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Abstract. In Proposition 2.6 in (G. Gruenhage, A. Lutzer, Baire and
Volterra spaces, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3115–3124)
a condition that every point of D is Gδ in X was overlooked. So we
proved some conditions by which a Baire space is equivalent to a Volterra

space. In this note we show that if X is a monotonically normal T1-space
with countable pseudocharacter and X has a σ-discrete dense subspace
D, then X is a Baire space if and only if X is Volterra. We show that
if X is a metacompact normal sequential T1-space and X has a σ-closed

discrete dense subset, then X is a Baire space if and only if X is Volterra.
If X is a generalized ordered (GO) space and has a σ-closed discrete dense
subset, then X is a Baire space if and only if X is Volterra. And also
some known results are generalized.

Keywords: Volterra space, Baire space, monotonically normal, meta-
compact.
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1. Introduction

Recall that a topological space X is a Baire space if the intersection of any
sequence of dense open subsets of X is dense. It follows immediately that the
intersection of countably many dense Gδ-subsets of a Baire space X must be
dense in X. It is well known that any Čech-complete space is a Baire space. A
weaker condition is that the intersection of any two dense Gδ-sets of X must
be dense in X, and that is the definition of a Volterra space [5]. Obviously, any
Baire space is Volterra. In [4], Gruenhage and Lutzer described broad classes
of spaces for which the Baire space property is equivalent to Volterra. In [1]
Cao and Junnila showed that every regular stratifiable Volterra space is Baire.

In Proposition 2.6 in [4], the authors did not notice that it was necessary to
require that points of D have countable pseudocharacter in X, i.e., points of D
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are Gδ in X. If we add this requirement, then Proposition 2.6 is true and also
follows from Theorem 2.12 in this note. However, parts of [4, Corollary 2.8],
do not follow as claimed. In particular, one must also add that points of D are
Gδ in Corollary 2.8(d), which states that Volterra implies Baire in the class of
regular metacompact sequential spaces with a σ-closed discrete dense subset D.
In this paper we show that 2.8(d) also holds if instead of assuming points are
Gδ, we assume that the space is normal; that is to say, we prove that Volterra
implies Baire in the class of normal metacompact sequential spaces with a σ-
closed discrete dense subset. We also prove that if X is a monotonically normal
T1-space with countable pseudocharacter and a σ-discrete dense subset, then
X is Baire if and only if X is Volterra. This has as a corollary that if X is a
generalized ordered (GO) space and has a σ-closed discrete dense subset, then
X is Baire if and only if X is Volterra.

The set of all natural numbers is denoted by N and ω is N ∪ {0}.

2. Main results

A space X is discretely generated [2] if for every A ⊂ X and x ∈ A there
exists a discrete subset D ⊂ A such that x ∈ D. In [2], it was proved that
every Hausdorff sequential space is discretely generated. Recall that a space
X is called sequential if A ⊂ X and A ̸= A implies that there is a sequence
{an : n ∈ N} ⊂ A such that {an : n ∈ N} converges to some y ∈ A\A. Given a
space X and C ⊂ X, we say that C is strongly discrete if there exists a disjoint
family {Ux : x ∈ C} of open subsets of X such that x ∈ Ux for each x ∈ C. If X
is a Hausdorff space and a sequence {xn}n∈N converges to a point x of X, then
the set {xn : n ∈ N} is strongly discrete. A space X is called strongly discretely
generated if for every A ⊂ X and x ∈ A there exists a strongly discrete set
D ⊂ A such that x ∈ D [8]. In what follows, we show that every Hausdorff
sequential space is strongly discretely generated.

Theorem 2.1. A space X is strongly discretely generated if and only if A ⊂ X
and A ̸= A implies there exists a strongly discrete subset D ⊂ A such that there
D \A is not empty.

Proof. (⇒) Obvious.
(⇐) Let A ⊂ X. Denote B =

∪
{D : D ⊂ A and D is strongly discrete}.

So A ⊂ B ⊂ A. Suppose B is not closed in X; then there exists a strongly
discrete set C ⊂ B and a point y ∈ C \ B. For each x ∈ C there is a strongly
discrete set Dx ⊂ A such that x ∈ Dx. Since the set C is strongly discrete,
there is a disjoint family {Ux : x ∈ C} of open subsets of X such that x ∈ Ux

for each x ∈ C. Denote D∗
x = Dx ∩ Ux. If D =

∪
{D∗

x : x ∈ C}, then D ⊂ A
and D is strongly discrete. Since y ∈ C and x ∈ D∗

x for each x ∈ C, we know
that y ∈ D. Thus y ∈ B. This is a contradiction with y /∈ B. Thus the set B
is closed. □
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Theorem 2.2. Let X be a Hausdorff sequential space. If A ⊂ X and x ∈ A,
then there is a countable strongly discrete set D ⊂ A such that x ∈ D.

Proof. Let B =
∪
{D : D ⊂ A and D is countable strongly discrete}. By

sequential property and a proof similar to Theorem 2.1, we can show that the
set B is closed. Thus A = B. □
Corollary 2.3. Every Hausdorff sequential space is strongly discretely gener-
ated.

Let X be a topological space and let Y be a subspace of X. If for every
A ⊂ Y and x ∈ A ∩ Y there exists a strongly discrete set D of X such that
D ⊂ A and x ∈ D, then the subspace Y of X is called strongly discretely
generated in X.

Lemma 2.4. Let X be a strongly discretely generated space. If Y ⊂ X, then
Y is strongly discretely generated in X.

Proof. Let A ⊂ Y and x ∈ A ∩ Y . Since X is strongly discretely generated,
there is a strongly discrete set D of X such that D ⊂ A and x ∈ D. Thus Y is
strongly discretely generated in X. □

By Corollary 2.3 and Lemma 2.4, we have

Corollary 2.5. Every subspace of a Hausdorff sequential space X is strongly
discretely generated in X.

Corollary 2.6. If a subspace D of a topological space X is homeomorphic
to a subspace of a Hausdorff sequential space Y , then D is strongly discretely
generated.

Since every strongly discrete set A of a dense subspace D of a space X is
strongly discrete in X, we have

Proposition 2.7. If a dense subspace D of a topological space X is strongly
discretely generated, then D is strongly discretely generated in X.

Lemma 2.8. [4, Lemma 2.3], Suppose U is a point-finite collection of open
subsets of X and that for each U ∈ U we have a Gδ-subset G(U) ⊂ U . Then
S =

∪
{G(U) : U ∈ U} is a Gδ-subset of X.

By a similar proof with Lemma 2.4 of [4], we have

Theorem 2.9. Suppose X is a T1-space and X has a dense subspace D =∪
{Dn : n ≥ 1} satisfying:
(a) Every point of D is Gδ in X;
(b) D is strongly discretely generated in X;
(c) for each n ≥ 1 there is a collection {V (d, n) : d ∈ Dn} of open subsets

of X that is point-finite in X and has {d} = V (d, n) ∩Dn for each d ∈ Dn.
If X is of the first category in itself, then D contains a subspace E that is

dense in X and is a Gδ-subset of X.
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Proof. Since X is a first category space, there is a sequence {Gn : n ≥ 1}
of dense open subsets of X such that

∩
{Gn : n ≥ 1} = ∅. We may assume

Gn+1 ⊂ Gn for each n ∈ N. Then X has no isolated point, so neither does
the set D. Let n ∈ N. For each d ∈ Dn, the set V (d, n) ∩ Gn ∩D is dense in

V (d, n). Thus d ∈ (V (d, n) ∩Gn ∩D) \ {d}. So there is a strongly discrete set

M(d, n) ⊂ (V (d, n) ∩ Gn ∩D) \ {d} such that d ∈ M(d, n). Since every point
of D is Gδ in X and M(d, n) is strongly discrete, the set M(d, n) is a Gδ-set
in X by Lemma 2.8.

Since {V (d, n) : d ∈ Dn} is point-finite, the set
∪
{M(d, n) : d ∈ Dn} = Kn

is a Gδ-set in X and Kn ⊂ Gn. Since
∩
{Gn : n ≥ 1} = ∅, the family

{Gn : n ∈ N} is point-finite, the set E =
∪
{Kn : n ∈ N} is a Gδ-set of X and

E ⊂ D. If O is any non-empty open subset of X, then there is some d ∈ Dn

for some n ∈ N such that d ∈ O. So O ∩M(d, n) ̸= ∅. Thus O ∩ E ̸= ∅. Thus
the set E is dense in X. □

By Corollary 2.6 and Theorem 2.9, we can get Proposition 2.6 of [4].
Recall from [6] that a space X is resolvable if X contains two disjoint dense

subsets.

Lemma 2.10. ( [9]) Any dense-in-itself subspace of a Hausdorff sequential
space is resolvable.

Theorem 2.11. Suppose X is a T1-space and X has a dense subspace D =∪
{Dn : n ≥ 1} satisfying:
(a) Every dense-in-itself open subspace M of D is resolvable;
(b) D is strongly discretely generated;
(c) Every point of D is Gδ in X;
(d) for each n ≥ 1 there is a collection {V (d, n) : d ∈ Dn} of open subsets

of X that is point-finite in X and has {d} = V (d, n) ∩Dn for each d ∈ Dn.
Then X is a Baire space if and only if X is Volterra.

Proof. We just need to prove that X is a Baire space if X is Volterra. Suppose
X is not a Baire space. There is a sequence {Gn : n ∈ N} of dense open subsets
of X such that

∩
{Gn : n ∈ N} is not dense in X. There is an non-empty open

subset Y of X such that Y ∩ (
∩
{Gn : n ∈ N}) = ∅. The set D∩Y is dense in Y

and satisfying (a), (b), (c) and (d). So we assume that Y = X. Hence X is the
first category and X is dense-in-itself. Thus the set D is also dense-in-itself.
There are two dense subset M1 and M2 of D such that M1∩M2 = ∅ by (a). By
Lemma 2.4 we know that M1 and M2 are strongly discretely generated in D.
By Proposition 2.7 we know that M1 and M2 are strongly discretely generated
in X. So Mi contains a subspace Ei that is dense in X and is a Gδ-set of X
by Theorem 2.9 for i = 1, 2. So E1 ∩ E2 = ∅. This contradicts that X is a
Volterra space. □
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Theorem 2.12. Suppose X is a T1-space and X has a dense subspace D =∪
{Dn : n ≥ 1} satisfying:
(a) D is homeomorphic to a subspace of a Hausdorff sequential space Y ;
(b) Every point of D is Gδ in X;
(c) for each n ≥ 1 there is a collection {V (d, n) : d ∈ Dn} of open subsets

of X that is point-finite in X and has V (d, n) ∩Dn = {d} for each d ∈ Dn.
Then X is a Baire space if and only if X is Volterra.

Proof. Since every dense-in-itself open subspace M of D is also homeomorphic
to a subspace of Y . Thus M is resolvable by Lemma 2.10. By Corollary 2.6 we
know that the set D is strongly discretely generated. So X is a Baire space if
and only if X is Volterra by Theorem 2.11. □

Proposition 2.6 of [4] with the Gδ condition added is the same as Theorem
2.12, except that Theorem 2.12 assumes only T1 instead of regular.

A space X is said to be monotonically normal [7] if there is a function G
which assigns to each ordered pair (H,K) of disjoint closed subsets of X an
open set G(H,K) such that

(1) H ⊂ G(H,K) ⊂ G(H,K) ⊂ X \K;
(2) if (H ′,K ′) is a pair of disjoint closed subsets havingH ⊂ H ′ andK ⊃ K ′,

then G(H,K) ⊂ G(H ′,K ′).
Recall that every generalized ordered (GO) space is monotonically normal.

Lemma 2.13. ( [1, Lemma 2.3]) Every dense-in-itself monotonically normal
Hausdorff space is resolvable.

Lemma 2.14. ( [3, Theorem 5.18 and Theorem 5.20]) Every monotonically
normal Hausdorff space is collectionwise normal and every subspace of a mono-
tonically normal space is monotonically normal.

The Hausdorff property in Lemma 2.14 can be replaced by T1 separation
axiom. In [2, Theorem 3.10], it was proved that any monotonically normal T1-
space is discretely generated. With the same proof, we can prove the following
conclusion.

Lemma 2.15. Every monotonically normal T1-space is strongly discretely gen-
erated.

Theorem 2.16. Let X be a monotonically normal T1-space with countable
pseudocharacter. If X has a σ-discrete dense subspace D of X, then X is a
Baire space if and only if X is Volterra.

Proof. Let D =
∪
{Dn : n ∈ N} be a σ-discrete dense subspace of X and let

n ∈ N. For each d ∈ Dn there is an open neighborhood Vd of d in X such that
Vd ∩Dn = {d}. Denote Vn =

∪
{Vd : d ∈ Dn}. Thus Vn is open in X. So Vn is

monotonically normal by Lemma 2.14. Since Dn is closed discrete in Vn and Vn
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is collectionwise normal, there is a disjoint family {V (d, n) : d ∈ Dn} of open
sets of X such that d ∈ V (d, n) ⊂ Vd for each d ∈ Dn. Thus V (d, n)∩Dn = {d}.

Every subspace of X is monotonically normal by Lemma 2.14. Thus ev-
ery dense-in-itself open subspace M of D is resolvable by Lemma 2.13. The
subspace D of X is strongly discretely generated by Lemma 2.15. Thus the
conditions of Theorem 2.11 are satisfied. So X is a Baire space if and only if
X is Volterra. □

It is well known that a GO space with a σ-closed discrete dense set is first
countable. So we have

Corollary 2.17. Let X be a GO space. If X has a σ-closed discrete dense
subset, then X is a Baire space if and only if X is Volterra.

A space X is semi-stratifiable [3] if there is a function G which assigns to
each n ∈ N and closed set H ⊂ X, an open set G(n,H) containing H such that

(1) H =
∩
{G(n,H) : n ∈ N};

(2) H ⊂ K ⇒ G(n,H) ⊂ G(n,K).
If also
(3) H =

∩
{G(n,H) : n ∈ N},

then X is stratifiable.
It is easy to see from condition (3) that stratifiable spaces are regular. It

is well known that every stratifiable (regular and T1) space is a σ-space (see,
e.g., [3, Theorem 5.9]). So a stratifiable T1-space has a σ-closed discrete dense
subset. Thus we have

Corollary 2.18. ([1, Theorem 2.5]) Let X be a stratifiable T1-space. Then X
is a Baire space if and only if X is Volterra.

In [4, Corollary 2.8], it is pointed out that if X is a regular metacompact
sequential space that has a σ-closed discrete dense subset D, then X is a Baire
space if and only if X is Volterra. However, this does not follow from the
corrected Proposition 2.6 unless the condition that points of D are Gδ in X is
added. In fact, the conclusion (d) of Corollary 2.8 in [4] also holds if we add a
condition that the space X is normal. Thus we have the following theorem.

Theorem 2.19. Let X be a metacompact normal sequential T1-space. If X
has a σ-closed discrete dense subset, then X is a Baire space if and only if X
is Volterra.

Proof. Let D =
∪
{Dn : n ∈ N} be a σ-closed discrete dense subspace of X.

SupposeX is not a Baire space. There is a sequence {Gn : n ∈ N} of dense open
subsets of X such that

∩
{Gn : n ∈ N} is not dense in X. Thus there is a non-

empty open subset Y of X such that Y ∩(
∩
{Gn : n ∈ N}) = ∅. For each n ∈ N,

Y ∩Gn is dense in Y . We can assume Y = X. Thus
∩
{Gn : n ∈ N}) = ∅. So X

has no isolated points. Thus the set D is dense in itself. Since X is sequential,
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D is resolvable by Lemma 2.10. Hence there are disjoint subsets M1 and M2

of D such that M1 = M2 = X.
Let M1 =

∪
{D1

n : n ∈ N} and M2 =
∪
{D2

n : n ∈ N}, where D1
n ⊂ Dn

and D2
n ⊂ Dn. For each n ∈ N we denote D1∗

n = D1
n \

∪
{D1

m : m < n} and
D1∗

1 = D1
1, D

2∗
n = D2

n \
∪
{D2

m : m < n} and D2∗
1 = D2

1. Thus F = {D1∗
n , D2∗

n :
n ∈ N} is a countable family of closed discrete subsets of X and F is a pairwise
disjoint family.

We can assume F = {Fi : i ∈ N}. Since X is normal and F1 ∩F2 = ∅, there
are disjoint open sets O21 and O22 such that F1 ⊂ O21, F2 ⊂ O22. Similarly,
there are disjoint open sets O31, O32 and O33 such that F1 ⊂ O31, F2 ⊂ O32,
F3 ⊂ O33. In this manner, we can get disjoint open sets Oin for each i ≤ n such
that Fi ⊂ Oin, where n ∈ N. If Pn =

∩
{Omn : m ≥ n}, then U = {Pn : n ∈ N}

is a family of disjoint Gδ-sets of X and Fn ⊂ Pn for each n.
We can assume U = {An, Bn : n ∈ N} of Gδ-sets of X and U is pairwise

disjoint such that D1∗
n ⊂ An and D2∗

n ⊂ Bn for each n ∈ N.
Let n ∈ N. The set D1∗

n is a closed discrete subset of X. For each d ∈ D1∗
n

there is an open set O1
d of X such that d ∈ O1

d and O1
d ∩ D1∗

n = {d}. If
U1
n = {O1

d : d ∈ D1∗
n }∪{X \D1∗

n }, then U1
n is an open cover of X. The space X

is metacompact, so U1
n has a point-finite open refinement V1

n. For each d ∈ D1∗
n ,

there is some V 1
n (d) ∈ V1

n such that d ∈ V 1
n (d) and V 1

n (d)∩D1∗
n = {d}. Denote

V1∗
n = {V 1

n (d) : d ∈ D1∗
n }. Thus V1∗

n is point-finite. Similarly, we have an
open family V2∗

n = {V 2
n (d) : d ∈ D2∗

n } such that V 2
n (d) ∩D2∗

n = {d} and V2∗
n is

point-finite for each n ∈ N.
Since X is a sequential Hausdorff space, the space X is strongly discretely

generated by Corollary 2.3. Let n ∈ N and d ∈ D1∗
n . So d ∈ V 1

n (d) and

d ∈ V 1
n (d) ∩Gn \ {d}. Since {d} is not open and {d} is closed, the set V 1

n (d)∩
Gn \ {d} is an non-empty open subset of X. Since M1 = X, we have d ∈
(V 1

n (d) ∩Gn \ {d}) ∩M1. By strongly discretely generated property of X,
there is a discrete subspace Cd ⊂ (V 1

n (d) ∩ Gn \ {d}) ∩ M1 and a pairwise
disjoint open family Vd = {Vx : x ∈ Cd} such that x ∈ Vx. We can assume that
Vx ⊂ V 1

n (d) ∩Gn. For each x ∈ Cd there is some mx ∈ N such that x ∈ D1∗
mx

.
Let Gx = Amx ∩Vx. So Gx is a Gδ-set of X and x ∈ Gx ⊂ Vx ⊂ Gn. So

∪
{Gx :

x ∈ Cd} is a Gδ-set ofX and Cd ⊂
∪
{Gx : x ∈ Cd}. Hence d ∈

∪
{Gx : x ∈ Cd}

and
∪
{Gx : x ∈ Cd} ⊂ V 1

n (d) ∩Gn. The family {V 1
n (d) : d ∈ D1∗

n } is a point-
finite family of open subsets of X. If K1

n =
∪
{
∪

x∈Cd
Gx : d ∈ D1∗

n }, then K1
n

is a Gδ-set of X and K1
n ⊂ Gn. For each m ∈ N, we know that Ai∩Bm = ∅ for

each i ∈ N. Since for each x ∈ Cd, the set Gx ⊂ Ai for some i ∈ N, we know
that Gx ∩ Bm = ∅. Thus K1

n ∩ Bm = ∅. Since
∩
{Gn : n ∈ N} = ∅, the family

{Gn : n ∈ N} is point-finite. Thus
∪
{K1

n : n ∈ N} = L1 is a Gδ-set of X by
Lemma 2.8. We know that L1 ⊂

∪
{An : n ∈ N}.

Let p ∈ X and let Op be any open neighborhood of p in X. There is
some d ∈ M1 such that d ∈ Op. So there is some n ∈ N such that d ∈ D1∗

n .
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Since d ∈
∪
{Gx : x ∈ Cd} and

∪
{Gx : x ∈ Cd} ⊂ K1

n, we have d ∈ K1
n. So

Op ∩ K1
n ̸= ∅. Thus Op ∩ L1 ̸= ∅. Hence L1 is a dense Gδ-set of X and

L1 ∩Bm = ∅ for each m ∈ N.
Similarly, we have a Gδ-set L2 of X such that L2 is a dense subset of X,

L2 ∩An = ∅ for each n ∈ N and L2 ⊂
∪
{Bm : m ∈ N}.

So L1 and L2 are two disjoint dense Gδ-sets of X, this contradicts that X
is a Volterra space. Thus X is a Bare space. □

By the proof of the above theorem, we know that the sequential property in
the above theorem is just to make the space X to be strongly discretely gen-
erated and every dense-in-itself subspace of X is resolvable. The metacompact
property in the above theorem is just to make every closed discrete subspace
of X to be separated by a point-finite open family.

By Lemmas 2.13 and 2.14 and a proof similar to Theorem 2.19, we have

Theorem 2.20. Let X be a monotonically normal T1-space. If X has a σ-
closed discrete dense subset, then X is a Baire space if and only if X is Volterra.
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