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Abstract. For a finite group G, let Cent(G) denote the set of centraliz-

ers of single elements of G. In this note we prove that if |G| ≤ 3
2
|Cent(G)|

and G is 2-nilpotent, then G ∼= S3, D10 or S3 × S3. This result gives a
partial and positive answer to a conjecture raised by A. R. Ashrafi [On fi-

nite groups with a given number of centralizers, Algebra Colloq. 7 (2000),
no. 2, 139–146].
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1. Introduction

Throughout this paper G is a non-trivial finite group. Let Cent(G) denote
the set of centralizers of single elements ofG and let |Cent(G)| be its cardinality.
The group G is called n-centralizer if |Cent(G)| = n. Starting with Belcastro
and Sherman [4], many authors have studied the influence of |Cent(G)| on the
structure of the group G (see [1–3] and [11]).

In [4], Belcastro and Sherman raised the question whether or not there exists
a finite n−centralizer group G other than Q8 and D2p (p > 2 is a prime) such
that |G| ≤ 2n. Ashrafi in [2] showed that there are several groups satisfying
the given properties. Then Ashrafi raised the following conjecture (conjecture
2.4 of [2]):

Conjecture 1.1. Suppose that G is an n-centralizer group. If |G| ≤ 3n
2 , then

G is isomorphic to S3, S3 × S3 or D10, the dihedral group of order 10.

In [11], it is proved that if |G| ≤ 3n
2 then G is solvable. In this paper first

we confirm Conjecture 1.1 for groups whose Sylow 2-subgroups have order at
most 4 (see Propositions 2.6 and 3.7) and then we prove the following main
result:
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Finite groups have even more centralizers 1424

Theorem 1.2. Suppose that G is a n-centralizer group such that |G| ≤ 3n
2 . If

G is 2-nilpotent, then G ∼= S3, D10 or S3 × S3.

Throughout this paper all groups mentioned are assumed to be finite. Z(G)
denotes the center of the group G and D2n denotes the dihedral group of order
2n. Also CG(x) is the centralizer of x in G, elements of order 2 are called
involutions and I(G) = {a ∈ G|a2 = 1} = {a ∈ G|a = a−1}. We denote by
o(x) the order of the element x in G. Cl(x) is the conjugacy class of x in G.
Most notations are standard and they are taken mainly from [8–10].

2. Frobenious groups

The following lemma will be used in the proof of some results.

Lemma 2.1. Let G = K ⋊H be a Frobenius group with kernel K. Then

(i) If Z(H) = 1, then |Cent(K)|+ |K|(|Cent(H)| − 1) + 1 = |Cent(G)|.
(ii) If Z(H) ̸= 1, then |Cent(K)|+ |K||Cent(H)|+ 1 = |Cent(G)|.

Proof. The proof is trivial by definition of Frobenius groups. □

Lemma 2.2. If G is a nonabelian n-centralizer group such that |G| ≤ 3n
2 , then

Z(G) = 1 and |I(G)| ≥ |G|
3 . Also G is a solvable group of order 2rm, r ≥ 1

and m is an odd integer greater than 1.

Proof. It is easy to see that n ≤ | G
Z(G) |. Therefore n|Z(G)| ≤ 3n

2 which implies

that Z(G) = 1. It follows from Lemma 2.3 of [11] that n ≤ |G|+|I(G)|
2 . Thus

2n ≤ |G| + |I(G)| ≤ 3n
2 + |I(G)| which gives the result. Finally G is solvable

by Theorem 2.6 of [11]. □

Lemma 2.3. Let G = S ⋉K be an n-centralizer Frobenius group with kernel
K and S be a Sylow 2-subgroup of G. If |G| ≤ 3n

2 , then |S| ≤ 4.

Proof. By Lemma 2.1, we have

2

3
|K||S| ≤ |Cent(G)|

≤ |Cent(K)|+ |K||Cent(S)|+ 1

≤ |K| − 1 + |K| |S|
2

+ 1.

It follows that |S| ≤ 4, as wanted. □

Lemma 2.4. Let G be a dihedral group of order 2m such that m is odd. If G
is an n-centralizer group such that |G| ≤ 3

2n, then m = 3 or 5.

Proof. According to Lemma 2.1(ii), we have |Cent(G)| = m+ 2. Thus m = 3
or m = 5 by assumption. □
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Proposition 2.5. Let G be a Frobenius group such that |I(G)| ≥ |G|
3 . Then

G ∼= S3, D10, C3⋊C4 or (C2×C2×· · ·×C2)⋊C3. In particular, if |Cent(G)| ≥
2
3 |G|, then G ∼= S3 or D10.

Proof. Suppose that G = K ⋊ H is Frobenius with kernel K and |H| is of
even order. Then by Theorem 6.3 of [9], K is abelian of odd order and H
contains a unique element of order 2 and so G has exactly one conjugacy class

of involutions. Therefore we have |I(G)| = |K| + 1 ≥ |H||K|
3 . So we obtain

|H| ≤ 4 and |K| = 3. Thus G ∼= S3 or C3 ⋊ C4.
Now suppose that |H| is of odd order. Then |K| is even. Since K is normal

in G, we have I(G) = I(K). Consequently |H||K|
3 ≤ |I(K)| ≤ |K|. Hence

|I(K)| = |K| and |H| = 3. Therefore K is elementary abelian and so we have
the result.

If |Cent(G)| ≥ 2
3 |G|, then the result follows by Lemma 2.1 and Lemma 2.4.

This completes the proof.
□

In what follows we confirm the Conjecture 1.1 for groups whose Sylow 2-
subgroups have order 2.

Proposition 2.6. Let G be an n-centralizer group of order 2m where m is an
odd integer. If |G| ≤ 3n

2 , then G ∼= S3 or D10.

Proof. If |G| ≤ 12, then G ∼= D10 or S3. So we can assume that |G| > 12. Then
G has a normal subgroup K of index 2 by hypothesis and so G = K⟨a⟩ for
some a ∈ G of order 2. Therefore G has only one conjugacy class of involutions.

Since |I(G)| ≥ |G|
3 , we have |{ag : g ∈ G}| + 1 = |G : CG(a)| + 1 ≥ |G|

3 which

yields that |CG(a)| ≤ 3|G|
|G|−3 < 4. So |CG(a)| = 2. Thus ⟨a⟩ acts fixed point

freely on K and so G is a Frobenius group with kernel K. The result follows
by Proposition 2.5. □

3. Groups with Sylow 2-subgroups of order 4

Recall that a group G is a CA-group if CG(x) is abelian for every x ∈
G \ Z(G).

Lemma 3.1. Let G be an n-centralizer group of order 2rm such that r > 1
and m is odd. If |G| ≤ 3n

2 , then G is not a CA- group.

Proof. Suppose for a contradiction that G is a CA- group, we proceed by
Theorem A of [5]. In the first case we assume that G has an abelian normal
subgroup of index p such as K. Then by Lemma 4.6 of [9], K = G′. Now by
Theorem 2.3 of [3], we have |Cent(G)| = |K|+2. Therefore |G| ≤ 3

2 (|K|+2) =
3
2 (

|G|
p + 2). So 2p|G| − 3|G| ≤ 6p which yields that |G| ≤ 6p

2p−3 . On the other

hand 6 < |G|. Consequently 6p > 12p− 18 and p = 2 which is a contradiction
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because in this case |G| ≤ 12. Now by Theorem A of [5], Lemma 2.2 and
Proposition 2.5 we have the result. □

Remark 3.2. If G is a group of order 2rm such that |G| ≤ 3
2 |Cent(G)| and

r > 1, then by Lemma 3.1 and Corollary 2.6 of [3] we can reduce problem to

groups with 1
3 ≤ |I(G)|

|G| ≤ 1
2 .

Lemma 3.3. Let G be an n-centralizer group of order 4m such that m is an
odd integer. If |G| ≤ 3n

2 , then Sylow 2-subgroups of G are not cyclic.

Proof. Suppose, for a contradiction, that a Sylow 2-subgroup S of G is cyclic.Then
|I(G)| ≤ m+ 1 since the number of Sylow 2-subgroups of G is at most m. On
the other hand by Lemma 2.2, |I(G)| ≥ 4m

3 and so 4m
3 ≤ m + 1. Therefore

|G| ≤ 12 which is impossible. □

Proposition 3.4. Let G be a group of order 2rm such that m is odd, r ≥ 1

and S be a Sylow 2-subgroup of G. If |G|
3 ≤ |I(G)|, then either NG(S) = S or

G ∼= Cr
2 ⋊ C3. In particular, if |G| ≤ 3

2 |Cent(G)|, then NG(S) = S.

Proof. Since every involution of G lies in some Sylow 2-subgroup of G, we
have I(G) ⊆ ∪x∈Gx

−1Sx. But S has |G : NG(S)| conjugates in G and so

|I(G)| ≤ |G : NG(S)|(|S| − 1) + 1 ≤ |G||S|
|NG(S)| . Therefore |NG(S)| ≤ 3|S| by

hypothesis. If NG(S) ̸= S, then k = |G : NG(S)| = m
3 < m. Also by

Proposition 4.3 of [6] we have |I(G)| ≤ (2r − 1)k + 1. We conclude that k = 1
and so S ◁G and m = 3 . But in this case we have 2r ≤ |I(G)| = |I(S)| ≤ 2r

which means that S is an elementary abelian group and hence G ∼= Cr
2 ⋊ C3.

Now if |G| ≤ 3
2 |Cent(G)|, then G ≇ Cr

2 ⋊ C3 by Proposition 2.5. This
completes the proof.

□

Lemma 3.5. Let G be an n-centralizer group of order 4m such that m is an
odd integer and |G| ≤ 3n

2 . If S = {1, a, b, ab} is a Sylow 2-subgroup of G, then
G is 2-nilpotent and there exists 1 ̸= x ∈ S such that S = CG(x). Also if
CG(ab) = S then CG(a) and CG(b) are not equal to S.

Proof. It follows from Lemma 3.3 that S ∼= C2×C2 and by Proposition 3.4, we
deduce S = CG(S) = NG(S). Therefore by Burnside’s Theorem, S has a nor-
mal complement in G say K and so G = S⋉K. Now if S = CG(b) = CG(a) =
CG(ab), then the action of S on K is Frobenius and we reach to a contradiction
by Proposition 2.5. On the other hand if CG(b), CG(a) and CG(ab) are not
equal to S, then there are g1, g2, g3 ∈ K such that (ab)g3 = ab, bg2 = b, ag1 = a
where o(gi) ≥ 3. Therefore every involution of G is contained in at least three
distinct conjugates of S. So G has at most 3m

3 = m involutions which contra-
dicts to Lemma 2.2. So for at least one element of S say ab we have CG(ab) = S.
We claim that it is the only element of S with this property. For if CG(a) = S,
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then Cl(a)∪Cl(ab) has 2m elements and so |I(G)| ≥ 2m+2 > 4m
2 , which is a

contradiction by Remark 3.2. □

Lemma 3.6. Let G be an n-centralizer group of order 4m, where |G| ≤ 3n
2 .

Then |I(G)| ≤ 5m
3 + 1.

Proof. Let S = {1, a, b, ab} be a Sylow 2-subgroup of G. By Lemma 3.5, we can
assume that CG(ab) = S. On the other hand, the number of involutions of G is
equal to |Cl(ab)

∪
Cl(a)

∪
Cl(b)|. So we have |I(G)| ≤ m+m

3 +m
3 +1 = 5m

3 +1,
as wanted. □

In what follows we confirm the Conjecture 1.1 for groups whose Sylow 2-
subgroups have order 4.

Proposition 3.7. Let G be an n-centralizer group such that |G| ≤ 3n
2 . If

|G| = 4m, where m is an odd integer, then G ∼= S3 × S3.

Proof. Let S = {1, a, b, ab} be a Sylow 2-subgroup of G. By Lemma 3.5 we can
assume that G = S ⋉K, CG(ab) = S and S < CG(a), CG(b). Now we define
the automorphism ϕ of K as ϕ(g) = gab. It is clear that ϕ is a fixed-point-free
automorphism of order 2. Thus by Lemma 1.1 of [8], gab = g−1 for all g ∈ K
which shows that K is abelian. Therefore CG(g) = K, ⟨K, b⟩ or ⟨K, a⟩ for each
1 ̸= g ∈ K.

Now if x ∈ G − (I(G)
∪
K), then x−1 ∈ G − (I(G)

∪
K) and CG(x) =

CG(x
−1) while x−1 ̸= x. Therefore we have

|Cent(G)| ≤ 3 + |I(G)|+ 3m− |I(G)|
2

= 3 +
3m

2
+

|I(G)|
2

.

By Lemma 3.6 we have |Cent(G)| ≤ 3+ 3m
2 + 1

2 (
5m
3 +1). Hence 8m

3 ≤ 3+ 1
2+

7m
3

which yields that m ≤ 10 and |G| ≤ 40. Now by considering groups of order
at most 40 by GAP [7], we reach to S3 × S3 as only group which satisfies the
hypotheses of the proposition. □

4. Proof of the main result

The following lemma is very useful in the sequel.

Lemma 4.1. Let G be an n-centralizer group of order 2rm, where m is odd,
r > 2 and let S be a Sylow 2-subgroup of G. Suppose that |G| ≤ 3n

2 and G is
2-nilpotent. Then we have:

(i) The normal Hall complement K of S in G is abelian.
(ii) There exits exactly one involution in S such as u which CG(u)

∩
K = 1

and for all x ∈ K, xu = x−1.
(iii) S is elementary abelian and there is u ∈ S such that CG(u) = S.
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Proof. (i) Let J(S) = {x ∈ S|o(x) = 2}, T = {u ∈ J(S)|CG(u) ∩K = 1}
and t = |T |. Since K is a normal subgroup of G, for every u ∈ J(S),
the map φu : K −→ K with φu(x) = xu is an automorphism of K. If

u ∈ J(S) \T , then there exists 1 ̸= x ∈ K such that ux = ux2

= u. We

conclude that u ∈ S ∩Sx∩Sx2

. Since x ∈ K, the order of x is odd and

so S, Sx and Sx2

are distinct, by Proposition 3.4. Therefore we have
2rm
3 ≤ |I(G)| ≤ 1 +mt+ |J(S)|−t

3 m, which is equivalent to

t ≥ 2r−1 − |J(S)|
2

− 3

2m
. (∗)

Since |J(S)| ≤ 2r − 1, we see that t ≥ 1
2 − 3

2m .
Now if m = 3, then K is abelian and t ≥ 1. If m > 3, then

t ≥ 1, i.e, there exists u ∈ J(S) such that CG(u)
∩
K = 1. Therefore

φu ∈ Aut(K) is a fixed-point-free and since φ2
u = 1, K is abelian and

φu(x) = x−1 for every x ∈ K, by Theorem 10.5.1(iv) of [10].
(ii) As in the proof of the part(i), suppose that u is an involution of S such

that CG(u)
∩
K = 1. Then for every x ∈ K we have that xu = x−1.

Now if b is an another involution of S such that CG(b)
∩
K = 1, then

we have for every x ∈ K, xb = xu which follows that bu ∈ CorG(S).
On the other hand by definition of system normalizer and Theorem
9.2.8 of [10], CorG(S) = 1 and so b = u which is a contradiction to our
choice of b and u.

(iii) By substituting t = 1 in inequality (*), we have |J(S)| ≥ 2r − 2 − 3
m .

If |S| ≥ 16, then |I(S)| ≥ 2r − 1 − 3
m > 3

4 |S| and so S is elementary
abelian. Now Let |S| = 8. Then we conclude that |I(S)| ≥ 6 and so
S = C2 × C2 × C2.

□

Lemma 4.2. Let G be an n-centralizer group of order 2rm such that r > 2, m
be odd and |G| ≤ 3n

2 . If G is 2-nilpotent, then there exists an involution such
as t where |CG(t)| = 3|S|.

Proof. Suppose, for a contradiction, that |CG(t)| ≥ 5.2r for every t ∈ S such
that CG(t) ̸= S. It follows from Lemma 4.1(ii) that there exists only one
element a in S such that CG(a) = S. If S = {t1, · · · , t2r}, then we have

|G|
3

≤ |I(G)| ≤
2r∑
i=1

|Cl(ti)|

=
2r∑
i=1

|G : CG(ti)|

≤ 1 +m+
(2r − 2)m

5
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and hence 2r ≤ 3×5
m(5−3) +

3×5−6
5−3 ≤ 7, a contradiction. □

Lemma 4.3. Let G be an n-centralizer group such that |G| ≤ 3n
2 . If G is

2-nilpotent, then the order of a Sylow 2-subgroup of G is not 8.

Proof. Suppose, for a contradiction, that |G| = 8m such that (8,m) = 1.
Suppose that S is a Sylow 2-subgroup of G. Using arguments similar to that
of Lemma 3.6, one may to prove that |I(G)| ≤ 1 + 3m. On the other hand
there is an element b ∈ S such that CG(b) = S and for every x ∈ K we
have CG(x) = HK where H ≤ S and b /∈ H. The number of such subgroups
is 11, which means that if T = {CG(x)|x ∈ K}, then |T | ≤ 11. Also if
y ∈ G− (I(G)

∪
K), then y−1 ∈ G− (I(G)

∪
K) and CG(y) = CG(y

−1) while
y ̸= y−1. Therefore we have

2× 8m

3
≤ |Cent(G)|

≤ |I(G)|+ 11 +
7m− |I(G)|

2

= 11 +
7m

2
+

|I(G)|
2

≤ 11 +
7m

2
+

1 + 3m

2

=
23

2
+ 5m

Thus 16m
3 ≤ 23

2 + 5m and hence m ≤ 3
2 × 23. So we deduce that |G| ∈

{264, 216, 168, 120, 72, 24}. It can be checked by GAP [7] that none of these
groups satisfy the hypothesis. □

Now we are ready to prove the main result.

Theorem 4.4. Let G be an n-centralizer group such that |G| ≤ 3n
2 . If G is

2-nilpotent, then G ∼= S3, D10 or S3 × S3.

Proof. Suppose that |G| = 2r.m such that m is odd. If r = 1 or r = 2, then
we have the result by Propositions 2.6 and 3.7 respectively. So assume that
r > 2 and S is a Sylow 2-subgroup of G. Then G = S ⋉ K by hypothesis
and S is elementary abelian by Lemma 4.1(iii). Also there is a unique element
b ∈ S such that CG(b) = S by Lemma 4.1. According to Lemma 4.2, there
exist s1 ∈ S and y1 ∈ K such that CG(s1) = S⟨y1⟩ where o(y1) = 3 and so

⟨y1⟩⊴CG(s1). Therefore there is T1 ≤ S such that |T1| = |S|
2 and y1 ∈ CG(T1).

Now we consider two following cases:
Case(1): Suppose that there exists s2 ∈ S − T1 such that CG(s2) = S⟨y2⟩

and o(y2) = 3. Then there is T2 ≤ S such that |T2| = |S|
2 and y2 ∈ CG(T2).

Subcase(1): Suppose that ⟨y1⟩ = ⟨y2⟩. Then y1 ∈ CG(⟨T1, s2⟩) and since
T1 is maximal in S, we have y1 ∈ CG(S) which is a contradiction.
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Subcase(2): Suppose that ⟨y1⟩ ̸= ⟨y2⟩. Then we have |K| ≥ 9 since K is
abelian by Lemma 4.1(i).

For each s ∈ T1

∩
T2 = R we have |CG(s)| ≥ 9|S|. Thus we have

|I(G)| ≤ 1 +
|G|

|CG(b)|
+

∑
1̸=s∈R

|G|
|CG(s)|

+
∑

s∈S−(R∪{b})

|G|
|CG(s)|

≤ 1 +
|G|
|S| + | |S|

4
− 1| × |G|

9|S| + (|S| − |S|
4

− 1)
|G|
3|S|

=
|G|
|S| (1 +

|S| − 4

36
+

3|S| − 4

12
) + 1

=
|G|
|S| (

20 + 10|S|
36

) + 1

Since |G|
3 ≤ |I(G)|, we find that |S| ≤ 10 + 18|S|

|G| . It follows that |S| = 8,

contrary to Lemma 4.3.
Case 2: For every b, 1 ̸= s2 ∈ S − T1 we have CG(s2) > 3|S|.
Subcase(1): Suppose that there exists s2 ∈ S − T1 such that CG(s2) =

S⟨y2⟩ and o(y2) = 5 or 7. Then by the similar way, there exists T2 ≤ S such

that |T2| = |S|
2 and y1, y2 ∈ CG(T1

∩
T2). So |CG(T1

∩
T2)| ≥ 15|S|. Now if

R = T1

∩
T2, then

|I(G)| ≤ 1 +
|G|

|CG(b)|
+

∑
1̸=s∈R

|G|
|CG(s)|

+
∑

s∈S−(R∪{b})

|G|
|CG(s)|

≤ 1 + |G
S
|+ | |S|

4
− 1| × |G|

15|S| + (|S| − |S|
4

− 1)
|G|
3|S|

=
|G|
|S| (1 +

|S| − 4

60
+

3|S| − 4

12
) + 1

=
|G|
|S| (

9 + 4|S|
15

) + 1.

Since |G|
3 ≤ |I(G)|, we see that |S| ≤ 9 + 15|S|

|G| ≤ 9 + 15
9 , a contradiction.

Subcase(2): Assume that CG(s2) ≥ 9|S| for every b ̸= s2 ∈ S − T1. Then
we have

|I(G)| ≤ 1 +
|G|

|CG(b)|
+

∑
1 ̸=s∈T1

|G|
|CG(s)|

+
∑

s∈S−(T1∪{b})

|G|
|CG(s)|

≤ 1 +
|G|
|S| + | |S|

2
− 1| |G|

3|S| + | |S|
2

− 1| |G|
9|S|

=
|G|
|S| (

4|S|+ 10

18
) + 1.

Since |G|
3 ≤ |I(G)|, we find that |S| ≤ 5 + 9|S|

|G| ≤ 5 + 1 = 6. This is our final

contradiction.
□
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Corollary 4.5. Let G be an n-centralizer group such that |G| ≤ 3n
2 . If a Sylow

2-subgroup S of G is abelian, then G ∼= S3, D10 or S3 × S3.

Proof. It follows from Proposition 3.4 that NG(S) = S. Since S is abelian,
G is 2-nilpotent by Burnside’s theorem and the result follows from Theorem
4.4. □
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