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1. Introduction

The classes of problems dealing with variable exponent Lebesgue and Sobolev
spaces have attracted steadily increased interest over the last ten years. This
was mainly stimulated by development of the studies of problems in elasticity,
image processing, flow in porous media, etc. (e.g. [1, 12,18]).

Among these problems, p(x)-Laplacian problem, defined by ∆p(x)u :=

div(|∇u|p(x)−2∇u), is a natural generalization of the p-Laplacian operator where
p > 1 is a positive constant.

In recent years, many problems on p(x)-Laplacian type have been stud-
ied by many authors using various methods specially variational technics; see
[3, 4, 9, 13, 17]. The fibering map approach for description of the Nehari mani-
folds and seeking a solutions in an appropriate subset of the Sobolev space is
introduced by Drabek and Pohozaev in [8] and is also discussed by Brown and
Zhang in [7].
In variable exponent cases this method has some difficulties in comparison with
the fibering method in p-Laplacian problems. This is due to nonhomogen-
ities resulting from variable exponent p. Accordingly, it was not welcomed
by mathematicians. Nevertheless, some interesting papers on the application
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The fibering map approach to a p(x)-Laplacian equation 1478

of Nehari manifold method in variable exponent problem have recently been
published [16,19].

In [16], using a Nehari manifold and some variational techniques for a p(·)-
Laplacain Dirichlet problem, the existence of at least two positive solutions is
proved and in [19], considering a p(·)-Laplacian system with Neumann bound-
ary condition and using the variational method on corresponding Nehari man-
ifold, the existence of a positive solutions is proved.

In this paper, we generalize the results of [2], for p(x)−Laplacian equation
by applying the idea of the fibering map approach in a quasilinear degenerate
p(x)−Laplacian problem defined by

(P)

{
−div(a(x)|∇u|p(x)−2∇u) = λb(x)|u|q(x)−2u+ c(x)|u|r(x)−2u; in Ω

u ≡ 0; on ∂Ω.

Here we refer to [6] for application of an intuitive insight on fibering map
approach which is used by Brown and Wu. The organization of the paper is as
follows: After reviewing preliminaries and introducing a proper Sobolev space
for studying the problem and its applicable Sobolev embedding, we describe
a Nehari manifold as a target set for finding weak solutions, this leads to the
behavior of an Euler functional corresponding to problem (P) on it. In section
3, we analyze the fibering map related to the Euler functional and we provide
the existence situation for λ in the case where the turning points set of the
fibering map is empty. Finally the existence of minimizer theorems for (P) is
presented in Section 4.

2. Preliminaries

We refer to [10] for the basic information on variable exponent Lebesgue and
Sobolev spaces. We briefly mention some of the main properties of variable ex-
ponent spaces that are used in this paper.

Let Ω be an open subset of RN , p ∈ L∞(Ω) and

p− := ess inf
x∈Ω

p(x) ≥ 1.

The variable exponent Lebesgue space Lp(·)(Ω) is defined by

Lp(.)(Ω) = {u : u : Ω −→ R is measurable

∫
Ω

|u|p(x)dx < ∞};

which is considered by the norm

|u|Lp(.)(Ω) = inf {σ > 0 :

∫
Ω

|u
σ
|p(x)dx ≤ 1}.

We summarize the main properties of Lp(.)(Ω) in the following list:



1479 Saiedinezhad and Ghaemi

(i) The space (Lp(x)(Ω), |.|Lp(x)(Ω)) is a separable, uniform convex Banach

space, and its conjugate space is Lp′(x)(Ω), where 1
p′(x) +

1
p(x) = 1. For

any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have

|
∫
Ω

uvdx| ≤ (
1

p−
+

1

p′−
)|u|Lp(x)(Ω)|u|Lp′(x)(Ω).

(ii) If Ω is bounded, p1, p2 ∈ C(Ω) and 1 < p1(x) ≤ p2(x) for any x ∈ Ω,
then there is a continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

(iii)

min(|u|p
−

Lp(.)(Ω)
, |u|p

+

Lp(.)(Ω)
) ≤

∫
Ω

|u|p(x)dx ≤ max(|u|p
−

Lp(.)(Ω)
, |u|p

+

Lp(.)(Ω)
);

where p+ := ess supx∈Ω p(x).

Proposition 2.1. ( [11]) Let p(x) and q(x) be measurable functions such that
p(x) ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞ for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω), u ̸= 0.
Then

min(|u|p
−

Lp(.)q(.)(Ω)
, |u|p

+

Lp(.)q(.)(Ω)
) ≤ ||u|p(x)|Lq(.)(Ω) ≤ max(|u|p

−

Lp(.)q(.)(Ω)
, |u|p

+

Lp(.)q(.)(Ω)
).

The variable exponent Sobolev space W1,p(.)(Ω) is defined by

W1,p(.)(Ω) = {u ∈ Lp(.)(Ω); |∇u| ∈ Lp(.)(Ω)}

with the norm

∥u∥W1,p(.)(Ω) = |u|Lp(.)(Ω) + |∇u|Lp(.)(Ω).

Define W
1,p(.)
0 (Ω) as the closure of C∞

0 (Ω) in W1,p(.)(Ω) and let

p∗(x) =

{
Np(x)
N−p(x) ; p(x) < N

∞; p(x) ≥ N.

The main properties of W1,p(.)(Ω) are given by the following items:

(iv) W1,p(.)(Ω) and W
1,p(.)
0 (Ω) are separable reflexive Banach spaces.

(v) If p : Ω −→ R is Lipschitz continuous, then for q ∈ L∞(Ω) with
q− ≥ 1 and p(x) ≤ q(x) ≤ p∗(x), there is a continuous embedding

W1,p(.)(Ω) ↪→ Lq(.)(Ω).
(vi) Let Ω be a bounded domain in RN, p ∈ C(Ω). Then for any q ∈ L∞(Ω)

with q− ≥ 1 and q ≪ p∗(i.e., ess infx∈Ω(p
∗(x) − q(x)) > 0), there is

a compact embedding from W1,p(.)(Ω) to Lq(.)(Ω). It is denoted by

W1,p(.)(Ω) ↪→↪→ Lq(.)(Ω).
(vii) There is a constant C > 0 such that

|u|Lp(.)(Ω) ≤ C|∇u|Lp(.)(Ω) ∀u ∈ W
1,p(.)
0 (Ω).
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We consider W
1,p(.)
a(.) (Ω) as an appropriate Sobolev space for studding prob-

lem (P) on a bounded domain, which is defined as a completion of C∞
0 (Ω) with

respect to the norm, ∥u∥ = |∇u|
L

p(.)

a(.)
(Ω)

+ |u|Lp(.)(Ω) where

L
p(.)
a(.)(Ω) = {u : u : Ω −→ R is measurable,

∫
Ω

a(x)|u|p(x)dx < ∞}

is equipped with the norm

|u|
L

p(.)

a(.)
(Ω)

= inf {σ > 0 :

∫
Ω

a(x)|u
σ
|p(x)dx ≤ 1}.

The Sobolev spaceW
1,p(.)
a(.) (Ω) which is called weighted variable exponent Sobolev

space, is introduced in [15], where a(x) is a measurable, nonnegative real valued
function for x ∈ Ω.

Theorem 2.2. ( [14]) Let p, s ∈ C(Ω), 1 < p(x), 1 < s(x) for all x ∈ Ω and
a(x) be a measurable positive and a.e. finite function in RN satisfying

(a1) 0 < a ∈ L1
Loc(Ω), a(x)

− 1
p(x)−1 ∈ L1

Loc(Ω).

(a2) a(x)−s(x) ∈ L1(Ω) where s(x) ∈ C(Ω) and

s(x) >
1

p(x)− 1
.

Then we have the following continuous embedding,

W
1,p(x)
a(x) (Ω) ↪→ W 1,ps(x)(Ω);

where ps(x) =
p(x)s(x)
1+s(x) .

The condition (a1) is essential; without it, the space W
1,p(x)
a(x) (Ω) is not nec-

essarily a Banach space even though p(x) is a constant [15].

Theorem 2.3. [16]. Assume that p ∈ C(Ω) and 1 < p(x) for all x ∈ Ω.
Suppose that

(b1) 0 < b ∈ Lβ(x)(Ω), 1 < β(x) ∈ C(Ω).

(q) 1 < q(x) < p∗(x)
β′(x) for all x ∈ Ω,

where β′(x) = β(x)
β(x)−1 , then we have the following compact embedding

W 1,p(x)(Ω) ↪→↪→ L
q(x)
b(x)(Ω).

Corollary 2.4. Suppose that all conditions in Theorems 2.2 are satisfied. Fur-
thermore, Assume that the condition in Theorem 2.3 replacing p(x) by ps(x) is
satisfied. Then we have the following compact embedding,

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω);

where 1 < q(x) <
p∗
s(x)

β′(x) in Ω.
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Proof. From Theorem 2.2, we obtain W
1,p(x)
a(x) (Ω) ↪→ W 1,ps(x)(Ω); and by The-

orem 2.3, we deduce W 1,ps(x)(Ω) ↪→↪→ L
q(x)
b(x)(Ω) and hence

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω).

□

Now we state a mild generalization of a compact embedding for a weighted
variable exponent Sobolev space.

Theorem 2.5. Assume that p ∈ C(Ω), 1 < p(x) for all x ∈ Ω, (a1), (b1) are
satisfied and moreover,

(a3) a(x)−
ξ(x)

p(x)−ξ(x) ∈ L1(Ω) where ξ(x) ∈ C(Ω) and 1 < ξ(x) < p(x).

Then we have the following compact embedding,

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω)

for every q ∈ C(Ω) and 1 < q(x) < ξ∗(x)
β′(x) .

Proof. First, we show that W
1,p(x)
a(x) (Ω) ↪→ W 1,ξ(x)(Ω) continuously. Let u ∈

W
1,p(x)
a(x) (Ω). We have∫

Ω

|∇u|ξ(x)dx =

∫
Ω

|∇u|ξ(x)a(x)
ξ(x)
p(x) a(x)−

ξ(x)
p(x) dx

≤ C|a(x)−
ξ(x)
p(x) |

L
p(x)

p(x)−ξ(x) (Ω)
|a(x)

ξ(x)
p(x) |∇u|ξ(x)|

L
p(x)
ξ(x) (Ω)

.

By (iii) of the main properties of the variable exponent spaces we deduce

|a(x)−
ξ(x)
p(x) |

L
p(x)

p(x)−ξ(x) (Ω)
≤ (

∫
Ω

a(x)−
ξ(x)

p(x)−ξ(x) dx+ 1)
p+−ξ−

p− .

So, by assumption (a3), there exists a C > 0 such that

(2.1)

∫
Ω

|∇u|ξ(x)dx ≤ C|a(x)
ξ(x)
p(x) |∇u|ξ(x)|

L
p(x)
ξ(x) (Ω)

.

Without loss of generality, we can assume that
∫
Ω
|∇u|ξ(x) > 1. By Proposition

2.1 and (iii) when
∫
Ω
a(x)|∇u|p(x) < 1, from (2.1) we obtain

|∇u|Lξ(x)(Ω) ≤ C|∇u|
p−

p+

L
p(x)

a(x)
(Ω)

.

Moreover, if
∫
Ω
a(x)|∇u|p(x) > 1 we deduce,

|∇u|Lξ(x)(Ω) ≤ C|∇u|β
L

p(x)

a(x)
(Ω)

;
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where β = p+ξ+

p−ξ− . So we get ∇u ∈ Lξ(x)(Ω). On the other hand, Lp(x)(Ω) ↪→
Lξ(x)(Ω); hence

(2.2) W
1,p(x)
a(x) (Ω) ↪→ W 1,ξ(x)(Ω).

Now by the classical Sobolev embedding (iv) we have,

(2.3) W 1,ξ(x)(Ω) ↪→↪→ Lr(x)(Ω)

for r(x) < ξ∗(x). Let r(x) = q(x)β′(x). So if u ∈ W
1,p(x)
a(x) (Ω) then∫

Ω

b(x)|u|q(x)dx ≤ C|b|Lβ(x)(Ω)||u|q(x)|Lβ′(x)(Ω)

≤ C|b|Lβ(x)(Ω) min(|u|q
+

Lr(x)(Ω)
, |u|q

−

Lr(x)(Ω)
);

and since u ∈ Lr(x)(Ω), we have u ∈ L
q(x)
b(x)(Ω). Moreover, if un ⇀ 0 in

W
1,p(x)
a(x) (Ω), then by (2.2) un ⇀ 0 in W 1,ξ(x)(Ω) and by (2.3) un −→ 0 in

Lr(x)(Ω). Then we have∫
Ω

b(x)|un|q(x)dx ≤ C|b|Lβ(x) ||un|q(x)|Lβ′(x) −→ 0,

which implies |un|Lq(x)

b(x)

−→ 0 and hence we can deduce

W
1,p(x)
a(x) (Ω) ↪→↪→ L

q(x)
b(x)(Ω).

□

Corollary 2.6. Assume that the conditions of Theorem 2.5 are satisfed, then
there exist positive constants C1 and C2 such that∫

Ω

b(x)|u|q(x)dx ≤

{
C1∥u∥q

+

; if ∥u∥ > 1

C2∥u∥q
−
; if ∥u∥ < 1.

Proof. By Theorem 2.5, we can deduce

W
1,p(x)
a(x) (Ω) ↪→↪→ Lq+

b(x)(Ω)

and

W
1,p(x)
a(x) (Ω) ↪→↪→ Lq−

b(x)(Ω).

So that there exist positive constants c1, c2 such that

(

∫
Ω

b(x)|u|q
+

dx)
1

q+ = |u|
Lq+

b(x)
(Ω)

≤ c1∥u∥

and

(

∫
Ω

b(x)|u|q
−
dx)

1

q− = |u|
Lq−

b(x)
(Ω)

≤ c2∥u∥.
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And hence,∫
Ω
b(x)|u|q(x)dx ≤

∫
Ω
b(x)|u|q+dx+

∫
Ω
b(x)|u|q−dx ≤ cq

+

1 ∥u∥q+ + cq
−

2 ∥u∥q−

≤

{
C1∥u∥q

+

; if ∥u∥ > 1

C2∥u∥q
−
; if ∥u∥ < 1.

□

We consider problem (P) with (a1), (b1), (a3) defined previously. Let

(c1) 0 < c(x) ∈ Lγ(x)(Ω), 1 < γ(x) ∈ C(Ω);

(q1) q ∈ C(Ω) and 1 < q(x) ≤ q+ < min( ξ
∗(x)

β′(x) , p
−).

(r1) r ∈ C(Ω) and p+ < r− ≤ r(x) < ξ∗(x)
γ′(x) .

Hence, by Corollary 2.6, there exist positive constants C3, C4 such that the
following inequalities hold∫

Ω

c(x)|u|r(x)dx ≤

{
C3∥u∥r

+

; if ∥u∥ > 1

C4∥u∥r
−
; if ∥u∥ < 1.

Now we are ready to study the behavior of an Euler functional on the corre-
sponding Nehari manifold. The Euler functional associated with problem (P)
is

Eλ(u) =

∫
Ω

a(x)

p(x)
|∇u|p(x)dx− λ

∫
Ω

b(x)

q(x)
|u|q(x)dx−

∫
Ω

c(x)

r(x)
|u|r(x)dx.

It is well known that the weak solutions of (P) corresponds to critical points

of Eλ on X = W
1,p(x)
a(x) (Ω).

In many problems, such as (P), Eλ is not bounded below on X, but it is
bounded below on the corresponding Nehari manifold which is defined by

M(λ) = {u ∈ X \ {0}; ⟨E′
λ(u), u⟩ = 0},

where ⟨., .⟩ denotes the usual duality between X and X∗.
Now we see that the corresponding Euler functional to problem (P) would

be unbounded from below on X. Indeed,

Eλ(u) ≥ 1
p+

∫
Ω
a(x)|∇u|p(x)dx− λ

q−

∫
Ω
b(x)|u|q(x)dx− 1

r−

∫
Ω
c(x)|u|r(x)dx

≥ 1
p+ ∥u∥p

− − λ
q−C1∥u∥q

+ − C3

r− ∥u∥r+ .

Since r+ > p− > q+, this shows that Eλ is not bounded on the whole X.
However, we see that it is bounded on the corresponding Nehari Manifold
(2.4)

M(λ) = {u ∈ X\{0};
∫
Ω

a(x)|∇u|p(x)dx−λ

∫
Ω

b(x)|u|q(x)dx =

∫
Ω

c(x)|u|r(x)dx}.
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Clearly, M(λ) is a much smaller set than X and Eλ is much better behaved on
M(λ).

From now on, for the problem (P) we suppose that the conditions (a1), (b1), (q1),

(c1), and (r1) are satisfied

Theorem 2.7. Eλ is coercive and bounded below on M(λ).

Proof. Let u ∈ M(λ) and ∥u∥ > 1. By applying (2.4) and Theorem 2.5, we
have

Eλ(u) ≥ ( 1
p+ − 1

r− )
∫
Ω
a(x)|∇u|p(x)dx− λ( 1

q− − 1
r− )

∫
Ω
b(x)|u|q(x)dx

≥ ( 1
p+ − 1

r− )∥u∥p− − λ( 1
q− − 1

r− )C1∥u∥q
+

.

Since p− > q+, Eλ(u) → ∞ as ∥u∥ → ∞. This implies that Eλ is coercive and
bounded below. □

For u ∈ X the corresponding fibering map to (P ) is defined by

ϕλ,u(t) =
∫
Ω

a(x)
p(x) t

p(x)|∇u|p(x)dx−λ
∫
Ω

b(x)
q(x) t

q(x)|u|q(x)dx−
∫
Ω

c(x)
r(x) t

r(x)|u|r(x)dx.

And we have

ϕ′
λ,u(t)=

∫
Ω

a(x)tp(x)−1|∇u|p(x)dx− λ

∫
Ω

b(x)tq(x)−1|u|q(x)dx−
∫
Ω

c(x)tr(x)−1|u|r(x)dx.

ϕ′′
λ,u(t)=

∫
Ω

a(x)(p(x)− 1)tp(x)−2|∇u|p(x)dx− λ

∫
Ω

b(x)(q(x)− 1)tq(x)−2|u|q(x)dx

−
∫
Ω

c(x)(r(x)− 1)tr(x)−2|u|r(x)dx.

It is easy to see that if u is a local minimizer of Eλ, then ϕλ,u has a local
minimizer at t = 1.

Theorem 2.8. Let u ∈ X \ {0} and t > 0. Then tu ∈ M(λ) if and only if
ϕ′
λ,u(t) = 0

By the above theorem, we see that u ∈ M(λ) if and only if ϕ′
λ,u(1) = 0.

Thus it is natural to divide M(λ) into tree subset M+(λ), M−(λ) and M0(λ)
corresponding to local minima, local maxima and points of inflection of fibering
maps. Hence, we define,

M+(λ) = {u ∈ M(λ);ϕ′′
λ,u(1) > 0};

M−(λ) = {u ∈ M(λ);ϕ′′
λ,u(1) < 0};

M0(λ) = {u ∈ M(λ);ϕ′′
λ,u(1) = 0}.
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Note that if u ∈ M(λ) then

(2.5) ϕ′′
λ,u(1) =

∫
Ω

a(x)(p(x)− 1)|∇u|p(x)dx− λ

∫
Ω

b(x)(q(x)− 1)|u|q(x)dx

−
∫
Ω
c(x)(r(x)− 1)|u|r(x)dx.

Also, as proved in [5] or in [7], we have the following Lemma.

Lemma 2.9. Suppose that u0 is a local minimizer of Eλ on M(λ) and u0 /∈
M0(λ), then u0 is a critical point of Eλ.

Proof. If u0 is a local minimizer of Eλ on M(λ), by Lagrange multipliers (see
[21]), there exists an α ∈ R such that E′

λ(u0) = αJ ′
λ(u0) where

Jλ(u0) =

∫
Ω

a(x)|∇u0|p(x)dx− λ

∫
Ω

b(x)|u0|q(x)dx−
∫
Ω

c(x)|u0|r(x)dx.

Thus, for any v ∈ X we have

(2.6) ⟨E′
λ(u0), v⟩ = α⟨J ′

λ(u0), v⟩

where

⟨E′
λ(u0), v⟩ =

∫
Ω

a(x)|∇u0|p(x)−2∇u0∇vdx− λ

∫
Ω

b(x)|u0|q(x)−2u0vdx

−
∫
Ω

c(x)|u0|r(x)−2u0vdx

and

⟨J ′
λ(u0), v⟩ =

∫
Ω

a(x)p(x)|∇u0|p(x)−2∇u0∇vdx− λ

∫
Ω

b(x)q(x)|u0|q(x)−2u0vdx

−
∫
Ω

c(x)r(x)|u0|r(x)−2u0vdx.

Since u0 ∈ M(λ), we have

(2.7) ⟨E′
λ(u0), u0⟩ = Jλ(u0) = 0.

Thus ⟨J ′
λ(u0), u0⟩ = ϕ′′

λ,u0
(1)+Jλ(u0) = ϕ′′

λ,u0
(1). Since u0 /∈ M0(λ) we obtain

⟨J ′
λ(u0), u0⟩ ̸= 0. So by (2.6) and (2.7) we deduce α = 0. Hence the proof is

complete. □
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3. Analysis of the fibering maps

We shall now describe the nature of the fibering maps for all possible sit-
uations. Let Au :=

∫
Ω
a(x)|∇u|p(x)dx, Bu :=

∫
Ω
b(x)|u|q(x)dx and Cu :=∫

Ω
c(x)|u|r(x)dx. Hence,

(tp
−
Au − λtq

+

Bu − tr
+

Cu)χ[1,+∞)(t) + (tp
+

Au − λtq
−
Bu − tr

−
Cu)χ(0,1)(t)

≤ ϕ′
λ,u(t) ≤(3.1)

(tp
+

Au − λtq
−
Bu − tr

−
Cu)χ[1,+∞)(t) + (tp

−
Au − λtq

+

Bu − tr
+

Cu)χ(0,1)(t).

For γ > α > β > 0 and A,B,C, λ > 0 let fλ(t) = tαA − tγC − tβB. Then
for t ̸= 0 we have,

(3.2) fλ(t) = 0 ⇐⇒ t−βfλ(t) = 0 ⇐⇒ tα−βA− tγ−βC = λB

Set g(t) = tα−βA − tγ−βC and h(t) = λB. The three possible situations for
g(t) and h(t) related to each other are shown in the following graphs.

Figure 2-1 Figure 2-2

Figure 2-3 Figure 2-4

If λ is sufficiently large, (3.2) has no solution (see Figure 2-1) and so fλ has
no root. If λ is exactly of appropriate value, (3.2) has only one solution (see
Figure 2-2), and fλ takes only nonpositive values. On the other hand, if λ > 0
is sufficiently small, there are exactly two solutions t1(u) < t2(u) for (3.2), (see
Figure 2-3) with f ′

λ(t1(u)) > 0, and f ′
λ(t2(u)) < 0. It follows that fλ has a
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graph as shown in the Figure 2-4.

By inequalities (3.1), we see that the graph of ϕ′
λ,u(t) is between two graphs

µλ,u(t) = tp
−
Au − λtq

+

Bu − tr
+

Cu and νλ,u(t) = tp
+

Au − λtq
−
Bu − tr

−
Cu.

Hence, by the above argument about the form of fλ, for λ sufficiently small,
the graphs of µλ,u and νλ,u for u ∈ M+(λ) and u ∈ M−(λ) are shown in Figure
2-5 and Figure 2-6, respectively, and so ϕ′

λ,u would be placed in the gray space
between them.

Figure 2-5 Figure 2-6

It follows that ϕλ,u has at least two critical points; a local minimum at
t1 = t1(u) and a local maximum at t2 = t2(u) which for u ∈ M+(λ), t1 = 1 < t2
and t2u ∈ M−(λ) and for u ∈ M−(λ), t1 < t2 = 1 and t1u ∈ M+(λ).

Moreover, ϕλ,u is decreasing on (0, t1), increasing on (t1, t2) and deceasing
on (t2,+∞). It follows from the last argument that there exist λ1 > 0 such
that for 0 < λ < λ1 we see that if ϕ′

λ,u(t) = 0, i.e., tu ∈ M(λ), then tu ̸∈ M0(λ)
and so we have the following lemma.

Lemma 3.1. There exists a λ1 > 0 such that for 0 < λ < λ1, we have
M0(λ) = ∅.

Proof. If u ∈ M0(λ), form (2.5), we obtain

p+Au − λq−Bu − r−Cu ≥ 0.

Since u ∈ M(λ), Au − λBu = Cu and so

p+Au − λq−Bu − r−(Au − λBu) = (p+ − r−)Au + λ(r− − q−)Bu ≥ 0.

Suppose ∥u∥ > 1, using Proposition 2.6, we deduce
(3.3)

(p+−r−)∥u∥p
+

+λ(r−−q−)C1|u∥q
+

< 0 and hence |u∥p
+−q+ ≤ λ

(r− − q−)

(r− − p+)
C1.

Similarly, from 2.5 we obtain p−Au − λq+Bu − r+Cu < 0 and since u ∈ M(λ)
we derive

p−Au − q+(Au − Cu)− r+Cu = (p− − q+)Au − (r+ − q+)Cu ≤ 0.

By Proposition 2.6, we have

(3.4) (p−−q+)∥u∥p
−
−(r+−q+)C3|u∥r

+

≤ 0 and |u∥r
+−p−

≥ (p− − q+)

(r+ − q+)C3
.
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From (3.3) and (3.4) we get,

(
(p− − q+)

(r+ − q+)C3
)

p+−q+

r+−p− ≤ λ
(r− − q−)

(r− − p+)
C1.

Thus,

λ ≥ (
(p− − q+)

(r+ − q+)C3
)

p+−q+

r+−p− .
(r− − p+)

(r− − q−)C1
=: λ′.

By a similar argument, if u ∈ M0(λ) and ∥u∥ < 1, we have

λ ≥ (
(p− − q+)

(r+ − q+)C4
)

p−−q−

r−−p+ .
(r− − p+)

(r− − q−)C2
=: λ′′.

Therefore, we conclude that for λ ≤ λ1 where λ1 := min(λ′, λ′′), M0(λ) =
∅. □

4. Existence of Minimizer

Theorem 4.1. If λ < λ1, then there exists a minimizer of Eλ on M+(λ).

Proof. Since Eλ is bounded below on M(λ) and so on M+(λ), there exists a
minimizing sequence {un} ⊆ M+(λ) such that limn→∞ Eλ(un) = infu∈M+(λ) Eλ(u).
Since Eλ is coercive, {un} is bounded in X. Thus, we may assume that, with-
out loos of generality, un ⇀ u0 in X and by the compact embedding, we have

un → u0 in L
r(x)
c(x)(Ω) and in L

q(x)
b(x)(Ω). Now, we will prove un → u0 in X.

Otherwise, suppose un ̸→ u0 in X, then

(4.1)

∫
Ω

a(x)|∇u0|p(x)dx < lim inf
n→∞

∫
Ω

a(x)|∇un|p(x)dx.

ϕ′
λ,un

(t) =

∫
Ω

a(x)tp(x)−1|∇un|p(x)dx− λ

∫
Ω

b(x)tq(x)−1|un|q(x)dx

−
∫
Ω

c(x)tr(x)−1|un|r(x)dx;

and

ϕ′
λ,u0

(t) =

∫
Ω

a(x)tp(x)−1|∇u0|p(x)dx− λ

∫
Ω

b(x)tq(x)−1|u0|q(x)dx

−
∫
Ω

c(x)tr(x)−1|u0|r(x)dx.

By the previous section, there exists t0 = t0(u0) such that t0u0 ∈ M+(λ),
and hence, ϕ′

λ,u0
(t0) = 0 and by (4.2), we deduce,
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limn→∞ ϕ′
λ,un

(t0)

= limn→∞(
∫
Ω
a(x)t

p(x)−1
0 |∇un|p(x)dx− λ

∫
Ω
b(x)tq(x)−1|un|q(x)dx

−
∫
Ω
c(x)tr(x)−1|un|r(x)dx)

= limn→∞(
∫
Ω
a(x)t

p(x)−1
0 |∇un|p(x)dx)−

∫
Ω
a(x)t

p(x)−1
0 |∇u0|p(x)dx > 0.

Hence, ϕ′
λ,un

(t0) > 0, for sufficiently large n. Since {un} ⊆ M+(λ), by consid-

ering possible maps ϕ′
λ,u for u ∈ M+(λ), as is shown in Figure 2-5, it is easy

to see that ϕ′
λ,un

(t) < 0 for 0 < t < 1 and ϕ′
λ,un

(1) = 0; for all n. Thus, we
must have t0 > 1. But by considering the possible forms of the fibering maps,
we deduce,

ϕλ,t0u0(1) < ϕλ,t0u0(t); t < 1.

Let t = 1
t0
, hence Eλ(t0u0) = ϕλ,t0u0(1) < ϕλ,t0u0(

1
t0
) = Eλ(u0).

So Eλ(t0u0) < Eλ(u0) < limn→∞ Eλ(un) = infu∈M+(λ) Eλ(u), which con-

tradicts t0u0 ∈ M+(λ). Hence, un −→ u0 in X and

Eλ(u0) = lim
n→∞

Eλ(un) = inf
u∈M+(λ)

Eλ(u).

Since un −→ u0 in X, un ⊂ M+(λ) and X ↪→↪→ L
q(x)
b(x) , L

r(x)
c(x) hence∫

Ω

a(x)|∇u0|p(x)dx− λ

∫
Ω

b(x)|u0|q(x)dx =

∫
Ω

c(x)|u0|r(x)dx.

Moreover, by boundedness of p, q, r on Ω we have W
1,p(x)
a(x) (Ω) = W

1,p(x)
p(x)a(x)(Ω),

L
q(x)
b(x)(Ω) = L

q(x)
q(x)b(x)(Ω) and L

r(x)
c(x)(Ω) = L

r(x)
r(x)c(x)(Ω) and since M0(λ) = ∅ we

obtain∫
Ω

a(x)p(x)|∇uo|p(x)dx > λ

∫
Ω

b(x)q(x)|u0|q(x)dx−
∫
Ω

c(x)r(x)|u0|r(x)dx.

Thus u0 ̸= 0.
□

Theorem 4.2. If λ < λ1, then there exists a minimizer of Eλ on M−(λ).

Proof. As in the previous proof, we get a minimizing sequence {vn} ⊆ M−(λ)
such that limn→∞ Eλ(vn) = infv∈M−(λ) Eλ(v) where vn ⇀ v0 inX and vn → v0

in L
r(x)
c(x)(Ω) and L

q(x)
b(x)(Ω). Suppose that vn is not strongly convergent to v0 in

X, hence, ∫
Ω

a(x)|∇v0|p(x)dx < lim inf
n→∞

∫
Ω

a(x)|∇vn|p(x)dx.
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Moreover, by the same argument in the previous theorem, there exists t1 =
t1(v0) such that t1v0 ∈ M−(λ), and so

ϕ′
λ,v0

(t1) =

∫
Ω

a(x)t
p(x)−1
1 |∇v0|p(x)dx− λ

∫
Ω

b(x)t
q(x)−1
1 |v0|q(x)dx

−
∫
Ω

c(x)t
r(x)−1
1 |v0|r(x)dx = 0.

Hence,

limn→∞ ϕ′
λ,vn

(t1)

= limn→∞(
∫
Ω
a(x)t

p(x)−1
1 |∇vn|p(x)dx)−

∫
Ω
a(x)t

p(x)−1
1 |∇v0|p(x)dx > 0.

And so ϕ′
λ,vn

(t1) > 0, for sufficiently large n. Now, by considering the possible

maps ϕ′
λ,v for v ∈ M−(λ), as is shown in Figure 2-6, it can be seen that

ϕ′
λ,vn

(t) < 0 for t > 1 and ϕ′
λ,vn

(1) = 0; for all n. Hence, we must have t1 < 1
and so

Eλ(t1v0) < lim inf Eλ(t1vn)(4.2)

< lim
n→∞

Eλ(vn) = inf
v∈M−(λ)

Eλ(v)(4.3)

which contradicts by t1v0 ∈ M−(λ).
Thus, vn −→ v0 in X and the proof can be completed as in the previous
theorem.

□

Corollary 4.3. Problem (P ) have at least two positive solutions for 0 < λ <
λ1.

Proof. By Theorems 4.1 and 4.2, there exist u0 ∈ M+(λ) and v0 ∈ M−(λ)
such that

Eλ(u0) = inf
u∈M+(λ)

Eλ(u)

and

Eλ(v0) = inf
v∈M−(λ)

Eλ(v).

Moreover, Eλ(u) = Eλ(|u|) and |u0| ∈ M+(λ) and similarly |v0| ∈ M−(λ), so
we may assume u0, v0 > 0. By Lemma 2.9 u0, v0 are critical points of E on

W
1,p(x)
a(x) (Ω) and hence, weak solutions (and so by the standard regularity result

classical solutions of (P )). Finally, by Harnack inequality [20, 22], we obtain
that u0, v0 are positive solutions of (P ). □
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Example 4.4. Let Ω ⊂ R2, then u = u(x, y) and a(x) := b(x) := c(x) := 1.
In this case the problem (P ) has the following complicated form:

(u2
x + u2

y)
p(x,y)−2

2 [
(px(x, y) + py(x, y))

2
ln(u2

x + u2
y)

+(p(x, y)− 2)(
uxuxx + uyuxy + uxuxy + uyuyy

u2
x + u2

y

) + uxx + uyy]

= λ|u|q(x,y)−2u+ |u|r(x,y)−2u

Even if Ω := (1, 2) ⊂ R, p(x) := 2x + 2, q(x) := 2, r(x) := 7 and a(x) :=
b(x) := c(x) := 1 we have

u′2x[2lnu′ + x
u′′

u′ + u′′] = λu+ |u|5u

with u(1) = u(2) = 0.

So we are faced with a two dimentional nonlinear PDE and a nonlinear
ODE, respectively, where it is not easy to find any analytic solution for them.
Whereas by using Corollary 4.3 we know for some appropriate λ these problems
have at least two positive solutions.
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