ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 6, pp. 1445-1452

Title:

A note on Volterra and Baire spaces

Author(s):

L. X. Peng and C. Yang

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 6, pp. 1445–1452 Online ISSN: 1735-8515

A NOTE ON VOLTERRA AND BAIRE SPACES

L. X. PENG* AND C. YANG

(Communicated by Fariborz Azarpanah)

ABSTRACT. In Proposition 2.6 in (G. Gruenhage, A. Lutzer, Baire and Volterra spaces, *Proc. Amer. Math. Soc.* 128 (2000), no. 10, 3115–3124) a condition that every point of D is G_{δ} in X was overlooked. So we proved some conditions by which a Baire space is equivalent to a Volterra space. In this note we show that if X is a monotonically normal T_1 -space with countable pseudocharacter and X has a σ -discrete dense subspace D, then X is a Baire space if and only if X is Volterra. We show that if X is a metacompact normal sequential T_1 -space and X has a σ -closed discrete dense subset, then X is a Baire space if and only if X is Volterra. If X is a Baire space if and only if X is Volterra. And also some known results are generalized.

Keywords: Volterra space, Baire space, monotonically normal, metacompact.

MSC(2010): Primary: 54D20; Secondary: 54G99.

1. Introduction

Recall that a topological space X is a *Baire space* if the intersection of any sequence of dense open subsets of X is dense. It follows immediately that the intersection of countably many dense G_{δ} -subsets of a Baire space X must be dense in X. It is well known that any Čech-complete space is a Baire space. A weaker condition is that the intersection of any two dense G_{δ} -sets of X must be dense in X, and that is the definition of a *Volterra space* [5]. Obviously, any Baire space is Volterra. In [4], Gruenhage and Lutzer described broad classes of spaces for which the Baire space property is equivalent to Volterra. In [1] Cao and Junnila showed that every regular stratifiable Volterra space is Baire.

In Proposition 2.6 in [4], the authors did not notice that it was necessary to require that points of D have countable pseudocharacter in X, i.e., points of D

O2015 Iranian Mathematical Society

Article electronically published on December 15, 2015.

Received: 22 May 2014, Accepted: 10 September 2014.

^{*}Corresponding author.

are G_{δ} in X. If we add this requirement, then Proposition 2.6 is true and also follows from Theorem 2.12 in this note. However, parts of [4, Corollary 2.8], do not follow as claimed. In particular, one must also add that points of D are G_{δ} in Corollary 2.8(d), which states that Volterra implies Baire in the class of regular metacompact sequential spaces with a σ -closed discrete dense subset D. In this paper we show that 2.8(d) also holds if instead of assuming points are G_{δ} , we assume that the space is normal; that is to say, we prove that Volterra implies Baire in the class of normal metacompact sequential spaces with a σ closed discrete dense subset. We also prove that if X is a monotonically normal T_1 -space with countable pseudocharacter and a σ -discrete dense subset, then X is Baire if and only if X is Volterra. This has as a corollary that if X is a generalized ordered (GO) space and has a σ -closed discrete dense subset, then X is Baire if and only if X is Volterra.

The set of all natural numbers is denoted by \mathbb{N} and ω is $\mathbb{N} \cup \{0\}$.

2. Main results

A space X is discretely generated [2] if for every $A \subset X$ and $x \in \overline{A}$ there exists a discrete subset $D \subset A$ such that $x \in \overline{D}$. In [2], it was proved that every Hausdorff sequential space is discretely generated. Recall that a space X is called sequential if $A \subset X$ and $A \neq \overline{A}$ implies that there is a sequence $\{a_n : n \in \mathbb{N}\} \subset A$ such that $\{a_n : n \in \mathbb{N}\}$ converges to some $y \in \overline{A} \setminus A$. Given a space X and $C \subset X$, we say that C is strongly discrete if there exists a disjoint family $\{U_x : x \in C\}$ of open subsets of X such that $x \in U_x$ for each $x \in C$. If X is a Hausdorff space and a sequence $\{x_n\}_{n \in \mathbb{N}}$ converges to a point x of X, then the set $\{x_n : n \in \mathbb{N}\}$ is strongly discrete. A space X is called strongly discretely generated if for every $A \subset X$ and $x \in \overline{A}$ there exists a strongly discrete set $D \subset A$ such that $x \in \overline{D}$ [8]. In what follows, we show that every Hausdorff sequential space is strongly discretely generated.

Theorem 2.1. A space X is strongly discretely generated if and only if $A \subset X$ and $A \neq \overline{A}$ implies there exists a strongly discrete subset $D \subset A$ such that there $\overline{D} \setminus A$ is not empty.

Proof. (\Rightarrow) Obvious.

(⇐) Let $A \subset X$. Denote $B = \bigcup \{\overline{D} : D \subset A \text{ and } D \text{ is strongly discrete}\}$. So $A \subset B \subset \overline{A}$. Suppose B is not closed in X; then there exists a strongly discrete set $C \subset B$ and a point $y \in \overline{C} \setminus B$. For each $x \in C$ there is a strongly discrete set $D_x \subset A$ such that $x \in \overline{D_x}$. Since the set C is strongly discrete, there is a disjoint family $\{U_x : x \in C\}$ of open subsets of X such that $x \in U_x$ for each $x \in C$. Denote $D_x^* = D_x \cap U_x$. If $D = \bigcup \{D_x^* : x \in C\}$, then $D \subset A$ and D is strongly discrete. Since $y \in \overline{C}$ and $x \in \overline{D_x^*}$ for each $x \in C$, we know that $y \in \overline{D}$. Thus $y \in B$. This is a contradiction with $y \notin B$. Thus the set B is closed. **Theorem 2.2.** Let X be a Hausdorff sequential space. If $A \subset X$ and $x \in \overline{A}$, then there is a countable strongly discrete set $D \subset A$ such that $x \in \overline{D}$.

Proof. Let $B = \bigcup \{\overline{D} : D \subset A \text{ and } D \text{ is countable strongly discrete} \}$. By sequential property and a proof similar to Theorem 2.1, we can show that the set B is closed. Thus $\overline{A} = B$.

Corollary 2.3. Every Hausdorff sequential space is strongly discretely generated.

Let X be a topological space and let Y be a subspace of X. If for every $A \subset Y$ and $x \in \overline{A} \cap Y$ there exists a strongly discrete set D of X such that $D \subset A$ and $x \in \overline{D}$, then the subspace Y of X is called *strongly discretely generated in* X.

Lemma 2.4. Let X be a strongly discretely generated space. If $Y \subset X$, then Y is strongly discretely generated in X.

Proof. Let $A \subset Y$ and $x \in \overline{A} \cap Y$. Since X is strongly discretely generated, there is a strongly discrete set D of X such that $D \subset A$ and $x \in \overline{D}$. Thus Y is strongly discretely generated in X.

By Corollary 2.3 and Lemma 2.4, we have

Corollary 2.5. Every subspace of a Hausdorff sequential space X is strongly discretely generated in X.

Corollary 2.6. If a subspace D of a topological space X is homeomorphic to a subspace of a Hausdorff sequential space Y, then D is strongly discretely generated.

Since every strongly discrete set A of a dense subspace D of a space X is strongly discrete in X, we have

Proposition 2.7. If a dense subspace D of a topological space X is strongly discretely generated, then D is strongly discretely generated in X.

Lemma 2.8. [4, Lemma 2.3], Suppose \mathcal{U} is a point-finite collection of open subsets of X and that for each $U \in \mathcal{U}$ we have a G_{δ} -subset $G(U) \subset U$. Then $S = \bigcup \{G(U) : U \in \mathcal{U}\}$ is a G_{δ} -subset of X.

By a similar proof with Lemma 2.4 of [4], we have

Theorem 2.9. Suppose X is a T_1 -space and X has a dense subspace $D = \bigcup \{D_n : n \ge 1\}$ satisfying:

(a) Every point of D is G_{δ} in X;

(b) D is strongly discretely generated in X;

(c) for each $n \ge 1$ there is a collection $\{V(d,n) : d \in D_n\}$ of open subsets of X that is point-finite in X and has $\{d\} = V(d,n) \cap D_n$ for each $d \in D_n$.

If X is of the first category in itself, then D contains a subspace E that is dense in X and is a G_{δ} -subset of X.

Proof. Since X is a first category space, there is a sequence $\{G_n : n \ge 1\}$ of dense open subsets of X such that $\bigcap \{G_n : n \ge 1\} = \emptyset$. We may assume $G_{n+1} \subset G_n$ for each $n \in \mathbb{N}$. Then X has no isolated point, so neither does the set D. Let $n \in \mathbb{N}$. For each $d \in D_n$, the set $V(d, n) \cap G_n \cap D$ is dense in V(d, n). Thus $d \in \overline{(V(d, n) \cap G_n \cap D) \setminus \{d\}}$. So there is a strongly discrete set $M(d, n) \subset (V(d, n) \cap G_n \cap D) \setminus \{d\}$ such that $d \in \overline{M(d, n)}$. Since every point of D is G_{δ} in X and M(d, n) is strongly discrete, the set M(d, n) is a G_{δ} -set in X by Lemma 2.8.

Since $\{V(d, n) : d \in D_n\}$ is point-finite, the set $\bigcup \{M(d, n) : d \in D_n\} = K_n$ is a G_{δ} -set in X and $K_n \subset G_n$. Since $\bigcap \{G_n : n \ge 1\} = \emptyset$, the family $\{G_n : n \in \mathbb{N}\}$ is point-finite, the set $E = \bigcup \{K_n : n \in \mathbb{N}\}$ is a G_{δ} -set of X and $E \subset D$. If O is any non-empty open subset of X, then there is some $d \in D_n$ for some $n \in \mathbb{N}$ such that $d \in O$. So $O \cap M(d, n) \neq \emptyset$. Thus $O \cap E \neq \emptyset$. Thus the set E is dense in X.

By Corollary 2.6 and Theorem 2.9, we can get Proposition 2.6 of [4].

Recall from [6] that a space X is *resolvable* if X contains two disjoint dense subsets.

Lemma 2.10. ([9]) Any dense-in-itself subspace of a Hausdorff sequential space is resolvable.

Theorem 2.11. Suppose X is a T_1 -space and X has a dense subspace $D = \bigcup \{D_n : n \ge 1\}$ satisfying:

- (a) Every dense-in-itself open subspace M of D is resolvable;
- (b) D is strongly discretely generated;
- (c) Every point of D is G_{δ} in X;

(d) for each $n \ge 1$ there is a collection $\{V(d,n) : d \in D_n\}$ of open subsets of X that is point-finite in X and has $\{d\} = V(d,n) \cap D_n$ for each $d \in D_n$.

Then X is a Baire space if and only if X is Volterra.

Proof. We just need to prove that X is a Baire space if X is Volterra. Suppose X is not a Baire space. There is a sequence $\{G_n : n \in \mathbb{N}\}$ of dense open subsets of X such that $\bigcap \{G_n : n \in \mathbb{N}\}$ is not dense in X. There is an non-empty open subset Y of X such that $Y \cap (\bigcap \{G_n : n \in \mathbb{N}\}) = \emptyset$. The set $D \cap Y$ is dense in Y and satisfying (a), (b), (c) and (d). So we assume that Y = X. Hence X is the first category and X is dense-in-itself. Thus the set D is also dense-in-itself. There are two dense subset M_1 and M_2 of D such that $M_1 \cap M_2 = \emptyset$ by (a). By Lemma 2.4 we know that M_1 and M_2 are strongly discretely generated in D. By Proposition 2.7 we know that M_1 and M_2 are strongly discretely generated in X. So M_i contains a subspace E_i that is dense in X and is a G_δ -set of X by Theorem 2.9 for i = 1, 2. So $E_1 \cap E_2 = \emptyset$. This contradicts that X is a Volterra space.

Theorem 2.12. Suppose X is a T_1 -space and X has a dense subspace $D = \bigcup \{D_n : n \ge 1\}$ satisfying:

- (a) D is homeomorphic to a subspace of a Hausdorff sequential space Y;
- (b) Every point of D is G_{δ} in X;

(c) for each $n \ge 1$ there is a collection $\{V(d,n) : d \in D_n\}$ of open subsets of X that is point-finite in X and has $V(d,n) \cap D_n = \{d\}$ for each $d \in D_n$. Then X is a Baire space if and only if X is Volterra.

Proof. Since every dense-in-itself open subspace M of D is also homeomorphic to a subspace of Y. Thus M is resolvable by Lemma 2.10. By Corollary 2.6 we know that the set D is strongly discretely generated. So X is a Baire space if and only if X is Volterra by Theorem 2.11.

Proposition 2.6 of [4] with the G_{δ} condition added is the same as Theorem 2.12, except that Theorem 2.12 assumes only T_1 instead of regular.

A space X is said to be monotonically normal [7] if there is a function G which assigns to each ordered pair (H, K) of disjoint closed subsets of X an open set G(H, K) such that

(1) $H \subset G(H, K) \subset \overline{G(H, K)} \subset X \setminus K;$

(2) if (H', K') is a pair of disjoint closed subsets having $H \subset H'$ and $K \supset K'$, then $G(H, K) \subset G(H', K')$.

Recall that every generalized ordered (GO) space is monotonically normal.

Lemma 2.13. ([1, Lemma 2.3]) Every dense-in-itself monotonically normal Hausdorff space is resolvable.

Lemma 2.14. ([3, Theorem 5.18 and Theorem 5.20]) Every monotonically normal Hausdorff space is collectionwise normal and every subspace of a monotonically normal space is monotonically normal.

The Hausdorff property in Lemma 2.14 can be replaced by T_1 separation axiom. In [2, Theorem 3.10], it was proved that any monotonically normal T_1 space is discretely generated. With the same proof, we can prove the following conclusion.

Lemma 2.15. Every monotonically normal T_1 -space is strongly discretely generated.

Theorem 2.16. Let X be a monotonically normal T_1 -space with countable pseudocharacter. If X has a σ -discrete dense subspace D of X, then X is a Baire space if and only if X is Volterra.

Proof. Let $D = \bigcup \{D_n : n \in \mathbb{N}\}$ be a σ -discrete dense subspace of X and let $n \in \mathbb{N}$. For each $d \in D_n$ there is an open neighborhood V_d of d in X such that $V_d \cap D_n = \{d\}$. Denote $V_n = \bigcup \{V_d : d \in D_n\}$. Thus V_n is open in X. So V_n is monotonically normal by Lemma 2.14. Since D_n is closed discrete in V_n and V_n

is collectionwise normal, there is a disjoint family $\{V(d, n) : d \in D_n\}$ of open sets of X such that $d \in V(d, n) \subset V_d$ for each $d \in D_n$. Thus $V(d, n) \cap D_n = \{d\}$.

Every subspace of X is monotonically normal by Lemma 2.14. Thus every dense-in-itself open subspace M of D is resolvable by Lemma 2.13. The subspace D of X is strongly discretely generated by Lemma 2.15. Thus the conditions of Theorem 2.11 are satisfied. So X is a Baire space if and only if X is Volterra.

It is well known that a GO space with a σ -closed discrete dense set is first countable. So we have

Corollary 2.17. Let X be a GO space. If X has a σ -closed discrete dense subset, then X is a Baire space if and only if X is Volterra.

A space X is semi-stratifiable [3] if there is a function G which assigns to each $n \in \mathbb{N}$ and closed set $H \subset X$, an open set G(n, H) containing H such that

(1) $H = \bigcap \{G(n, H) : n \in \mathbb{N}\};$ (2) $H \subset K \Rightarrow G(n, H) \subset G(n, K).$ If also (3) $H = \bigcap \{\overline{G(n, H)} : n \in \mathbb{N}\},$ then X is stratifiable.

It is easy to see from condition (3) that stratifiable spaces are regular. It is well known that every stratifiable (regular and T_1) space is a σ -space (see, e.g., [3, Theorem 5.9]). So a stratifiable T_1 -space has a σ -closed discrete dense subset. Thus we have

Corollary 2.18. ([1, Theorem 2.5]) Let X be a stratifiable T_1 -space. Then X is a Baire space if and only if X is Volterra.

In [4, Corollary 2.8], it is pointed out that if X is a regular metacompact sequential space that has a σ -closed discrete dense subset D, then X is a Baire space if and only if X is Volterra. However, this does not follow from the corrected Proposition 2.6 unless the condition that points of D are G_{δ} in X is added. In fact, the conclusion (d) of Corollary 2.8 in [4] also holds if we add a condition that the space X is normal. Thus we have the following theorem.

Theorem 2.19. Let X be a metacompact normal sequential T_1 -space. If X has a σ -closed discrete dense subset, then X is a Baire space if and only if X is Volterra.

Proof. Let $D = \bigcup \{D_n : n \in \mathbb{N}\}$ be a σ -closed discrete dense subspace of X. Suppose X is not a Baire space. There is a sequence $\{G_n : n \in \mathbb{N}\}$ of dense open subsets of X such that $\bigcap \{G_n : n \in \mathbb{N}\}$ is not dense in X. Thus there is a nonempty open subset Y of X such that $Y \cap (\bigcap \{G_n : n \in \mathbb{N}\}) = \emptyset$. For each $n \in \mathbb{N}$, $Y \cap G_n$ is dense in Y. We can assume Y = X. Thus $\bigcap \{G_n : n \in \mathbb{N}\} = \emptyset$. So Xhas no isolated points. Thus the set D is dense in itself. Since X is sequential, *D* is resolvable by Lemma 2.10. Hence there are disjoint subsets M_1 and M_2 of *D* such that $\overline{M_1} = \overline{M_2} = X$.

Let $M_1 = \bigcup \{D_n^1 : n \in \mathbb{N}\}$ and $M_2 = \bigcup \{D_n^2 : n \in \mathbb{N}\}$, where $D_n^1 \subset D_n$ and $D_n^2 \subset D_n$. For each $n \in \mathbb{N}$ we denote $D_n^{1*} = D_n^1 \setminus \bigcup \{D_m^1 : m < n\}$ and $D_1^{1*} = D_1^1$, $D_n^{2*} = D_n^2 \setminus \bigcup \{D_m^2 : m < n\}$ and $D_1^{2*} = D_1^2$. Thus $\mathcal{F} = \{D_n^{1*}, D_n^{2*} : n \in \mathbb{N}\}$ is a countable family of closed discrete subsets of X and \mathcal{F} is a pairwise disjoint family.

We can assume $\mathcal{F} = \{F_i : i \in \mathbb{N}\}$. Since X is normal and $F_1 \cap F_2 = \emptyset$, there are disjoint open sets O_{21} and O_{22} such that $F_1 \subset O_{21}$, $F_2 \subset O_{22}$. Similarly, there are disjoint open sets O_{31} , O_{32} and O_{33} such that $F_1 \subset O_{31}$, $F_2 \subset O_{32}$, $F_3 \subset O_{33}$. In this manner, we can get disjoint open sets O_{in} for each $i \leq n$ such that $F_i \subset O_{in}$, where $n \in \mathbb{N}$. If $P_n = \bigcap \{O_{mn} : m \geq n\}$, then $\mathcal{U} = \{P_n : n \in \mathbb{N}\}$ is a family of disjoint G_{δ} -sets of X and $F_n \subset P_n$ for each n.

We can assume $\mathcal{U} = \{A_n, B_n : n \in \mathbb{N}\}$ of G_{δ} -sets of X and \mathcal{U} is pairwise disjoint such that $D_n^{1*} \subset A_n$ and $D_n^{2*} \subset B_n$ for each $n \in \mathbb{N}$.

Let $n \in \mathbb{N}$. The set D_n^{1*} is a closed discrete subset of X. For each $d \in D_n^{1*}$ there is an open set O_d^1 of X such that $d \in O_d^1$ and $O_d^1 \cap D_n^{1*} = \{d\}$. If $\mathcal{U}_n^1 = \{O_d^1 : d \in D_n^{1*}\} \cup \{X \setminus D_n^{1*}\}$, then \mathcal{U}_n^1 is an open cover of X. The space X is metacompact, so \mathcal{U}_n^1 has a point-finite open refinement \mathcal{V}_n^1 . For each $d \in D_n^{1*}$, there is some $V_n^1(d) \in \mathcal{V}_n^1$ such that $d \in V_n^1(d)$ and $V_n^1(d) \cap D_n^{1*} = \{d\}$. Denote $\mathcal{V}_n^{1*} = \{V_n^1(d) : d \in D_n^{1*}\}$. Thus \mathcal{V}_n^{1*} is point-finite. Similarly, we have an open family $\mathcal{V}_n^{2*} = \{V_n^2(d) : d \in D_n^{2*}\}$ such that $V_n^2(d) \cap D_n^{2*} = \{d\}$ and \mathcal{V}_n^{2*} is point-finite for each $n \in \mathbb{N}$.

Since X is a sequential Hausdorff space, the space X is strongly discretely generated by Corollary 2.3. Let $n \in \mathbb{N}$ and $d \in D_n^{1*}$. So $d \in V_n^1(d)$ and $d \in \overline{V_n^1(d) \cap G_n \setminus \{d\}}$. Since $\{d\}$ is not open and $\{d\}$ is closed, the set $V_n^1(d) \cap$ $G_n \setminus \{d\}$ is an non-empty open subset of X. Since $\overline{M_1} = X$, we have $d \in \mathcal{G}_n$ $(V_n^1(d) \cap G_n \setminus \{d\}) \cap M_1$. By strongly discretely generated property of X, there is a discrete subspace $C_d \subset (V_n^1(d) \cap G_n \setminus \{d\}) \cap M_1$ and a pairwise disjoint open family $\mathcal{V}_d = \{V_x : x \in C_d\}$ such that $x \in V_x$. We can assume that $V_x \subset V_n^1(d) \cap G_n$. For each $x \in C_d$ there is some $m_x \in \mathbb{N}$ such that $x \in D_{m_x}^{1*}$. Let $G_x = A_{m_x} \cap V_x$. So G_x is a G_{δ} -set of X and $x \in G_x \subset V_x \subset G_n$. So $\bigcup \{G_x :$ $x \in C_d$ is a G_δ -set of X and $C_d \subset \bigcup \{G_x : x \in C_d\}$. Hence $d \in \bigcup \{G_x : x \in C_d\}$ and $\bigcup \{G_x : x \in C_d\} \subset V_n^1(d) \cap G_n$. The family $\{V_n^1(d) : d \in D_n^{1*}\}$ is a pointfinite family of open subsets of X. If $K_n^1 = \bigcup \{\bigcup_{x \in C_d} G_x : d \in D_n^{1*}\}$, then K_n^1 is a G_{δ} -set of X and $K_n^1 \subset G_n$. For each $m \in \mathbb{N}$, we know that $A_i \cap B_m = \emptyset$ for each $i \in \mathbb{N}$. Since for each $x \in C_d$, the set $G_x \subset A_i$ for some $i \in \mathbb{N}$, we know that $G_x \cap B_m = \emptyset$. Thus $K_n^1 \cap B_m = \emptyset$. Since $\bigcap \{G_n : n \in \mathbb{N}\} = \emptyset$, the family $\{G_n : n \in \mathbb{N}\}\$ is point-finite. Thus $\bigcup\{K_n^1 : n \in \mathbb{N}\} = L_1$ is a G_{δ} -set of X by Lemma 2.8. We know that $L_1 \subset \bigcup \{A_n : n \in \mathbb{N}\}.$

Let $p \in X$ and let O_p be any open neighborhood of p in X. There is some $d \in M_1$ such that $d \in O_p$. So there is some $n \in \mathbb{N}$ such that $d \in D_n^{1*}$.

Since $d \in \overline{\bigcup\{G_x : x \in C_d\}}$ and $\bigcup\{G_x : x \in C_d\} \subset K_n^1$, we have $d \in \overline{K_n^1}$. So $O_p \cap K_n^1 \neq \emptyset$. Thus $O_p \cap L_1 \neq \emptyset$. Hence L_1 is a dense G_{δ} -set of X and $L_1 \cap B_m = \emptyset$ for each $m \in \mathbb{N}$.

Similarly, we have a G_{δ} -set L_2 of X such that L_2 is a dense subset of X, $L_2 \cap A_n = \emptyset$ for each $n \in \mathbb{N}$ and $L_2 \subset \bigcup \{B_m : m \in \mathbb{N}\}.$

So L_1 and L_2 are two disjoint dense G_{δ} -sets of X, this contradicts that X is a Volterra space. \Box

By the proof of the above theorem, we know that the sequential property in the above theorem is just to make the space X to be strongly discretely generated and every dense-in-itself subspace of X is resolvable. The metacompact property in the above theorem is just to make every closed discrete subspace of X to be separated by a point-finite open family.

By Lemmas 2.13 and 2.14 and a proof similar to Theorem 2.19, we have

Theorem 2.20. Let X be a monotonically normal T_1 -space. If X has a σ closed discrete dense subset, then X is a Baire space if and only if X is Volterra.

Acknowledgement

The authors would like to thank the referee for his (or her) valuable remarks and suggestions which greatly improved the paper.

References

- J. Cao, J. K. Junnila, When is a Volterra space Baire?, *Topology. Appl.* 154 (2007), no. 2, 527–532.
- [2] A. Dow, M. G. Tkachenko, V. V. Tkachuk, R. G. Wilson, Topologies generated by discrete subspaces, Glasnik Matematički, 37(57) (2002), no. 1, 189–212.
- [3] G. Gruenhage, Generalized metric spaces, Handbook of set-theoretic topology, 423–501, North-Holland, Amsterdam, 1984.
- [4] G. Gruenhage, A. Lutzer, Baire and Volterra spaces, Proc. Amer. Math. Soc. 128 (2000), no. 10, 3115–3124.
- [5] D. Gauld and Z. Piotrowski, On Volterra spaces, Far East J. Math. Sci. 1 (1993), no. 2, 209–214.
- [6] E. Hewitt, A problem of set-theoretic topology, Duke Math. J. 10 (1943) 309-333
- [7] R. W. Heath, D. J. Lutzer and P. L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc. 178 (1973) 481–493
- [8] E. Murtinová, On products of discretely generated spaces, *Topology Appl.* 153 (2006), no. 18, 3402–3408.
- [9] E. G. Pytkeev, Maximally decomposable spaces, (Russian) Topology (Moscow, 1979), Trudy Mat. Inst. Steklov. 154 (1983), 209–213.

(Liang-Xue Peng) College of Applied Science, Beijing University of Technology, Beijing 100124, China

E-mail address: pengliangxue@bjut.edu.cn

(Chong Yang) College of Applied Science, Beijing University of Technology, Beijing 100124, China

E-mail address: yangchong@emails.bjut.edu.cn