d\;}‘u&‘i O
ISSN: 1017-060X (Print) %%5 ISSN: 1735-8515 (Online)
% 4

ATHEMATICAL,

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 6, pp. 1423-1431

Title:

Finite groups have even more centralizers

Author(s):

S. M. Jafarian Amiri, M. Amiri, H. Madadi and H. Rostami

Published by Iranian Mathematical Society
http://bims.ims.ir




Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 6, pp. 1423-1431
Online ISSN: 1735-8515

FINITE GROUPS HAVE EVEN MORE CENTRALIZERS

S. M. JAFARIAN AMIRI*, M. AMIRI, H. MADADI AND H. ROSTAMI

(Communicated by Ali Reza Ashrafi)

ABSTRACT. For a finite group G, let Cent(G) denote the set of centraliz-
ers of single elements of G. In this note we prove that if |G| < %|Cent(G)\
and G is 2-nilpotent, then G = S3, D1g or S3 x S3. This result gives a
partial and positive answer to a conjecture raised by A. R. Ashrafi [On fi-
nite groups with a given number of centralizers, Algebra Collog. 7 (2000),
no. 2, 139-146].
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1. Introduction

Throughout this paper G is a non-trivial finite group. Let Cent(G) denote
the set of centralizers of single elements of G and let |Cent(G)| be its cardinality.
The group G is called n-centralizer if |Cent(G)| = n. Starting with Belcastro
and Sherman [4], many authors have studied the influence of |Cent(G)| on the
structure of the group G (see [1-3] and [11]).

In [4], Belcastro and Sherman raised the question whether or not there exists
a finite n — centralizer group G other than Qs and Dy, (p > 2 is a prime) such
that |G| < 2n. Ashrafi in [2] showed that there are several groups satisfying
the given properties. Then Ashrafi raised the following conjecture (conjecture
2.4 of [2]):

Conjecture 1.1. Suppose that G is an n-centralizer group. If |G| < 37", then
G is isomorphic to S3,S3 x S3 or D1, the dihedral group of order 10.

In [11], it is proved that if |G| < 32 then G is solvable. In this paper first
we confirm Conjecture 1.1 for groups whose Sylow 2-subgroups have order at
most 4 (see Propositions 2.6 and 3.7) and then we prove the following main
result:
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Theorem 1.2. Suppose that G is a n-centralizer group such that |G| < 37” If
G is 2-nilpotent, then G = Ss, D1y or S3 x Ss.

Throughout this paper all groups mentioned are assumed to be finite. Z(G)
denotes the center of the group G and Ds,, denotes the dihedral group of order
2n. Also Cg(z) is the centralizer of « in G, elements of order 2 are called
involutions and I(G) = {a € G|a? = 1} = {a € Gla = a~'}. We denote by
o(x) the order of the element z in G. Cl(z) is the conjugacy class of x in G.
Most notations are standard and they are taken mainly from [8-10].

2. Frobenious groups
The following lemma will be used in the proof of some results.
Lemma 2.1. Let G = K x H be a Frobenius group with kernel K. Then

(i) If Z(H) = 1, then |Cent(K)| + |K|(|Cent(H)| — 1) + 1 = |Cent(G)].
(i) If Z(H) # 1, then |Cent(K)| + |K||Cent(H)| + 1 = |Cent(G)|.

Proof. The proof is trivial by definition of Frobenius groups. O
Lemma 2.2. If G is a nonabelian n-centralizer group such that |G| < 37”, then

Z(G) =1 and |I(G)| > % Also G is a solvable group of order 2"m, r > 1
and m is an odd integer greater than 1.

Proof. 1t is easy to see that n < |%| Therefore n|Z(G)| < 22 which implies

that Z(G) = 1. It follows from Lemma 2.3 of [11] that n < W Thus
2n < |G|+ [I(G)| < 22 + |I(G)| which gives the result. Finally G is solvable
by Theorem 2.6 of [11]. O

Lemma 2.3. Let G = S x K be an n-centralizer Frobenius group with kernel
K and S be a Sylow 2-subgroup of G. If |G| < 22, then |S| < 4.

Proof. By Lemma 2.1, we have

2KNS| < ICent(@)
< |Cent(K)| + |K||Cent(S)| +1
< |K|—1+\K||—§|+1.
It follows that |S| < 4, as wanted. O

Lemma 2.4. Let G be a dihedral group of order 2m such that m is odd. If G
is an n-centralizer group such that |G| < %n, then m =3 or 5.

Proof. According to Lemma 2.1(ii), we have |Cent(G)| = m + 2. Thus m = 3
or m = 5 by assumption. O
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Proposition 2.5. Let G be a Frobenius group such that [I(G)| > @ Then
G 2 S3,D19,C3xCy or (Cax Cyx - x C2) xCs. In particular, if |Cent(G)| >
2|G|, then G = S5 or Dx.

Proof. Suppose that G = K x H is Frobenius with kernel K and |H]| is of
even order. Then by Theorem 6.3 of [9], K is abelian of odd order and H
contains a unique element of order 2 and so G has exactly one conjugacy class
of involutions. Therefore we have |I(G)| = |K|+1 > % So we obtain
|H| <4 and |K|=3. Thus G = S5 or C5 x Cy.

Now suppose that |H| is of odd order. Then |K]| is even. Since K is normal
in G, we have I(G) = I(K). Consequently % < |I(K)| < |K|. Hence
|[I(K)| = |K| and |H| = 3. Therefore K is elementary abelian and so we have
the result.

If |Cent(G)| > 2|G], then the result follows by Lemma 2.1 and Lemma 2.4.

This completes the proof.
|

In what follows we confirm the Conjecture 1.1 for groups whose Sylow 2-
subgroups have order 2.

Proposition 2.6. Let G be an n-centralizer group of order 2m where m is an
odd integer. If |G| < 37”, then G =2 S35 or Dqg.

Proof. 1f |G| < 12, then G = Djg or S3. So we can assume that |G| > 12. Then
G has a normal subgroup K of index 2 by hypothesis and so G = K{(a) for
some a € G of order 2. Therefore G has only one conjugacy class of involutions.
Since |I(G)| > %, we have [{a9 : g € G}|+1=|G: Cgla)| +1 > % which
yields that |Cg(a)] < é;llci‘g < 4. So |Cg(a)] = 2. Thus (a) acts fixed point
freely on K and so G is a Frobenius group with kernel K. The result follows
by Proposition 2.5. O

3. Groups with Sylow 2-subgroups of order 4

Recall that a group G is a CA-group if Cg(z) is abelian for every x €
G\ Z(G).

Lemma 3.1. Let G be an n-centralizer group of order 2"m such that r > 1
and m is odd. If |G| < 37”, then G is not a C' A- group.

Proof. Suppose for a contradiction that G is a CA- group, we proceed by
Theorem A of [5]. In the first case we assume that G has an abelian normal
subgroup of index p such as K. Then by Lemma 4.6 of [9], K = G'. Now by
Theorem 2.3 of [3], we have |Cent(G)| = |K|+2. Therefore |G| < 3(|K|+2) =

%(% +2). So 2p|G| — 3|G| < 6p which yields that |G| < 2§f3. On the other

hand 6 < |G|. Consequently 6p > 12p — 18 and p = 2 which is a contradiction
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because in this case |G| < 12. Now by Theorem A of [5], Lemma 2.2 and
Proposition 2.5 we have the result. O

Remark 3.2. If G is a group of order 2"m such that |G| < 3|Cent(G)| and
r > 1, then by Lemma 3.1 and Corollary 2.6 of [3] we can reduce problem to
groups with % < % < %

Lemma 3.3. Let G be an n-centralizer group of order 4m such that m is an
odd integer. If |G| < 37", then Sylow 2-subgroups of G are not cyclic.

Proof. Suppose, for a contradiction, that a Sylow 2-subgroup S of G is cyclic. Then
|[I(G)| < m + 1 since the number of Sylow 2-subgroups of G is at most m. On
the other hand by Lemma 2.2, [I(G)| > 42* and so %* < m + 1. Therefore
|G| < 12 which is impossible. O

Proposition 3.4. Let G be a group of order 2"m such that m is odd, r > 1
and S be a Sylow 2-subgroup of G. If % < |I(G)|, then either Ng(S) =S or
G = C5 % Cs. In particular, if |G| < 3|Cent(G)|, then Ng(S) = S.

Proof. Since every involution of G lies in some Sylow 2-subgroup of G, we
have I(G) C Uzegz~'Sz. But S has |G : Ng(S)| conjugates in G and so
(@] < 1G : Na()|(|S| - 1) +1 < 23k, Therefore [N (S)| < 3|5| by
hypothesis. If Ng(S) # S, then k = |G : Ng(S)| = § < m. Also by
Proposition 4.3 of [6] we have |I(G)| < (2" — 1)k 4+ 1. We conclude that k£ =1
and so S <G and m = 3 . But in this case we have 2" < |[I(G)| = |I(S)| <27
which means that S is an elementary abelian group and hence G = C§ x Cs.
Now if |G| < 3|Cent(G)], then G 2 C§ x C3 by Proposition 2.5. This

completes the proof.

O

Lemma 3.5. Let G be an n-centralizer group of order 4m such that m is an
odd integer and |G| < 37" If S = {1,a,b,ab} is a Sylow 2-subgroup of G, then
G is 2-nilpotent and there exists 1 # x € S such that S = Cg(z). Also if
Ca(ab) = S then Cg(a) and Cg(b) are not equal to S.

Proof. Tt follows from Lemma 3.3 that S = Cs x Cs and by Proposition 3.4, we
deduce S = Cg(S) = Ng(S). Therefore by Burnside’s Theorem, S has a nor-
mal complement in G say K and so G = S x K. Now if S = Cg(b) = Cg(a) =
Cc(ab), then the action of S on K is Frobenius and we reach to a contradiction
by Proposition 2.5. On the other hand if C¢(b), Ca(a) and Cg(ab) are not
equal to S, then there are g1, g2, 93 € K such that (ab)9 = ab,b92 = b, a9 =a
where 0o(g;) > 3. Therefore every involution of G is contained in at least three
distinct conjugates of S. So G has at most 377” = m involutions which contra-
dicts to Lemma 2.2. So for at least one element of S say ab we have Cg(ab) = S.

We claim that it is the only element of S with this property. For if Cg(a) = S,
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then Cl(a) U Cl(ab) has 2m elements and so [I(G)| > 2m +2 > 4 which is a
contradiction by Remark 3.2. ]

Lemma 3.6. Let G be an n-centralizer group of order 4m, where |G| < 37"
Then |I(G)| < 22 + 1.

Proof. Let S = {1, a,b,ab} be a Sylow 2-subgroup of G. By Lemma 3.5, we can
assume that Cg(ab) = S. On the other hand, the number of involutions of G is
equal to |Cl(ab) |J Cl(a) JCI(b)|. So we have |I(G)| < m+3+%+1=52+1,
as wanted. |

In what follows we confirm the Conjecture 1.1 for groups whose Sylow 2-
subgroups have order 4.

Proposition 3.7. Let G be an n-centralizer group such that |G| < 37" If
|G| = 4m, where m is an odd integer, then G = S5 x Ss.

Proof. Let S ={1,a,b,ab} be a Sylow 2-subgroup of G. By Lemma 3.5 we can
assume that G = S x K, Cg(ab) = S and S < Cg(a),Cq(b). Now we define
the automorphism ¢ of K as ¢(g) = ¢g?°. It is clear that ¢ is a fixed-point-free
automorphism of order 2. Thus by Lemma 1.1 of [8], g% = g~ ! for all g € K
which shows that K is abelian. Therefore C(g) = K, (K, b) or (K, a) for each
l1#g€K.

Now if z € G — (I(G)UK), then 27! € G — (I(G)JK) and Cg(x) =
Ca(z™1) while 27! # x. Therefore we have
3m — [1(G)] 3m  |1(G)]

5 =3+ 5 + 5

By Lemma 3.6 we have [Cent(G)| < 34222 4+ 2 (3% +1). Hence 3* < 3434 T2
which yields that m < 10 and |G| < 40. Now by considering groups of order
at most 40 by GAP [7], we reach to S3 x S3 as only group which satisfies the
hypotheses of the proposition. O

|Cent(G)] <3+ |I(G)| +

4. Proof of the main result

The following lemma is very useful in the sequel.

Lemma 4.1. Let G be an n-centralizer group of order 2"m, where m is odd,
r > 2 and let S be a Sylow 2-subgroup of G. Suppose that |G| < %” and G is
2-nilpotent. Then we have:

(i) The normal Hall complement K of S in G is abelian.
(ii) There exits exactly one involution in S such as u which Cg(u) (K =1
and for allx € K, 2% = 271,
(iii) S is elementary abelian and there is u € S such that Cg(u) = S.
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(i) Let J(S) ={z € Slo(z) =2}, T = {u e J(S)|Ca(u) N K =1}
and ¢ = |T|. Since K is a normal subgroup of G, for every u € J(S5),
the map ¢, : K — K with ¢, (z) = 2" is an automorphism of K. If
w € J(S)\ T, then there exists 1 # z € K such that u® = u® = u. We
conclude that v € SNS*NS*°. Since z € K, the order of z is odd and
so S,5% and S7° are distinct, by Proposition 3.4. Therefore we have
TT’” <|I(G)|<1+mt+ %m, which is equivalent to

_ J(S) 3

ot M3

= 2 am
Since |J(S)| < 2" — 1, we see that t > + — 2.

Now if m = 3, then K is abelian and ¢ > 1. If m > 3, then
t > 1, i.e, there exists u € J(S) such that Cg(u) (K = 1. Therefore
oy € Aut(K) is a fixed-point-free and since p? = 1, K is abelian and
ou(z) = 27! for every x € K, by Theorem 10.5.1(iv) of [10].
As in the proof of the part(i), suppose that « is an involution of S such
that Cg(u) (K = 1. Then for every x € K we have that % = x71.
Now if b is an another involution of S such that Ce(b) (K = 1, then
we have for every z € K, x* = 2" which follows that bu € Corg(S).
On the other hand by definition of system normalizer and Theorem
9.2.8 of [10], Corg(S) = 1 and so b = u which is a contradiction to our
choice of b and w.
By substituting ¢ = 1 in inequality (*), we have |J(S)| > 2" —2 — 2.

If |S| > 16, then |I(S)| > 2" —1— % > 318| and so S is elementary
abelian. Now Let |S| = 8. Then we conclude that |I(S)| > 6 and so
S = CQ X CQ X CQ.

0

Lemma 4.2. Let G be an n-centralizer group of order 2"m such that r > 2, m
be odd and |G| < 2. If G is 2-nilpotent, then there exists an involution such
as t where |Cq(t)| = 3|5].

Proof. Suppose, for a contradiction, that |Cg(t)] > 5.2" for every ¢t € S such
that Cq(t) # S. It follows from Lemma 4.1(ii) that there exists only one
element a in S such that Cg(a) = S. If S = {t1,--- ,tar}, then we have

G| .-
5 < @<y (i)
=1
.
= ) |G: Ca(ts)]
i=1
S 1+m+w

5
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and hence 2" < 7n%5><—53) + 3?356 < 7, a contradiction. O
Lemma 4.3. Let G be an n-centralizer group such that |G| < 32, If G is
2-nilpotent, then the order of a Sylow 2-subgroup of G is not 8.

Proof. Suppose, for a contradiction, that |G| = 8m such that (8, m) = 1.
Suppose that S is a Sylow 2-subgroup of G. Using arguments similar to that
of Lemma 3.6, one may to prove that |I(G)| < 1+ 3m. On the other hand
there is an element b € S such that Cg(b) = S and for every © € K we
have Cg(x) = HK where H < S and b ¢ H. The number of such subgroups
is 11, which means that if T = {Cg(x)lz € K}, then |T| < 11. Also if
ye€G—(I(G)JK), then y=t € G — (I(G) JK) and Cg(y) = Ca(y~1) while
y # y~!. Therefore we have

2 X 8m

3 < |Cent(G)]
< \I(G)|+11+7m+|[(G)|
_ m  |I(G)]
= 11+ D) + D)
™ 143m
< -
< 11+ B + 5
= ?—FSm

Thus 16% < % + 5m and hence m < % x 23. So we deduce that |G| €
{264,216,168,120,72,24}. It can be checked by GAP [7] that none of these

groups satisfy the hypothesis. |

Now we are ready to prove the main result.

Theorem 4.4. Let G be an n-centralizer group such that |G| < 37” If G is
2-nilpotent, then G = S3, D19 or S3 x S3.

Proof. Suppose that |G| = 2".m such that m is odd. If r = 1 or r = 2, then
we have the result by Propositions 2.6 and 3.7 respectively. So assume that
r > 2 and S is a Sylow 2-subgroup of G. Then G = S x K by hypothesis
and S is elementary abelian by Lemma 4.1(iii). Also there is a unique element
b € S such that Cg(b) = S by Lemma 4.1. According to Lemma 4.2, there
exist 1 € S and y; € K such that Cg(s1) = S{y1) where o(y1) = 3 and so
(y1) QCq(s1). Therefore there is T; < S such that |T}| = @ and y1 € Cg(Th).
Now we consider two following cases:

Case(1): Suppose that there exists sy € S — T such that Cg(s2) = S{ya)
and o(yz) = 3. Then there is T5 < S such that |Tz| = % and y2 € Cq(T3).

Subcase(1): Suppose that (y1) = (y2). Then y; € Co ({11, s2)) and since
T is maximal in S, we have y; € C(S) which is a contradiction.
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Subcase(2): Suppose that (y1) # (y2). Then we have |K| > 9 since K is

abelian by Lemma 4.1(i).
For each s € T1 (T2 = R we have |Cg(s)| > 9|S|. Thus we have

Jal €]
1(G)] < +1;R\Cc ol ES%;U{E}) Co (o)
< 1+‘|§|' 1 -1 J 01 - B -2
= ‘|%||(1+|S|3(_j +3|Sl|2_4)+1
_ %(20+3é0\3|)+1

Since % < |I(G)|, we find that |S] < 10 + 1%3” It follows that |S| = 8,

contrary to Lemma 4.3.

Case 2: For every b,1 # sy € S — T1 we have Cg(s2) > 3|S|.

Subcase(1): Suppose that there exists s; € S — T} such that Cg(s2) =
S(y2) and o(yz) = Hor7. Then by the similar way, there exists 7o < S such
that |Tz| = ‘— and y1,y2 € Ca(Th (N T2). So |Ca(Ti(T2)| > 15|S|. Now if
R = Tl ng, then

G
16N < 1+ it 2 et T
< 1116+ 1§;|+(|57%71);%‘
= %(H |S|684+3|51|2_4)+1
= %(9+1§|S|)+1.

Since 1€l < |1(G)|, we see that | S| <9+ 1%‘?' <9+ 15, a contradiction.

Subcase(2). Assume that Cg(s2) > 9|S| for every b # s € S —Ty. Then

we have
l€l el
(@) < + 3 >
|CG(b oo, |Cals i es_mopy [Ce ()]
16 |5\ l€l \S| el
< 145+ +
R R ]
el 4\S|+10
= g

Since % < |I(G)|, we find that |S| < 5+ 9“8" < 5+ 1 = 6. This is our final

contradiction.
O
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Corollary 4.5. Let G be an n-centralizer group such that |G| < 37" If a Sylow
2-subgroup S of G is abelian, then G = S3, D1g or S3 X S3.

Proof. Tt follows from Proposition 3.4 that Ng(S) = S. Since S is abelian,
G is 2-nilpotent by Burnside’s theorem and the result follows from Theorem
4.4. (|
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