
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 41 (2015), No. 6, pp. 1413–1422

.

Title:

.

Some existence results for generalized vector quasi-equilibrium problems

.

Author(s):

.

R. Ahmad and M. Akram

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 6, pp. 1413–1422
Online ISSN: 1735-8515

SOME EXISTENCE RESULTS FOR GENERALIZED VECTOR

QUASI-EQUILIBRIUM PROBLEMS

R. AHMAD∗ AND M. AKRAM

(Communicated by Behzad Djafari-Rouhani)

Abstract. In this paper, we introduce and study a class of generalized
vector quasi-equilibrium problem, which includes many vector equilib-

rium problems, equilibrium problems, vector variational inequalities and
variational inequalities as special cases. Using one person game theorems,
the concept of escaping sequences and without convexity assumptions,

we prove some existence results for generalized vector quasi-equilibrium
problem.
Keywords: Vector quasi-equilibrium problem, escaping sequence, exis-
tence, continuity.
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1. Introduction

Equilibrium problems include variational inequality problems as well as fixed
point problems, optimization problems, saddle point problems and Nash equi-
librium problems. Equilibrium problems provide us a systematic framework to
study a wide class of problems arising in finance, economics, optimization and
operations research. General equilibrium problems have been extended to the
case of vector-valued bi-functions, known as vector equilibrium problem, see
for example [1, 2, 8, 13, 15,16,22,24,26].

The generalized vector equilibrium problems have been studied by many
researchers and include as special cases different types of vector variational in-
equalities, vector complementarity problems, see [3,4,6,14,20]. Quasi-equilibria
constitute an extension of Nash equilibria, which is of fundamental importance
in the theory of noncooperative games.

The aim of this paper is to establish some existence results for a general-
ized vector quasi-equilibrium problem under compact and noncompact settings
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by using one person game theorems and concept of escaping sequences. An
existence result is proved in H-spaces.

2. Preliminaries

Let K be a subset of a topological space X. We denote by 2K the family of
all subsets of K and by intXK the interior of K in X, clXK the closure of K in
X. The convex hull of K is denoted by CoK. Let P,Q : K → 2K be the multi-
valued mappings. The the multi-valued mapping P ∩ Q : K → 2X is defined
by (P ∩Q)(x) = P (x) ∩Q(x), (C ◦ T )(x) = C ◦ T (x) and (clT )(x) = clXT (x)
for each x ∈ K, respectively.

Let X and Y be topological spaces and P : X → 2Y be a multi-valued
mapping. The mapping P is said to be open or have open graph if the graph
of P = {(x, y) ∈ X × Y : x ∈ X, y ∈ P (x)} is open in X × Y . The mapping
P is said to be uppersemicontinuous if for each x ∈ X and each open set V in
Y with P (x) ⊂ V , there exists an open neighborhood U of x in X such that
P (y) ⊂ V for each y ∈ U . Let K be a non-empty convex subset of X and
C : K → 2Y be a multi-valued mapping such that for each x ∈ K,C(x) is a
closed convex cone in Y with intC(x) ̸= ∅, where intC(x) denotes the interior
of C(x).

Given A : K → 2K as a continuous multi-valued mapping, η : K ×K → X
and f : K → K continuous mappings. Suppose that g : K×X → Y is a vector-
valued mapping.We consider the following generalized vector quasi-equilibrium
problem.

Find x0 ∈ K such that for all z ∈ K,λ ∈ (0, 1], x0 ∈ clKA(x0) and

(2.1) g(λx0 + (1− λ)z, η(x, f(x0))) /∈ −intYC(x0), for all x ∈ A(x0).

If f is an identity mapping and η(x, x0) = y and λ = 1, then problem (2.1)
reduces to the problem of finding x0 ∈ K such that x0 ∈ clKA(x0) and

(2.2) g(x0, y) /∈ −intYC(x0), for all y ∈ A(x0).

This problem is studied by Khaliq and Krishan [18].
When A(x) = K for each x ∈ K, problem (2.2) was considered by Ansari [5].

When A(x) = K and C(x) = P for each x ∈ K, where P is a convex cone in
Y , then it was studied by Tan and Tinh [27]. The case C(x) = R+ for each
x ∈ K and Y = R, problem (2.2) was studied by Lin and Park [23]. Also
when A(x) = K,C(x) = R+ for each x ∈ K and Y = R, Blum and Oettli [9],
Konnov and Schaible [21] and Kalmoun [17].

Clearly problem (2.1) is much more general than many problems studied in
recent past.

We need the following two lemmas which are special cases of Theorem 2 of
Ding et al. [12] and Theorem 2 of Ding et al. [11], respectively.

Lemma 2.1. Let Γ = (X,A, P ) be a 1-person game such that



1415 Ahmad and Akram

(i) X is a non-empty compact convex subset of a Hausdorff topological
vector space,

(ii) A : X → 2X is a correspondence such that for each x ∈ X,A(x) is
non-empty convex for each y ∈ X,A−1(y) is open in X,

(ii) the correspondence clA : X → 2X is uppersemicontinuous,
(iv) the correspondence P : X → 2X is such that P−1(y) is open in X for

each y ∈ X,
(v) for each x ∈ X,x /∈ CoP (x).

Then Γ has an equilibrium choice x̂ ∈ X such that x̂ ∈ clXA(x̂) and A(x̂) ∩
P (x̂) = ∅.

Lemma 2.2. Let Γ = (X,A, P ) be a 1-person game such that

(i) X is a non-empty convex subset of a locally convex Hausdorff topological
vector space and D is a non-empty compact subset of X,

(1) A : X → 2D is a correspondence such that for each x ∈ X,A(x) is
non-empty convex and for each y ∈ D,A−1(y) is open in X,

(ii) the correspondence clA : X → 2X is uppersemicontinuous,
(iii) the correspondence P : X → 2D is such that P−1(y) is open in X for

each y ∈ D,
(iv) for each x ∈ X,x /∈ CoP (x).

Then Γ has an equilibrium choice x̂ ∈ D such that x̂ ∈ clXA(x̂) and A(x̂) ∩
P (x̂) = ∅.

3. Existence of solution for generalized vector quasi-equilibrium
problem in compact and noncompact settings

We prove the following result in compact setting.

Theorem 3.1. Let K be a non-empty compact convex subset of a Hausdorff
topological vector space X and let Y be an ordered Hausdorff topological vector
space. Let C : K → 2Y be a multi-valued mapping such that, for all x ∈ K,C(x)
is a closed, convex and pointed cone in Y with intY C(x) ̸= ∅. Let A : K → 2K

be a multi-valued mapping such that A(x) non-empty convex, A−1(y) is open in
K for all y ∈ K and clKA : K → 2K is uppersemicontinuous for all x, y ∈ K.

Let g : K × X → Y be a vector-valued mapping which is continuous and
affine in the second argument and let η : K × K → X be a mapping which
is affine in the first argument. Let f : K → K be a continuous mapping.
Let xα → x0, for all x0 ∈ K whenever α ∈ Λ. Let the multi-valued mapping
W (x) = Y \ (−intY C(x)) is uppersemicontinuous on K for all x ∈ K and

g(λx+ (1− λ)z, η(x, f(x))) /∈ −intY C(x), for all x ∈ K.

Then there exists a point x0 ∈ K such that for all z ∈ K,λ ∈ (0, 1], x0 ∈
clKA(x0) and

(λx0 + (1− λ)z, η(x, f(x0))) /∈ −intY C(x0), for all x ∈ A(x0).
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Proof. We define a multi-valued mapping M : K → 2K by

M(x) = {y ∈ K : g(λx+ (1− λ)z, η(x, f(x))) ∈ −intY C(x)}, for each x ∈ K.

First we show that for x ∈ K,x /∈ CoM(x). Suppose that x0 ∈ CoM(x0) for
some x0 ∈ K. Indeed, let {y1, y2, · · · , yn} be a finite subset of K. Let I ⊂ N be
non-empty and x0 ∈ Co{yi, i ∈ I}, then x0 =

∑
i∈I

tiyi with ti ≥ 0 and
∑
i∈I

ti = 1.

Then for each i ∈ I, we have

g(λx0 + (1− λ)z, η(yi, f(x0))) ∈ −intY C(x0).

Since C(x0) is a cone, −intY C(x0) is convex and g and η are affine in the
second and first argument, respectively, we have

g(λx0 + (1− λ)z, η(x0, f(x0))) = g(λx0 + (1− λ)z, η(

n∑
i=1

tiyi, f(x0)))

=

n∑
i=1

tig(λx0 + (1− λ)z, η(yi, f(x0))) ∈ −intY C(x0),

which contradicts the assumption. This shows that condition (v) of Lemma 2.2
is satisfied. It remains to show that M−1(y) is open in K, which is equivalent
to show that [M−1(y)]C = K \M−1(y) is closed. Clearly M−1(y) = {x ∈ K :
y ∈ M(x), g(λx+(1−λ)z, η(y, f(x))) ∈ −intY C(x)}. Let {xα}α∈Λ be a net in
[M−1(y)]C converging to x0 ∈ K. Since xα ∈ [M−1(y)]C , by the continuity of
g and f and by uppersemicontinuity of W , we have

g(λx0 + (1− λ)z, η(y, f(x0))) ∈ W (x0) = Y \ −intY C(x0)

i.e., g(λx0 + (1 − λ)z, η(y, f(x0))) /∈ −intY C(x0), which implies that x0 ∈
[M−1(y)]C , so that [M−1(y)]C is closed. Thus M−1(y) is open in K. This
shows that condition (iv) of Lemma 2.2 is also satisfied.

By the hypothesis, rest of the conditions of Lemma 2.2 are also satisfied.
Thus, by Lemma 2.2, there exists x0 ∈ K such that x0 ∈ clKA(x0) and A(x0)∩
M(x0) = ∅. This implies that x0 ∈ K such that for all z ∈ K,λ ∈ (0, 1], there
exists x0 ∈ clKA(x0) and

g(λx0 + (1− λ)z, η(x, f(x0))) /∈ −intY C(x0), for all x ∈ A(x0).

□

The following example ensures the existence of solution of problem (2.1) and
satisfies all the conditions of Theorem 3.1.

Example 3.2. Let X = Y = R and K = [0, 2]. We consider the following
mappings
A : K → 2K , f : K → K,C : K → 2Y , η : K ×K → X and g : K × X → Y
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defined by

A(x) =

{
{0}, if x = 0,
(0, x), if x ∈ (0, 2].

f(x) = 2x,C(x) = R+, η(x, y) =
x+y
2 and g(x, y) = 2x + 3

2y, for all x, y ∈ K,
satisfy all the conditions of the Theorem 3.1. Then for every x0 ∈ K = [0, 2],
λ ∈ (0, 1], x0 ∈ clKA(x0), the generalized vector quasi-equilibrium problem
g(λx0 + (1− λ)z, η(x, f(x0))) /∈ −intYC(x0), for all x0 ∈ A(x0), is satisfied.

If g(λx + (1 − λ)z, η(y, f(x))) = ⟨T (λx + (1 − λ)z, η(y, f(x)))⟩, where T :
K → L(X,Y ) be a mapping and L(X,Y ) be the set of all continuous linear
operators from X to Y . For l ∈ L(X,Y ), the value of the linear operator l at
x is denoted by ⟨l, x⟩.

For the following vector quasi-variational-like inequality problem: find x ∈ K
such that for all z ∈ K,λ ∈ (0, 1], x ∈ clKA(x0) and ⟨T (λx+(1−λ)z, η(y, f(x)))⟩ /∈
−intY C(x), for all y ∈ K, we can obtain the following existence result from
Theorem 3.1.

Theorem 3.3. Let K be a non-empty compact convex subset of a Hausdorff
topological vector space X and let Y be an ordered Hausdorff topological vector
space. Assume that C : K → 2Y a multi-valued mapping such that for all
x ∈ K,C(x) is closed, convex and pointed cone in Y with intY C(x) ̸= ∅. Let A :
K → 2K be a multi-valued mapping such that for all x ∈ K,A(x) is non-empty
convex and, for all y ∈ K,A−1(y) is open in K and, for all x, y ∈ K, clKA :
K → 2K is uppersemicontinuous. Let T : K → L(X,Y ) be a mapping such that
⟨T (λxα + (1− λ)z, η(y, f(xα)))⟩ → ⟨T (λx0 + (1− λ)z, η(y, f(x0)))⟩, whenever
xα → x0, for all x0 ∈ K and α ∈ Λ; where η : K × K → X be a mapping
which is affine in the first argument and f : K → K be a continuous mapping.
Furthermore, suppose that W (x) = Y \ (−intY C(x)) is uppersemicontinuous
on K and

⟨T (λx+ (1− λ)z, η(x, f(x)))⟩ /∈ −intY C(x), for all x ∈ K.

Then there exists a point x0 ∈ K such that for all z ∈ K,λ ∈ (0, 1], x0 ∈
clKA(x0) and

⟨T (λx0 + (1− λ)z, η(x, f(x0)))⟩ /∈ −intY C(x0), for all x ∈ A(x0).

If λ = 1, η(x, f(x0)) = x − f(x0), then from Theorem 3.1, we can easily
obtain Theorem 1 of Kim and Tan [19].

The following theorems are proved in non-compact setting.

Theorem 3.4. Let K be a non-empty convex subset of a locally convex Haus-
dorff topological vector space X, D a non-empty compact subset of K and Y
an ordered Hausdorff topological vector space. Let C : K → 2Y be a multi-
valued mapping such that C(x) is a closed, convex and pointed cone in Y



Some existence results for generalized 1418

with intY C(x) ̸= ∅. Let A : K → 2D is a multi-valued mapping such that
for each x ∈ K,A(x) is non-empty convex, for all y ∈ K,A−1(y) is open
in K and clKA : K → 2D is uppersemicontinuous for each x, y ∈ K. Let
g : K × X → Y, η : K × D → X and f : K → D be the mappings such that
these mappings preserve the conditions considered in Theorem 3.1 and W is
same as in Theorem 3.1. Then problem (2.1) is solvable.

Proof. Define a multi-valued mapping M : K → 2D by

M(x) = {y ∈ D : g(λx+ (1− λ)z, η(y, f(x))) ∈ −intY C(x)}, for each x ∈ K.

Using the same arguments Theorem 3.1, we have x /∈ CoM(x) and M−1(y) is
open for each y ∈ D. Thus all hypothesis of Lemma 2.2 are satisfied. Hence
there exists a solution of problem (2.1). □

Definition 3.5. [10]. Let X be a topological space and K be a subset of X

such that K =
∞∪

n=1
Kn, where {Kn}∞n=1 is an increasing sequence of non-empty

compact sets in the sense that Kn ⊆ Kn+1 for all n ∈ N . A sequence {xn}∞n=1

in K is said to be escaping sequence from K(relative to {Kn}∞n=1) if for each
n there is an m > 0 such that k ≥ m,xk /∈ Kn.

Theorem 3.6. Let K be a non-empty compact convex subset of a Hausdorff
topological vector space X and let Y be an ordered topological vector space. Let
C : K → 2Y be a multi-valued mapping such that for all x ∈ K,C(x) is a
closed, convex and pointed cone in Y with intY C(x) ̸= ∅. Let A : K → 2K be
a multi-valued mapping such that A−1(y) is open in K for all y ∈ K, for each
x ∈ X,A(x) is non-empty convex and clKA : K → 2K is uppersemicontinuous
for all x, y ∈ K. Let g : K × X → Y be a multi-valued mapping which is
continuous and affine in the second argument, η : K ×K → X be a mapping
which is affine in the first argument and let f : K → K be a continuous
mapping. Let xα → x0, for all x0 ∈ K whenever α ∈ Λ. Let the multi-valued
mapping W (x) = Y \ (−intY C(x)) is uppersemicontinuous on K for all x ∈ K.

Suppose that for each sequence {xn}∞n=1 in K with xn ∈ Kn, n ∈ N which is
escaping from K relative to {Kn}∞n=1, there exists m ∈ N and ym ∈ Km∩A(xm)
such that for all z ∈ Km and λ ∈ (0, 1], xm ∈ clKA(xm) and g(λxm + (1 −
λ)z, η(ym, f(xm))) ∈ −intY C(xm).

Then there exists x∗ ∈ K such that for all z ∈ K,λ ∈ (0, 1], and x∗ ∈
clKA(x∗), we have

g(λx∗ + (1− λ)z, η(y, f(x∗))) /∈ −intY C(x∗).

Proof. Since for each n ∈ N,Kn is compact and convex set in X, Theorem 3.1
implies that for all n ∈ N , there exists xn ∈ Kn such that for all z ∈ Kn, λ ∈
(0, 1], xn ∈ clKA(xn) and

(3.1) g(λxn + (1− λ)z, η(y, f(xn))) /∈ −intY C(xn), for all y ∈ A(xn).
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Suppose that the sequence {xn}∞n=1 is escaping from K relative to {Kn}∞n=1.
By assumption of this theorem, there exists m ∈ N and ym ∈ Km ∩ A(xm)
such that for all z ∈ Km, λ ∈ (0, 1], xm ∈ clKA(xm) and g(λxm + (1 −
λ)z, η(ym, f(xm))) ∈ −intY C(xm), which contradicts (3.1). Hence {xn}∞n=1
is not an escaping sequence from K relative to {Kn}∞n=1. Using the same ar-
guments used by Qun [25] in proving [26, Theorem 2], there exists r ∈ N and
there is a subsequence {xjn} of {xn}∞n=1, which must lie entirely in Kr. Since
Kr is compact, there exists a subsequence {xin}in∈Λ of {xjn} in Kr and there
exists x∗ ∈ Kr such that xin → x∗, when in → ∞. Since {Kn}∞n=1 is an
increasing sequence for all y ∈ K, there exists i0 ∈ Λ with i0 > r such that
y ∈ Ki0 , for all in ∈ Λ and in > i0, we have y ∈ Ki0 ⊆ Kin such that for all
z ∈ Kr and λ ∈ (0, 1], we have

(3.2) g(λxin + (1− λ)z, η(y, f(xin))) /∈ −intY C(xin).

Since g and f are continuous mappings and xin → x∗ when in → ∞, we have

g(λxin + (1− λ)z, η(y, f(xin))) → g(λx∗ + (1− λ)z, η(y, f(x∗))).

By uppersemicontinuity of W , we have

g(λx∗ + (1− λ)z, η(y, f(x∗))) ∈ W (x∗).

Since clKA : K → 2K is uppersemicontinuous with compact values, there exists
x∗ ∈ K such that for all z ∈ K,λ ∈ (0, 1], x∗ ∈ clKA(x∗) and

g(λx∗ + (1− λ)z, η(y, f(x∗))) /∈ −intY C(x∗), for all y ∈ A(x∗).

□

4. Existence theory without convexity

In this section, we prove an existence theorem for generalized vector quasi-
equilibrium problem, by replacing convexity assumptions with merely topolog-
ical properties.

Definition 4.1. AnH-space is a pair (X, {ΓA}), whereX is a topological space
and {ΓA} is a given family of non-empty contractible subsets of X, indexed by
the finite subsets of X such that A ⊂ B implies ΓA ⊂ ΓB .

A subset D of X is called H-convex, if for every finite subset A of D, it
follows that ΓA ⊂ D.

A subset D of X is called weakly H-convex, if for every finite subset A of
D, it results that ΓA ∩D is non-empty and contractible. This is equivalent to
saying that the pair (D, {ΓA ∩D}) is an H-space.

A subset K of X is called H-compact, if for every finite subset A of X, there
exists a compact, weakly H-convex set D of X such that K ∪A ⊂ D.

Definition 4.2. Let (X, {ΓA}) be an H-space. A multi-valued mapping F :
X → 2X is called H-KKM if ΓA ⊂

∪
u∈A

F (u), for every finite subset A of X.
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Theorem 4.3. [7]. Let (X, {ΓA}) be an H-space and F : X → 2X be an
H-KKM multi-valued mapping such that

(1) for each u ∈ X,F (u) is compactly closed, that is B ∩ F (u) is closed in
B for every compact set B ⊂ X,

(2) there exists a compact set L ⊂ X and an H-compact set K ⊂ X such
that for every weakly H-convex set D with K ⊂ D ⊂ X, we have∩

u∈D

(F (u) ∩D) ⊂ L.

Then
∩

u∈X

F (u) ̸= ∅.

Theorem 4.4. Let K be a non-empty compact subset of a topological space X,
Y be a topological space and (K, {ΓB}) be an H-space. Let g : K ×X → Y, f :
K → K be the continuous mappings and η : K ×K → X be a mapping

(1) for each y ∈ K,Ny = {u ∈ K : g(λu+(1−λ)z, η(y, f(u))) ∈ −intY C(u)}
is H-convex or empty.

(2) g(λu+ (1− λ)z, η(u, f(u))) /∈ −intY C(u), for all u ∈ K.
(3) A : K → 2K a multi-valued mapping such that clKA : K → 2K is

uppersemicontinuous.
(4) There exists a compact subset L of K and an H-compact subset E ⊂ K

such that for every weakly H-convex set D with E ⊂ D ⊂ K,

{y ∈ D : g(λu+ (1− λ)z, η(y, f(u))) /∈ −intY C(u), for each u ∈ K} ⊂ L.

Then there exists x0 ∈ K such that for all z ∈ K,λ ∈ (0, 1], x0 ∈ clKA(x0)
and

g(λx0 + (1− λ)z, η(y, f(x0))) /∈ −intY C(x0), for all y ∈ K.

Proof. Let S(y) = {u ∈ K : g(λu+ (1− λ)z, η(y, f(u))) /∈ −intY C(u)}, for all
y ∈ K, z ∈ K and λ ∈ (0, 1]. First we prove that S is an H-KKM mapping.
Suppose that S is not an H-KKM mapping. Then there exists a finite subset
B of K such that

ΓB ̸⊂
∩
y∈B

S(y).

Thus there exists v ∈ ΓB such that

v /∈ S(y), for all y ∈ B,

that is, g(λv + (1− λ)z, η(y, f(v))) ∈ −intY C(v), for all y ∈ B.
By Assumption (1), B ⊂ Nv and ΓB ⊂ Nv. Since Nv is H-convex, that is,
v ∈ Nv such that

g(λv + (1− λ)z, η(v, f(v))) ∈ −intY C(v),

which contradicts assumption (2). Thus ΓB ⊂
∪

y∈B

S(y), for every finite subset

B of K. Hence S is an H-KKM mapping.
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On the other hand, for any y ∈ K,S(y) is closed. Indeed, let {xn} is a
sequence in S(y) such that xn → x0 ∈ K. Since xn ∈ S(y), for all n, we have

g(λxn + (1− λ)z, η(y, f(xn))) /∈ −intY C(xn).

Since g and f are continuous mappings and xn → x0, we have

g(λxn + (1− λ)z, η(y, f(xn))) → g(λx0 + (1− λ)z, η(y, f(x0))) /∈ −intY C(x0).

It follows that x0 ∈ S(y) and so S(y) is closed for any y ∈ K, that is, condition
(1) of Theorem 4.3 holds. It is easy to see that the assumption (4) of this
theorem and condition (2) of Theorem 4.3 are same. Thus we have∩

y∈K

S(y) ̸= ∅.

It implies that x0 ∈ K such that for all z ∈ K,λ ∈ (0, 1], we have

g(λx0 + (1− λ)z, η(y, f(x0))) /∈ −intY C(x0), for all y ∈ K.

Since clKA(x0) is uppersemicontinuous with compact values, there exists x0 ∈
K such that for all z ∈ K,λ ∈ (0, 1], x0 ∈ clKA(x0) and

g(λx0 + (1− λ)z, η(y, f(x0))) /∈ −intY C(x0).

□
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