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Abstract. In this paper, we investigate the existence of solution for

a k-dimensional system of three points nabla fractional finite difference
equations. Also, we present an example to illustrate our result.
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1. Introduction

There are a lot of works on discrete fractional calculus for special equations
via distinct boundary conditions (see for example, [5–8, 13–19, 21] and [22]).
Also, there are some published papers on the nabla operator and fractional
finite difference inclusion (see for example, [1, 3, 4, 9–11] and [20]). In this
paper, we investigate the existence of solutions for the k-dimensional system of
nabla fractional finite difference equations

∇µ1

µ1−3x1(t) + h1

(
x1(t), x2(t), · · · , xk(t)

)
= 0,

∇µ2

µ2−3x2(t) + h2

(
x1(t), x2(t), · · · , xk(t)

)
= 0,

...
∇µk

µk−3xk(t) + hk

(
x1(t), x2(t), · · · , xk(t)

)
= 0, (1.1)
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via the boundary conditions
x1(−3) = x1(b) = x1(β) = 0,
x2(−3) = x2(b) = x2(β) = 0,
...
xk(−3) = xk(b) = xk(β) = 0, (1.2)

where b ∈ N0, 2 < µi ≤ 3, β ∈ Nb−1
1 and the mappings hi : Rk → R are

continuous functions for all i = 1, 2, · · · , k. We show that the problem (1.1)
via the conditions (1.2) is equivalent to a summation equation and by using
the Kranoselskii’s fixed point theorem, we investigate solutions of the problem.
We present an example to illustrate our result.

2. Preliminaries

The nabla operator ∇ on a function f acts by ∇f(t) = f(t)−f(t−1). Some
known information on the nabla operator to facilitate the analysis of results

can be found in [1,3,4,10,11] and [20]. Now, define tν := Γ(t+ν)
Γ(t) for all t, ν ∈ R

whenever the right-hand side is defined ( [4]). We define aν = 0 whenever a
is a non-positive integer and ν is not an integer. We can simply conclude that

tν = (t+ ν − 1)ν . Also, it is easy to check that ∇t(t− a)ν = ν(t− a)ν−1 and

∇t(a− t)ν = −ν(a− ρ(t))ν−1.

Similar to other works, we use the notations Na = {a, a + 1, a+ 2, . . . } for all
a ∈ R and Nb

a = {a, a + 1, a + 2, . . . , b} for all real numbers a and b whenever
b− a is a natural number.

Now, suppose that ν > 0 with m− 1 < ν ≤ m for some natural number m.
Then the ν-th nabla fractional sum of f based at a is defined by

∇−ν
a f(t) =

1

Γ(ν)

t∑
k=a+1

(t− ρ(k))ν−1f(k)

for all t ∈ Na ( [4]). Similarly, one can define

∇ν
af(t) =

1

Γ(−ν)

t∑
k=a+1

(t− ρ(k))−ν−1f(k)

for all t ∈ Na+m. In 2009, Atici and Eloe proved next result about relations of
the operators delta and nabla ( [4]).

Lemma 2.1. Let a ∈ R, m a natural number, 0 ≤ m−1 < ν ≤ m and y a map
on Na. Then, ∆

ν
ay(t−ν) = ∇ν

ay(t) for all t ∈ Nm+a and ∆−ν
a y(t+ν) = ∇−ν

a y(t)
for all t ∈ Na.
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Let a ∈ R, m a natural number, 0 ≤ m − 1 < ν ≤ m and h : Na → R a
mapping. It is known that the general solution for the fractional finite difference
equation ∆ν

ay(t) = h(t) is given by

y(t) =
m∑
i=1

ci(t− a)ν−i +∆−ν
a h(t)

=
m∑
i=1

ci(t− a)ν−i +
1

Γ(ν)

t−ν∑
s=a

(t− σ(s))ν−1h(s)

for all t ∈ Na, where c1, · · · , cm are arbitrary constants. Here, we provide a
similar result by using the nabla operator which can be proved by using Lemma
2.1.

Lemma 2.2. Let a ∈ R, m a natural number, m− 1 < ν ≤ m and h : N0 → R
a mapping. Then the general solution for the equation ∇ν

ν−my(t) = h(t) is
given by

y(t) =

m∑
i=1

ci(t+ i+ 1)ν−i +∇−νh(t)

=
m∑
i=1

ci(t+ i+ 1)ν−i +
1

Γ(ν)

t∑
s=0

(t− ρ(s))ν−1h(s),

for all t ∈ N−m, where ρ(s) = s− 1 and c1, · · · , cm are arbitrary constants.

Let P ̸= {0} be a non-empty closed subset of a topological vector space E.
Then P is called a cone whenever ax+by ∈ P for all x, y ∈ P and non-negative
real numbers a, b and P ∩ (−P ) = {0} (for more details and examples see [23]
and references therein). One can find next result in [2].

Lemma 2.3. Let X be a Banach space K a cone in X. Assume that Ω1

and Ω2 are open subsets of X such that 0 ∈ Ω1 and Ω1 ⊆ Ω2. Suppose that
T : K ∩ (Ω2\Ω1) → K is a completely continuous operator.
If either ∥Ty∥ ≤ ∥y∥ for all y ∈ K ∩ ∂Ω1 and ∥Ty∥ ≥ ∥y∥ for all y ∈ K ∩ ∂Ω2

or
∥Ty∥ ≥ ∥y∥ for all y ∈ K ∩ ∂Ω1 and ∥Ty∥ ≤ ∥y∥ for all y ∈ K ∩ ∂Ω2,
then T has at least one fixed point in K ∩ (Ω2\Ω1).

3. Main Result

First, we investigate the problem (1.1).

Lemma 3.1. Let b ∈ N0, 2 < µi ≤ 3, β ∈ Nb−1
1 and let the mappings hi :

Rk → R be continuous functions for all i = 1, 2, · · · , k. Then, for the mappings
xi : Nb

−3 → R, the nabla fractional finite difference equation

∇µi

µi−3xi(t) + hi

(
x1(t), x2(t), · · · , xk(t)

)
= 0(3.1)
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via the boundary conditions xi(−3) = 0, xi(b) = 0 and xi(β) = 0 has a solution
x∗
i if and only if x∗

i is a solution of the summation equation

xi(t) =

b∑
s=0

Gi(t, s, β)hi

(
x1(t), x2(t), · · · , xk(t)

)
,

where

Gi(t, s, β) =
(t+ 2)µi−1 − (β + 2)(t+ 3)µi−2

(b− β)(b+ 3)µi−2Γ(µi)
(b− ρ(s))µi−1

− (t+ 2)µi−1 − (b+ 2)(t+ 3)µi−2

(b− β)(β + 3)µi−2Γ(µi)
(β − ρ(s))µi−1 − 1

Γ(µi)
(t− ρ(s))µi−1

whenever 0 ≤ s ≤ β ≤ b and 0 ≤ s ≤ t ≤ b,

Gi(t, s, β) =
(t+ 2)µi−1 − (β + 2)(t+ 3)µi−2

(b− β)(b+ 3)µi−2Γ(µi)
(b− ρ(s))µi−1

− (t+ 2)µi−1 − (b+ 2)(t+ 3)µi−2

(b− β)(β + 3)µi−2Γ(µi)
(β − ρ(s))µi−1

whenever 0 ≤ t < s ≤ β ≤ b,

Gi(t, s, β) =
(t+ 2)µi−1 − (β + 2)(t+ 3)µi−2

(b− β)(b+ 3)µi−2Γ(µi)
(b− ρ(s))µi−1

− 1

Γ(µi)
(t− ρ(s))µi−1

whenever 0 ≤ β < s ≤ t ≤ b and

Gi(t, s, β) =
(t+ 2)µi−1 − (β + 2)(t+ 3)µi−2

(b− β)(b+ 3)µi−2Γ(µi)
(b− ρ(s))µi−1

whenever 0 ≤ β < s ≤ b and 0 ≤ t < s ≤ b for all s ∈ Nb
0. Here, i ∈

{1, 2, · · · , k}.

Proof. Let i ∈ {1, 2, · · · , k}, hi(t) := hi

(
x1(t), x2(t), · · · , xk(t)

)
and x∗

i be a
solution of the nabla fractional finite difference equation

∇µi

µi−3xi(t) + hi

(
x1(t), x2(t), · · · , xk(t)

)
= 0.

By using Lemma 2.2, we get

x∗
i (t) = c1(t+ 2)µi−1 + c2(t+ 3)µi−2 + c3(t+ 4)µi−3

− 1

Γ(µi)

t∑
s=0

(t− ρ(s))µi−1hi(s).
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By using the boundary condition x∗
i (−3) = 0, we obtain

0 = c1(−1)µi−1 + c2(0)
µi−2 + c3(1)

µi−3 − 1

Γ(µi)

−3∑
s=0

(−3− ρ(s))µi−1hi(s)

and so c3 = 0. Now by using the boundary condition x∗
i (b) = 0, we get

0 = c1(b+ 2)µi−1 + c2(b+ 3)µi−2 − 1

Γ(µi)

b∑
s=0

(b− ρ(s))µi−1hi(s).

Since (b+ 2)µi−1 = (b+ 2)(b+ 3)µi−2, we have

0 = c1(b+ 2) + c2 −
1

(b+ 3)µi−2Γ(µi)

b∑
s=0

(b− ρ(s))µi−1hi(s).

Similarly, by using the boundary condition x∗
i (β) = 0, we get

0 = c1(β + 2) + c2 −
1

(β + 3)µi−2Γ(µi)

β∑
s=0

(β − ρ(s))µi−1hi(s)

and so

c1 =
1

(b− β)(b+ 3)µi−2Γ(µi)

b∑
s=0

(b− ρ(s))µi−1hi(s)

− 1

(b− β)(β + 3)µi−2Γ(µi)

β∑
s=0

(β − ρ(s))µi−1hi(s),

and

c2 =
−(β + 2)

(b− β)(b+ 3)µi−2Γ(µi)

b∑
s=0

(b− ρ(s))µi−1hi(s)

+
(b+ 2)

(b− β)(β + 3)µi−2Γ(µi)

β∑
s=0

(β − ρ(s))µi−1hi(s).

Hence

x∗
i (t) =

(t+ 2)µi−1 − (β + 2)(t+ 3)µi−2

(b− β)(b+ 3)µi−2Γ(µi)

b∑
s=0

(b− ρ(s))µi−1hi(s)

− (t+ 2)µi−1 − (b+ 2)(t+ 3)µi−2

(b− β)(β + 3)µi−2Γ(µi)

β∑
s=0

(β − ρ(s))µi−1hi(s)

− 1

Γ(µi)

t∑
s=0

(t− ρ(s))µi−1hi(s)

=
b∑

s=0

Gi(t, s, β)hi

(
x1(s), x2(s), · · · , xk(s)

)
.
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Now, let x∗
i be a solution of the fractional sum equation

xi(t) =
b∑

s=0

Gi(t, s, β)hi

(
x1(s), x2(s), · · · , xk(s)

)
.

Then, we have

x∗
i (t) =

(t+ 2)µi−1 − (β + 2)(t+ 3)µi−2

(b− β)(b+ 3)µi−2Γ(µi)

b∑
s=0

(b− ρ(s))µi−1hi(s)

− (t+ 2)µi−1 − (b+ 2)(t+ 3)µi−2

(b− β)(β + 3)µi−2Γ(µi)

β∑
s=0

(β − ρ(s))µi−1hi(s)

− 1

Γ(µi)

t∑
s=0

(t− ρ(s))µi−1hi(s) = c1(t+ 2)µi−1 + c2(t+ 3)µi−2

− 1

Γ(µi)

t∑
s=0

(t− ρ(s))µi−1hi(s).

Since (−1)µi−1 = 0 and 0µi−2 = 0, we get x∗
i (−3) = 0. Similarly, we obtain

x∗
i (b) = 0 and x∗

i (β) = 0. On the other hand, one can check that x∗
i (t) is a

solution for the equation (3.1). This completes the proof. □

By using a similar proof of Proposition 2.2.2 in [7], one can check that the
Green function in the last result satisfies Gi(t, s, β) ≤ 0 for all s, t ∈ Nb

0. Let
Mi ⊆ Nb

0 be such that Gi(t, s, β) ̸= 0 for all t ∈ Mi. Since the Green function
is bounded, there exist λi ∈ (0, 1) such that

min
t∈Mi

|Gi(t, s, β)| ≥ λi max
t∈Mi

|Gi(t, s, β)|

for all s ∈ Nb
0. Now, suppose thatAi is the Banach space of the maps u : Nb

−3 →
R via the usual norm ∥u∥ = max{|u(t)| : t ∈ Nb

−3}. Consider the space X =
A1×A2×· · ·×Ak via the norm ∥(x1, x2, · · · , xk)∥X = ∥x1∥+∥x2∥+ · · ·+∥xk∥.
Its clear that, (X , ∥.∥X ) is a Banach space. Define the map T : X → X by

(3.2) T (x1, x2, . . . , xk)


t1
t2
...
tk

 =


T1(x1, x2, . . . , xk)(t1)
T2(x1, x2, . . . , xk)(t2)
...
Tk(x1, x2, . . . , xk)(tk)

 ,

where

Ti(x1, x2, . . . , xk)(t) =
b∑

s=0

|Gi(t, s, β)|hi

(
x1(s), x2(s), · · · , xk(s)

)
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for i = 1, 2, · · · , k. Also, consider the cone

K =

{
(x1, x2, · · · , xk) ∈ X : xi ≥ 0, min

(t1,t2,··· ,tk)∈M1×M2×···×Mk

[x1(t1) + x2(t2) + · · ·+ xk(tk)] ≥ λ∥(x1, x2, · · · , xk)∥X
}
,

where λ = min
1≤i≤k

λi. First, we show that T (K) ⊆ K whenever the functions hi

are non-negative for i = 1, 2, · · · , k. Let (x1, x2, . . . , xk) ∈ K. Then, we have

min
(t1,t2,··· ,tk)∈M1×M2×···×Mk

k∑
n=1

Tn(x1, x2, · · · , xk)(tn)

≥
k∑

n=1

min
tn∈Mn

Tn(x1, x2, · · · , xk)(tn)

=
k∑

n=1

min
tn∈Mn

b∑
s=0

|Gn(tn, s, β)|hn(x1(s), x2(s), · · · , xk(s))

≥
k∑

n=1

λn max
tn∈Mn

b∑
s=0

|Gn(tn, s, β)|hn(x1(s), x2(s), · · · , xk(s))

=
k∑

n=1

λn∥Tn(x1, x2, · · · , xk)∥ ≥ λ
k∑

n=1

∥Tn(x1, x2, · · · , xk)∥

= λ∥T (x1, x2, · · · , xk)∥X ,

where λ = min
1≤n≤k

λn. Hence, T (x1, x2, · · · , xk) ∈ K and so T (K) ⊆ K. Now,

we are ready to present our main result.

Theorem 3.2. Suppose that h1, · · · , hk ∈ C([0,∞)k) and there exists 0 < ϵ <
min{Bi : 1 ≤ i ≤ k} such that

b∑
s=0

max
t∈Mi

|Gi(t, s, β)|(Ai + ϵ) ≤ 1

k
and

b∑
s=0

λmax
t∈Mi

|Gi(t, s, β)|(Bi − ϵ) ≥ 1

k

for all i ∈ {1, 2, · · · , k}, where Gi is the related Green function for the equation
(3.1), λ = min

1≤i≤k
λi,

lim
(x1,x2,··· ,xk)→(0+,0+,··· ,0+)

hi(x1, x2, · · · , xk)

x1 + x2 + · · ·+ xk
= Ai

and

lim
(x1,x2,··· ,xk)→(+∞,+∞,··· ,+∞)

hi(x1, x2, · · · , xk)

x1 + x2 + · · ·+ xk
= Bi

for all i ∈ {1, 2, · · · , k}. Then the k-dimensional system of nabla fractional
finite difference equations (1.1) has at least one solution.
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Proof. Consider the operator T : K → K defined by (3.2) and the cone K. It
is clear that T is completely continuous because it is a summation operator on
a finite set. Choose δ1 > 0 such that

hi(x1, x2, · · · , xk) ≤ (Ai + ϵ)(x1 + x2 + · · ·+ xk)

for all (x1, x2, · · · , xk) ∈ X with ∥(x1, x2, · · · , xk)∥X < δ1. Now, put Ω1 ={
(x1, x2, · · · , xk) ∈ X : ∥(x1, x2, · · · , xk)∥X < δ1

}
. Then, 0 ∈ Ω1 and ∥(x1, x2,

· · · , xk)∥X = δ1 for all (x1, x2, · · · , xk) ∈ K ∩ ∂Ω1. Also, we have

∥Ti(x1, x2, · · · , xk)∥ = max
ti∈Mi

b∑
s=0

|Gi(ti, s, β)|hi

(
x1(s), x2(s), · · · , xk(s)

)
≤

b∑
s=0

max
ti∈Mi

|Gi(ti, s, β)|(Ai + ϵ)(x1 + x2 + · · ·+ xk)

≤ ∥(x1, x2, · · · , xk)∥X
b∑

s=0

max
ti∈Mi

|Gi(ti, s, β)|(Ai + ϵ)

≤ 1

k
∥(x1, x2, · · · , xk)∥X

for all (x1, x2, · · · , xk) ∈ K ∩ ∂Ω1. Hence,

∥T (x1, x2, · · · , xk)∥X =
k∑

i=1

∥Ti(x1, x2, · · · , xk)∥

≤ k × 1

k
∥(x1, x2, · · · , xk)∥X = ∥(x1, x2, · · · , xk)∥X

for all (x1, x2, · · · , xk) ∈ K ∩ ∂Ω1. Now, choose β > δ1 such that

hi(x1, x2, · · · , xk) ≥ (Bi − ϵ)(x1 + x2 + · · ·+ xk)(3.3)

for all (x1, x2, · · · , xk) ∈ X with ∥(x1, x2, · · · , xk)∥X ≥ β. Since β ≥ 1,∑b
s=0 λmaxti∈Mi |Gi(ti, s, β)|(Bi − ϵ) ≥ 1

k implies

βλ
b∑

s=0

max
ti∈Mi

|Gi(ti, s, β)|(Bi − ϵ) ≥ β
1

k
> 0

for all i = 1, · · · , k. Thus, we can choose δ2 > 0 such that

1

k
β ≤ δ2 ≤ λβ min

1≤i≤k

b∑
s=0

max
ti∈Mi

|Gi(ti, s, β)|(Bi − ϵ).

Now, put Ω2 =
{
(x1, x2, · · · , xk) ∈ X : ∥(x1, x2, · · · , xk)∥X < kδ2

}
. Then,

Ω1 ⊆ Ω2 and
x1(t1) + x2(t2) + · · ·+ xk(tk)

≥ min
(t1,t2,··· ,tk)∈M1×M2×···×Mk

[x1(t1) + x2(t2) + · · ·+ xk(tk)]
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≥ λ∥(x1, x2, · · · , xk)∥X
for all (x1, x2, · · · , xk) ∈ K ∩ ∂Ω2. Thus by using (3.3), we get

∥Ti(x1, x2, · · · , xk)∥ = max
ti∈Mi

b∑
s=0

|Gi(ti, s, β)|hi

(
x1(s), x2(s), · · · , xk(s)

)

≥
b∑

s=0

max
ti∈Mi

|Gi(ti, s, β)|(Bi − ϵ)(x1 + x2 + · · ·+ xk)

≥ λ∥(x1, x2, · · · , xk)∥X
b∑

s=0

max
ti∈Mi

|Gi(ti, s, β)|(Bi − ϵ)

≥ 1

k
∥(x1, x2, · · · , xk)∥X

for all (x1, x2, · · · , xk) ∈ K ∩ ∂Ω2. Hence,

∥T (x1, x2, · · · , xk)∥X =

k∑
i=1

∥Ti(x1, x2, · · · , xk)∥

≥ k × 1

k
∥(x1, x2, · · · , xk)∥X = ∥(x1, x2, · · · , xk)∥X

for all (x1, x2, · · · , xk) ∈ K∩∂Ω2. Therefore by using Lemma 2.3, T has at least
one fixed point (x∗

1, x
∗
2, · · · , x∗

k) in K ∩ (Ω2\Ω1). Hence by using Lemma 3.1,
the k-dimensional system of nabla fractional finite difference equations (1.1)
has at least one solution. □

Example 3.3. Consider the 2-dimensional nabla fractional finite difference
equation system

∇2.5
−0.5x1(t) + 200e

−10
x1(t)+x2(t)+1 (x1(t) + x2(t)) = 0,

∇2.1
−0.9x2(t) =

{
−180(x1(t) + x2(t))e

−8 sin x2(t)

x2(t) x2(t) > 0,
−180(x1(t) + x2(t))e

−8 x2(t) = 0, (3.4)

via the boundary conditions x1(−3) = x1(3) = x1(4) = 0 and x2(−3) = x2(3) =
x2(4) = 0. We show that the problem has at least one solution. Let µ1 = 2.5,

µ2 = 2.1, b = 4, β = 3, k = 2, h1(x1, x2) = 200e
−10

x1+x2+1 (x1 + x2) and

h2(x1, x2) = (x1 + x2)

{
180e

−8 sin x2
x2 x2 > 0,

180e−8 x2 = 0.

Thus, the system (3.4) is a special case of the system (1.1). Its easy to check
that hi ∈ C([0,∞)2) for i = 1, 2. Now by some calculation, we give values of
the Green function G1 in next table.
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t 0 1 2 3 4
G1(t, 0, 3) -0.1258 -0.0524 -0.0152 0 0
G1(t, 1, 3) -0.4662 -0.1841 -0.0524 0 0
G1(t, 2, 3) -1.4652 -0.4662 -0.1258 0 0
G1(t, 3, 3) -2.0246 -1.3053 -0.2797 0 0
G1(t, 4, 3) -1.9180 -1.4918 -0.8391 0 0

Table 3.1: Values of the Green function G1 for µ1 = 2.5

One can check that M1 = N2
0, mint∈M1 |G1(t, s, 3)| = 0.0152 and

max
t∈M1

|G1(t, s, 3)| = 2.0246

for all s ∈ N4
0 and so λ1 = 0.0075. Similarly by some calculation, we give

values of the Green function G2 in next table.

t 0 1 2 3 4
G2(t, 0, 3) -0.0212 -0.0074 -0.0019 0 0
G2(t, 1, 3) -0.0987 -0.0302 -0.0074 0 0
G2(t, 2, 3) -1.1153 -0.0987 -0.0212 0 0
G2(t, 3, 3) -2.0333 -1.0819 -0.0642 0 0
G2(t, 4, 3) -2.7313 -1.8816 -0.9643 0 0

Table 3.2: Values of the Green function G2 for µ2 = 2.1

It is easy to see that M2 = N2
0, mint∈M2 |G2(t, s, 3)| = 0.0019 and

maxt∈M2 |G2(t, s, 3)| = 2.7313 for all s ∈ N4
0. Hence, λ2 = 0.0007 and λ =

min{λ1, λ2} = 0.0007. On the other hand by calculation of some limits, one
can get that A1 = 200e−10, B1 = 200, A2 = 180e−8 and B2 = 180. Moreover,
we have

b∑
s=0

max
t∈M1

|G1(t, s, 3)| =
4∑

s=0

max
t∈N2

0

|G1(t, s, 3)| = 5.9998

and
∑b

s=0 maxt∈M2 |G2(t, s, 3)| = 5.9998. Put ϵ = 0.0001. Thus, we have
0 < ϵ < min{B1, B2},

b∑
s=0

max
t∈M1

|G1(t, s, 3)|(A1 + ϵ) = 5.9998(200e−10 + 0.0001) ≤ 1

2
,

b∑
s=0

λ max
t∈M1

|G1(t, s, β)|(B1 − ϵ) = 0.0007× 5.9998(200− 0.0001) ≥ 1

2
,

b∑
s=0

max
t∈M2

|G2(t, s, 3)|(A2 + ϵ) = 5.9998(180e−8 + 0.0001) ≤ 1

2
,

and

b∑
s=0

λ max
t∈M2

|G2(t, s, β)|(B2 − ϵ) = 0.0007× 5.9998(180− 0.0001) ≥ 1

2
.
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Now by using Theorem 3.2, the 2-dimensional system of nabla fractional finite
difference equations (3.4) has at least one solution.
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