&’67’77>\1;h)' O
Theorem 2.2. Let
1
(2.4) Re{zPpp(a1,a2;2)} > 3 (z€Ujay #{0,—-1,-2,...}),

where pp(a1,az; ) is defined as in (1.2). Then,
7_1;(@2a C, 7, )\5 h) - 7;7(0’17 G, A? h)

Proof. For f(z) € £,, we can easily verify that
1 1

(2.5) 1_ 27217‘717’@11677‘][(2) = (2Pppla1, az; 2)) * (1 — Z,YZp]:p,amc,'vf(Z));
and
(2.6)

1 1
5 P en fE) = (plan,ani) = (=5 Frowcn f )
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We suppose f(z) € Tp(az,c,7v,A;h), then from (2.5) and (2.6), we deduce
that

@2.7)
1 Al '
(1+X) 1_ Q,sz}—p,al,eﬁf(z)Jr;ﬁzp-‘—l(fp,al,cwf(z)) = (2"pp(a1, az; 2))*¥(2),
where
(2.8)
1 A
U(z) =1+ /\)Ezp}"pm’cﬁf(z) + Emzﬁl(fp,az,mf(z))' < h(z).
In view of (2.4), the function 2Py, (a1, as; z) has the Herglotz representation
du(x)

2. P  2) =
(2.9) 2Pop(ar, ag; ) /ac|=1 127 (z€U),

where p(x) is a probability measure defined on the unit circle |z| = 1 and

/|m_1 du(z) = 1.

Since h(z) is convex univalent in U, it follows from (2.7)-(2.9) that

(14 ) 12 2 Fpar e f(2) + 2 125227 Py on F(2)) = / U(z2)du(x) < h(2).

|z|=1

This shows that f(z) € T,(a1,¢,7v;h), and the proof of Theorem 2.2 is com-
pleted. O

Theorem 2.3. Let 0 < a; < ag. Then,
7;)(0127 ¢, 7, )" h) C 7;7(&17 ¢, >\7 h)
Proof. Define

w(z) =2+ ) %z”“ (zeU;0<a; < as).
n=1 "

Then,
(2.10) 2Pop(ar,as;z) = w(z) € A,
where ¢, (a1, a2;2) is defined as in (1.2), and

z z
2.11 _— =
(211) o = T

By (2.11), we have
Sar rw(z) € S*(1 - %) S (1-%)

T 2

for 0 < a; < ag, which implies that

(2.12) w(z) € R(1 — %).
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Let f(z) € Tp(az,c,v,A; k). Then we deduce from (2.7) and (2.8) (used in
the proof of Theorem 2.2) and (2.10) that

1 A1
2.1 1 = pl '
(2.13) ( +)\)172’yz Fpar,enf(2) + pl— 272 (Fpjaren f(2))
e gy - )2 (O
z w(z) *
where
(2.14) U(z)=(1+ /\)1 2y 2P Fpaz,eqn f(2)
Al
Z p+1 /
T Franen () < A
Since the function z belongs to S*(1 — %) and h(z) is convex univalent in U,

it follows from (2.12) and (2.13) and Lemma 1.3 that

L+ N 1252 Foarenf (2) + 31252 (Fparen f(2)) < h(2).
Thus, f(z) € Tp(a1,¢,7, A; h) and the proof is completed. O

As aspecial case of theorem 2.3 , we have T,(a+1,¢,7v, A h) C Tp(a,¢,v, A h)
for a > 0.

Theorem 2.4. Let Re a > 0 and a # 0. Then
7;)(@ + 17 C, 7, )‘7 h) - 7;3(0’7 C, 7, )‘7 il)
where

P(2) = az—a /0 () de < h(2).

Proof. Define
1 Al

2.1 =(1 Pl '
(215) 902 = (14 N5 T ) + 5 1 P (P f(2)
for f(z) € ¥,. From (1.7) and (2.15), we obtain

1
(2.16) Efp,a-&-l,c,’yf(z) +(p— a/\)ﬁ}—p,a,cﬁf(z)'
Differentiating both sides of (2.16) and using (2.13), we arrive at

2.1 “Plzq'(2) — — ’

Q) g B ) = )] = A g s (B en S )+
(p - a)‘)ﬁ [afp,a+1,c,’yf<z) - (a +p)]:17,a,c,'yf(z)] .

By (2.16) and (2.17), we have
pzP(2g'(2) +ag(z)) = a/\zﬁ(‘rp,a+l,cryf(z))/ +ap(1 + /\)ﬁfp,a-&-l’cwf(z)a
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that is,
z
(218) 9(2) + 29/ (2) = (L V=g P Fparien (24
Al
ST Franieal ()

If f(2) € Tp(a+1,¢,7,A; h), then it follows from (2.18) that
9(2) + 29'(z) < h(z) (Re a =2 0,a # 0).
Hence an application of Lemma 1.2 yields

g(z) < h(z) = az‘“/oz t*h(t)dt < h(z),

which shows that f(z) € Tp(a,c, v, A; l~z) C Tpla,c,v, A h). O
Theorem 2.5. Let A > 0,5 > 0 and f(z) € Ty(a,c,v,A\; Bh+1-0). If B < fo,

where

jJ —1

1 p Lyk-1

2.1 =-(1-=Z d
(2.19) Bo 2( )\/o 1+uu> ;

then f(z) € Ty(a,c,7,0;h) .The bound By is sharp when h(z) = .
Proof. Define

1
— p
(220) g(Z) - 1— 2)\2 ]:p,a,c,'yf(z)v

for f(z) € Tp(a,c,v,\; Bh+ 1 — B) with A > 0,5 > 0. Then we have
9(2) + 229’ (2) = (L + X) 125522 Fpaen f(2)

—|—% A P T Y (Fpaeqn f(2)) < Bh(z) +1—B.

Hence an application of Lemma 1.2 yields

(2.21) g(z) < h(z) = iz—i/ozti—l(ﬁh(t) +1—B)dt
7@Z*§ ’ -1 — B =(h*x"¥)(z
=5 /0 X7 h(t)dt +1 — B = (hx ¥)(2),

where

(2.22) U(z) = %z%/z tlrldw 1- 8.

L 1=

If 0 < 8 < By, where By > 1 is given by (2.19), then it follows from (2.22)
that
Rew(s) = 28 [ uk 1 Re (—)du 1 pB [*ui
= &= A _— — -
e¥(z) )\/Ou e(lfuz)u_‘_ 6>)\ o 1+u

du+1—08>

| =
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By using the Herglotz representation for ¥(z), from (2.20) and (2.21), we arrive
at

9(2) = 255 P Fpaea f(2) < (B T)(2) < h(2),
because h(z) is convex univalent in U. This shows that f(z) € Tp(a,c,7,0;h).
For h(z) = 1= and f(z) € ¥, defined by

1 8,2 sext
57 Fpacaf(2) = %Z_X/O Tt +1-5

it is easy to verify that
L4+ 0 2 2 Fpacn f(2) + A 7 (Fpaen f(2) = BR(z) +1 - B.

p 12y

Thus, f(z) € Tp(a,c,v,0; Bh+1— 3). Also, for 8 > By, we have

2

1
u

Re{ st Fpaenf(2) ) — B /O -

which implies that f(z) ¢ T,(a,c,v,0;h). Hence the bound fy cannot be

increased when h(z) = . O

1
1-B<= (2= —1
udu+ B<2(z ),

2.2. Convolution properties.

Theorem 2.6. Let f(z) € Ty(a,c,v,A\;h), g(z) € £, and Re{zPg(z)} > % (2 €
U). Then
(f *9)(2) € Tp(a, ¢;7, A5 h).

Proof. For f(z) € Ty(a,c,7v,A;h) and g(z) € X, we have

P Fpaen(*9)(2) + L P (Fpaen(f 5 9)(2))

pl—2y
zpfp,a,c,wf(Z))ﬂL%(ng(Z))*(

(2.23) (14 ))

1
1—2y
=1+ A)(ng(z))*(l _127
= (ng(z)) * (\Il(z)),

where
(2.24)

U(z)=(1+A)

i (]:p,a,c,'yf(z))/)

1—2y

A1

b z pt1 ,
1= 272 fp,a,c,'yf(Z) + 1o 2’}/2 (}'p,mcﬁf(z)) < h(z).

The remaining part of the proof of Theorem 2.6 is similar to that of Theorem
2.2. O

Corollary 2.7. Let f(z) € Ty(a,c,7v, A h) be given by (1.1) and let

m—1
sm(z) =27P+ > a,z™ P (m € N\{0}).
n=1
Then the function

Um(z):/o tP s (t2)dt
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is also in the class Tp(a,c,v, A\ h).

Proof. we easily obtain that

(2.25) om(z) = 27P + Z D2 = (f % g (2),
where
m—1
f(2) =27+ Y anz"? € Tpla,c,v, A\ h)
n=1
and

m—1
gm(2) =27P+ > n%rlznfp € X,
n=1

plo L
5"

In view of (2.25) and (2.26), an application of Theorem 2.6 leads to 0,,(z) €
7;3(0’76377)‘; h) 0

It is known from [10] that

(2.26) Re{zP g (2 }—Re{ Z

Theorem 2.8. Let f(z) € Ty(a,c,v,\;h),g9(z) € X, and 2PT1g(2) € R(a) (a <
1). Then

(f *9)(2) € Tpla, ¢,7, A h).
Proof. For f(z) € Tp(a,c,v,A;h), and g(z) € £, from (2.23) we have

1 A1
1— 2,yzp~7:p,a,cw(f*g)( 2)+ = —m-

pl—2y
_ (Z"Mg(2) * (29(2))
(2r11g(2)) * 2

where ¥(z) is defined as in (2.24). Since h(z) is convex univalent in U,
U(z) < h(z),2PTg(2) € R(a),z € S*(a) (a < 1).
From (2.28) and Lemma 1.3 the desired result follows. O

(2.27)  (1+)) P (Fpuaren (% 9)(2))

Taking « =0 and a = %, Theorem 2.8 reduces to the following.

Corollary 2.9. Let f(z) € Tp(a,c,v, A\ k), and let g(z) € X, satisfy either of
the following conditions:

(1)zPT1g(2) is convex univalent in U or

(2):+19(2) € R(L).

Then (£ + 9)(2) € Ty(a, ¢, Ai ).
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2.3. Integral operators.

Theorem 2.10. Let f(z) € Ty(a,c,v, A h). Then the function F(z) defined by

(2.28) F(z) = “Z_Mp/o =1 f(t)dt (Re p > p)

is in the class Tp(a, ¢, 7, A; iL), where

h(2) = (u - p)z 0 /0 T Th()dt < h(2).

Proof. For f(z) € ¥, and Re p > p, we find from (2.28) that F(z) € £, and
(2.20) (1 - p)F(2) = uP(2) + 2F'(2)
Define G(z) by

1 1
(230)  5776(2) = L+ N g Fraeo PO + 5 152 (Facn P

Differentiating both sides of (2.30) with respect to z, implies
(2.31)

pl—2y

1 A1
S (2)6() = (N[5 P GF (D42 152 (P (F(2).
Furthermore, it follows from (2.29)-(2.31) that
1 P é 1 p+1 r__
(2.32) (1+2A) 1= 2’yz Fpaenf(z)+ pl— 272 (Friaenf(2) =
L, BE(G) + 2F(2)
1+ T 2WZ Fp,a,cy < Py
Al WE () +2F ()Y
e’ (Fp’“‘m ( pw—p
MG+ (:G'(2) — G(2)) = G(2) + 2G(2)

T H—=p u—p
Let f(z) € Tp(a,c,v, A k). Then, by (2.32),

G(2) + 4B 2 h(z) (Re > p),

and so it follows from Lemma 1.2 that

G(z) < h(z) = (u— p)z(“p)/oz tH=P=Lp(t)dt < h(z).

Therefore, we conclude that

F(2) € Tpla,e,7, A h) C Tpla, ¢,v, A h).
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Theorem 2.11. Let f(z) € £, and F(z) defined as in Theorem 2.10. If

1 1
ﬁzpfp,a,cg‘/F(z) + amzpfp’a’c’ryf(z) =< h(Z) (OZ > O),

then f(z) € 7;,((1,0,770;71), where Re p > p, and

(2.33) (1-a)

[e3

h(z) = uz——/ 2 () de < h(2).
0

Proof. Define

1
11— 272
Then G(z) is analytic in U, with G(0) = 1, and

(2.34) G(2)

P FpacryF(2).

(2.35) 2G'(2) = pG(z) + P FpaerF(2)).

1—2y
Making use of (2.29) and (2.33), (2.34), (2.35), implies that
(1= ) 2552 Fpaen F(2) + a2y 22 Fpaen f(2)

=(1- a)ﬁzp}—p,a,ch(Z) + O‘ﬁzp}-pyaycﬁ (W)
= (1-a)G(2) + aply2? [fp,awﬁp(z) +F ’a’cﬁ(ﬁzF’(z))}
= (1= a)G(2) + £5G(2) + 125 (2G(2) — pG(2)) = G(2) + 252G (2) < h(z)

for Re i > p and « > 0. Therefore, an application of Lemma 1.2 yields the
assertion of Theorem 2.11 . ]
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