ON δ-QUASI ARMENDARIZ MODULES

E. HASHEMI

Abstract

Let δ be a derivation on R and $S=R[x ; \delta]$ be the differential polynomial ring. A module M is called Baer (resp. quasi-Baer) if the annihilator of every subset (resp. submodule) of M is generated by an idempotent of R. In this note we impose δ-compatibility assumption on the module M and prove the following results. (1) The module M is quasi-Baer (resp. p.q.-Baer) if and only if $M[x]_{S}$ is quasi-Baer (resp. p.q.-Baer). (2) If M_{R} is δ-Armendariz, then M_{R} is Baer (resp. p.p) if and only if $M[x]_{S}$ is Baer (resp. p.p). (3) A necessary and sufficient condition for the trivial extension $T(R, R)$ to be δ-quasi Armendariz is obtained.

1. Introduction

Throughout the paper R always denotes an associative ring with unity and M_{R} will stand for a right R-module. Recall from [16] that R is a Baer ring if the right annihilator of every nonempty subset of R is generated by an idempotent. In [16] Kaplansky introduced Baer rings to abstract various properties of von Neumann algebras and complete *-regular rings. The class of Baer rings includes the von Neumann algebras. In [9] Clark defines a ring to be quasi-Baer if the left annihilator of every ideal is generated, as a left ideal, by an idempotent. Another generalization of Baer rings are the p.p.-rings. A ring R is called right (resp. left) p.p if right (resp. left) annihilator of an element of R is

[^0](c) 2007 Iranian Mathematical Society.
generated by an idempotent. Birkenmeier et al. in [6] introduced the concept of principally quasi-Baer rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal of R is generated by an idempotent.

In 1974, Armendariz considered the behavior of a polynomial ring over a Baer ring by obtaining the following result: Let R be a reduced ring (i.e. R has no nonzero nilpotent elements). Then $R[x]$ is a Baer ring if and only if R is a Baer ring ([4], Theorem B). Armendariz provided an example to show that the reduced condition is not superfluous. Recently, this result has been extended in several directions by Birkenmeier-KimPark [7], Han-Hirano-Kim [10], Hirano [12], Hong-Kim-Kwak [14], and Kim-Lee [18].

From now on, we always denote the differential polynomial ring by $S:=R[x ; \delta]$, where $\delta: R \rightarrow R$ is a derivation on R. Recall that a derivation δ is an additive operator on R with the property that $\delta(a b)=$ $\delta(a) b+a \delta(b)$ for all $a, b \in R$. The differential polynomial ring S is then the ring consisting of all (left) polynomials of the form $\sum a_{i} x^{i}$ $\left(a_{i} \in R\right)$, where the addition is defined as usual and the multiplication by $x b=b x+\delta(b)$ for any $b \in R$. From this rule, an inductive argument can be made to calculate an expression for $x^{j} a$, for all $j \in \mathbb{N}$ and $a \in R$.

One can show with a routine computation that

$$
\begin{equation*}
x^{j} a=\sum_{i=0}^{j}\binom{j}{i} \delta^{j-i}(a) x^{i} \tag{1.1}
\end{equation*}
$$

Given a right R-module M_{R}, we can make $M[x]$ into a right S-module by allowing polynomials from S to act on polynomials in $M[x]$ in the obvious way, and applying the above "twist" whenever necessary.

For a nonempty subset X of M, put $\operatorname{ann}_{\mathrm{R}}(X)=\{a \in R \mid X a=0\}$.
In [22], Lee-Zhou introduced Baer, quasi-Baer and p.p.-modules as follows: (1) M_{R} is called Baer if, for any subset X of $M, \operatorname{ann}_{\mathrm{R}}(X)=e R$ where $e^{2}=e \in R$. (2) M_{R} is called quasi-Baer if, for any submodule $X \subseteq M, \operatorname{ann}_{\mathrm{R}}(X)=e R$ where $e^{2}=e \in R$. (3) M_{R} is called p.p. if, for any element $m \in M, \operatorname{ann}_{\mathrm{R}}(m)=e R$ where $e^{2}=e \in R$. Clearly, a ring R is Baer (resp. p.p. or quasi-Baer) if and only if R_{R} is Baer (resp. p.p. or quasi-Baer) module. If R is a Baer (resp. p.p. or quasi-Baer) ring, then for any right ideal I of R, I_{R} is Baer (resp. p.p. or quasiBaer) module. Lee-Zhou have extended various results of reduced rings to reduced modules.

The module M_{R} is called principally quasi-Baer (or simply p.q.-Baer) if, for any $m \in M, \operatorname{ann}_{\mathrm{R}}(m R)=e R$ where $e^{2}=e \in R$. It is clear that R is a right p.q.-Baer ring if and only if R_{R} is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is quasi-Baer.

In this note we impose δ-compatibility assumption on the module M_{R} and prove the following results which extend many results on rings to modules:
(1) The module M_{R} is quasi-Baer (resp. p.q.-Baer) if and only if $M[x]_{S}$ is quasi-Baer (resp. p.q.-Baer), where $S=R[x ; \delta]$. Also we give an example to show that δ-compatibility assumption on M_{R} is not superfluous.
(2) If M_{R} is δ-Armendariz, then M_{R} is Baer (resp. p.p) if and only if $M[x]_{S}$ is Baer (resp. p.p).
(3) A necessary and sufficient condition for the trivial extension $T(R, R)$ to be δ-quasi Armendariz is obtained.

2. δ-quasi Armendariz modules and Ore extensions of quasi-Baer modules

Definition 2.1. (Annin, [3]) Given a module M_{R} and a derivation δ : $R \rightarrow R$, we say that M_{R} is δ-compatible if for each $m \in M, r \in R$, we have $m r=0 \Rightarrow m \delta(r)=0$.

Remark 2.2. If M_{R} is δ-compatible, then so is any submodule of M_{R}.

Lemma 2.3. Let M_{R} be a δ-compatible module. Let $m \in M, a, b \in R$. Then we have the following:
(i) if $m a=0$, then $m \delta^{j}(a)=0$ for any positive integer j;
(ii) if $m a b=0$, then $m a \delta^{j}(b)=0=m \delta^{j}(a) b$ for any positive integer j;
(iii) $a n_{\mathrm{R}}(m a) \subseteq a n_{\mathrm{R}}(m \delta(a))$.

Proof. (i) This follows from Remark 2.2.
(ii) It is enough to show that $m a \delta(b)=0=m \delta(a) b$. Since M_{R} is δ-compatible, $m a b=0$ implies that $m a \delta(b)=0$ and $m \delta(a b)=m \delta(a) b+$ $m a \delta(b)=0$. Hence $m \delta(a) b=0$.
(iii) Let $m a b=0$ for some $b \in R$. Using δ-compatibility, we get $0=$ $m \delta(a b)=m a \delta(b)+m \delta(a) b=0$ and hence $m \delta(a) b=0$, as desired.

Lemma 2.4. Let M_{R} be a δ-compatible module and $m(x)=m_{0}+\cdots+$ $m_{k} x^{k} \in M[x]$ and $r \in R$. Then $m(x) r=0$ if and only if $m_{i} r=0$ for all i.

Proof. Assume $m(x) r=0$. An easy calculation using (1.1) shows that $m(x) r=\sum_{i=0}^{k}\left[\sum_{j=i}^{k}\binom{j}{i} m_{j} \delta^{j-i}(r)\right] x^{i}$ and so

$$
\begin{equation*}
\sum_{j=i}^{k}\binom{j}{i} m_{j} \delta^{j-i}(r)=0 \text { for each } i \leq k . \tag{2.1}
\end{equation*}
$$

Starting with $i=k$, Eq.(2.1) yields $m_{k} r=0$. Now assume inductively that $m_{j} r=0$ for each $j>i$. By δ-compatibility of M_{R}, for $j>i$, we have $m_{j} \delta^{j-i}(r)=0$. Using (2.1) again, we deduce that $m_{i} r=0$, as needed.

The converse follows from δ-compatibility assumption on M.
Following Anderson and Camillo [1], a module M_{R} is called Armendariz if, whenever $m(x) f(x)=0$ where $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x]$ and $f(x)=\sum_{j=0}^{t} a_{j} x^{j} \in R[x]$, we have $m_{i} a_{j}=0$ for all i, j.

Definition 2.5. Given a module M_{R} and a derivation $\delta: R \rightarrow R$, we say M_{R} is δ-quasi Armendariz (resp. δ-Armendariz), if whenever $m(x)=$ $\sum_{i=0}^{k} m_{i} x^{i} \in M[x], \quad f(x)=\sum_{j=0}^{n} b_{j} x^{j} \in R[x ; \delta]$ satisfy $m(x) R[x ; \delta] f(x)=0$ (resp. $m(x) f(x)=0$), we have $m_{i} x^{i} R x^{t} b_{j} x^{j}=0$ (resp. $m_{i} x^{i} a_{j} x^{j}=0$) for $t \geq 0, i=0, \cdots, k$ and $j=0, \cdots, n$.

Let R be a ring. The trivial extension of R is given by:
$T(R, R)=\left\{\left.\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) \right\rvert\, a, r \in R\right\}$. Clearly, $T(R, R)$ is a subring of the ring of 2×2 matrices over R. The derivation δ on R is extended to $\bar{\delta}$: $T(R, R) \rightarrow T(R, R)$ by $\bar{\delta}\left(\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}\delta(a) & \delta(r) \\ 0 & \delta(a)\end{array}\right)$. One can show that $\bar{\delta}$ is a derivation on $T(R, R)$ and $T(R, R)[x ; \bar{\delta}] \cong T(R[x ; \delta], R[x ; \delta])$.

Proposition 2.6. Let R be a δ-compatible ring. If the trivial extension $T(R, R)$ is $\bar{\delta}$-quasi Armendariz, then R is δ-quasi Armendariz.

Proof. Let $f(x)=a_{0}+\cdots+a_{n} x^{n}, g(x)=b_{0}+\cdots+b_{m} x^{m} \in R[x ; \delta]$ and $f(x) R[x ; \delta] g(x)=0$. For each $a, r \in R$ and $t \geq 0$, we have the following equation:

$$
\begin{gathered}
{\left[\sum_{i=0}^{n}\left(\begin{array}{cc}
a_{i} & 0 \\
0 & a_{i}
\end{array}\right) x^{i}\right]\left(\begin{array}{cc}
a & r \\
0 & a
\end{array}\right) x^{t}\left[\sum_{j=0}^{m}\left(\begin{array}{cc}
0 & b_{j} \\
0 & 0
\end{array}\right) x^{j}\right]=} \\
\left(\begin{array}{cc}
f(x) & 0 \\
0 & f(x)
\end{array}\right)\left(\begin{array}{cc}
a x^{t} & r x^{t} \\
0 & a x^{t}
\end{array}\right)\left(\begin{array}{cc}
0 & g(x) \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & f(x) a x^{t} g(x) \\
0 & 0
\end{array}\right)=0 .
\end{gathered}
$$

Since $T(R, R)$ is $\bar{\delta}$-quasi Armendariz,
$\left(\begin{array}{cc}a_{i} x^{i} & 0 \\ 0 & a_{i} x^{i}\end{array}\right)\left(\begin{array}{cc}a x^{t} & r x^{t} \\ 0 & a x^{t}\end{array}\right)\left(\begin{array}{cc}0 & b_{j} x^{j} \\ 0 & 0\end{array}\right)=0$ and so $a_{i} x^{i} a x^{t} b_{j} x^{j}=0$ for all i, j, t. Therefore R is δ-quasi rmendariz.

When the trivial extension $T(R, R)$ is δ-quasi Armendariz?
Theorem 2.7. Let R be a δ-compatible ring such that
(i) R is δ-quasi Armendariz;
(ii) if $f(x) R[x ; \delta] g(x)=0$, then $f(x) R[x ; \delta] \cap R[x ; \delta] g(x)=0$.

Then the trivial extension $T(R, R)$ is $\bar{\delta}$-quasi Armendariz.

Proof. Suppose that $\alpha(x) T(R, R) \beta(x)=0$, where
$\alpha(x)=\left(\begin{array}{cc}a_{0} & r_{0} \\ 0 & a_{0}\end{array}\right)+\left(\begin{array}{cc}a_{1} & r_{1} \\ 0 & a_{1}\end{array}\right) x+\cdots+\left(\begin{array}{cc}a_{n} & r_{n} \\ 0 & a_{n}\end{array}\right) x^{n}$ and
$\beta(x)=\left(\begin{array}{cc}b_{0} & s_{0} \\ 0 & b_{0}\end{array}\right)+\left(\begin{array}{cc}b_{1} & s_{1} \\ 0 & b_{1}\end{array}\right) x+\cdots+\left(\begin{array}{cc}b_{m} & s_{m} \\ 0 & b_{m}\end{array}\right) x^{m} \in T(R, R)[x ; \bar{\delta}]$.
Let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}, r(x)=r_{0}+r_{1} x+\cdots+r_{n} x^{n}$,
$g(x)=b_{0}+b_{1} x+\cdots+b_{m} x^{m}$ and $s(x)=s_{0}+s_{1} x+\cdots+s_{m} x^{m} \in R[x ; \delta]$.
For each $\left(\begin{array}{cc}a & r \\ 0 & a\end{array}\right) x^{t} \in T(R, R)[x ; \bar{\delta}]$, it follows that
$0=\left(\begin{array}{cc}f(x) & r(x) \\ 0 & f(x)\end{array}\right)\left(\begin{array}{cc}a x^{t} & r x^{t} \\ 0 & a x^{t}\end{array}\right)\left(\begin{array}{cc}g(x) & s(x) \\ 0 & g(x)\end{array}\right)$
$=\left(\begin{array}{cc}f(x) \operatorname{ax}^{t} g(x) & f(x) a x^{t} s(x)+f(x) r x^{t} g(x)+r(x) a x^{t} g(x) \\ 0 & f(x) \text { ax }^{t} g(x)\end{array}\right)$. Hence
$f(x) a x^{t} g(x)=0$ and $f(x) a x^{t} s(x)+f(x) r x^{t} g(x)+r(x) a x^{t} g(x)=0$.
Since $a x^{t}$ is an arbitrary element of $R[x ; \delta], f(x) R[x ; \delta] g(x)=0$. But R is δ-quasi Armendariz and hence $a_{i} x^{i} R x^{t} b_{j} x^{j}=0$ for all i, j, t. Since $f(x)\left[a x^{t} s(x)+r(x) x^{t} g(x)\right]+\left[r(x) a x^{t}\right] g(x)=0, f(x)\left[a x^{t} s(x)+r(x) x^{t} g(x)\right]=$ $-\left[r(x) a x^{t}\right] g(x) \in f(x) R[x ; \delta] \cap R[x ; \delta] g(x)$, so
$f(x)\left[a x^{t} s(x)+r(x) x^{t} g(x)\right]=\left[r(x) a x^{t}\right] g(x)=0$. Since $a x^{t}$ is an arbitrary element of $R[x ; \delta], r(x) R[x ; \delta] g(x)=0$. Then $r_{i} x^{i} R x^{t} b_{j} x^{j}=0$ for all i, j, t, since R is δ-quasi Armendariz. Thus $f(x)\left[a x^{t} s(x)\right]=$ $-\left[f(x) r(x) x^{t}\right] g(x) \in f(x) R[x ; \delta] \cap R[x ; \delta] g(x)=0$. So $f(x) R[x ; \delta] s(x)=$ 0 and $a_{i} x^{i} R x^{t} s_{j} x^{j}=0$ for all i, j, t, since R is δ-quasi Armendariz. Therefore

$$
\left.\left.\begin{array}{l}
\quad\left(\begin{array}{cc}
a_{i} & r_{i} \\
0 & a_{i}
\end{array}\right) x^{i}\left(\begin{array}{cc}
a & r \\
0 & a
\end{array}\right) x^{t}\left(\begin{array}{cc}
b_{j} & s_{j} \\
0 & b_{j}
\end{array}\right) x^{j}= \\
\left(\begin{array}{c}
a_{i} x^{i} a x^{t} b_{j} x^{j} \\
0
\end{array} a_{i} x^{i} r x^{t} b_{j} x^{j}+a_{i} x^{i} r x^{t} b_{j} x^{j}+r_{i} x^{i} a x^{t} b_{j} x^{j}\right. \\
a_{i} x^{i} a x^{t} b_{j} x^{j}
\end{array}\right)=0 \text { for all } i, j\right) .
$$ is $\bar{\delta}$-quasi Armendariz.

Theorem 2.8. Let M_{R} be a δ-compatible and δ-quasi Armendariz module. Then M_{R} satisfies the ascending chain condition on annihilator of submodules if and only if so does $M[x]_{S}$.

Proof. Assume that M_{R} satisfies the ascending chain condition on annihilator of submodules. Let $I_{1} \subseteq I_{2} \subseteq I_{3} \cdots$ be a chain of annihilator of submodules of $M[x]_{S}$. Then there exist submodules K_{i} of $M[x]_{S}$ such that $\operatorname{ann}_{\mathrm{S}}\left(K_{i}\right)=I_{i}$ and $K_{1} \supseteq K_{2} \supseteq K_{3} \supseteq \cdots$ for all $i \geq 1$. Let $M_{i}=$ \{all coefficients of elements of $\left.K_{i}\right\}$. Since M is δ-quasi Armendariz, M_{i} is submodule of M for all $i \geq 1$. Clearly $M_{i} \supseteq M_{i+1}$ for all $i \geq 1$. Thus $\operatorname{ann}_{\mathrm{R}}\left(M_{1}\right) \subseteq \operatorname{ann}_{\mathrm{R}}\left(M_{2}\right) \subseteq \operatorname{ann}_{\mathrm{R}}\left(M_{3}\right) \subseteq \cdots$. Since M_{R} satisfies the ascending chain condition on annihilator of submodules, there exists $n \geq 1$ such that $\operatorname{ann}_{\mathrm{R}}\left(M_{i}\right)=\operatorname{ann}_{\mathrm{R}}\left(M_{n}\right)$ for all $i \geq n$. We show that $\operatorname{ann}_{\mathrm{S}}\left(K_{i}\right)=\operatorname{ann}_{\mathrm{S}}\left(K_{n}\right)$ for all $i \geq n$. Let $f(x)=a_{0}+a_{1} x+\cdots+$ $a_{m} x^{m} \in \operatorname{ann}_{\mathrm{S}}\left(K_{i}\right)$. Then $M_{i} a_{j}=0$ for $j=0, \cdots, m$, since M is δ-quasi Armendariz. Thus $M_{n} a_{j}=0$ for $j=0, \cdots, m$ and so $K_{n} f(x)=0$ by Lemma 2.4. Therefore $\operatorname{ann}_{S}\left(K_{i}\right)=\operatorname{ann}_{S}\left(K_{n}\right)$ for all $i \geq n$ and $M[x]_{S}$ satisfies the ascending chain condition on annihilator of submodules.

Now assume $M[x]_{S}$ satisfies the ascending chain condition on annihilator of submodules. Let $J_{1} \subseteq J_{2} \subseteq J_{3} \cdots$ be a chain of annihilator of submodules of M_{R}. Then there exist submodules M_{i} of M such that $\operatorname{ann}_{\mathrm{R}}\left(M_{i}\right)=J_{i}$ and
$M_{1} \supseteq M_{2} \supseteq M_{3} \supseteq \cdots$ for all $i \geq 1$. Hence $M_{i}[x]$ is a submodule of $M[x]$ and $M_{i}[x] \supseteq M_{i+1}[x]$ and $\operatorname{ann}_{S}\left(M_{i}[x]\right) \subseteq \operatorname{ann}_{S}\left(M_{i+1}[x]\right)$ for all $i \geq 1$.

Since $M_{S}[x]$ satisfies the ascending chain condition on annihilator of submodules, there exists $n \geq 1$ such that $\operatorname{ann}_{S}\left(M_{i}[x]\right)=\operatorname{ann}_{S}\left(M_{n}[x]\right)$ for all $i \geq n$. Since M is δ-quasi Armendariz, by a similar argument as used in the previous paragraph, one can show that $\operatorname{ann}_{\mathrm{R}}\left(M_{i}\right)=\operatorname{ann}_{\mathrm{R}}\left(M_{n}\right)$ for all $i \geq n$.

Theorem 2.9. Let M_{R} be a δ-compatible module. Then M_{R} is quasiBaer (resp. p.q.-Baer) if and only if $M[x]_{S}$ is quasi-Baer (resp. p.q.Baer). In this case M_{R} is δ-quasi Armendariz.

Proof. Assume M_{R} is quasi-Baer. First we shall prove that M_{R} is δ quasi Armendariz. Suppose that $\left(m_{0}+m_{1} x+\ldots+m_{k} x^{k}\right) S\left(b_{0}+b_{1} x+\right.$ $\left.\ldots+b_{n} x^{n}\right)=0$, with $m_{i} \in M, b_{j} \in R$. Then

$$
\begin{equation*}
\left(m_{0}+m_{1} x+\ldots+m_{k} x^{k}\right) R\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right)=0 \tag{2.2}
\end{equation*}
$$

Thus $m_{k} R b_{n}=0$ and $b_{n} \in \operatorname{ann}_{R}\left(m_{k} R\right)$. Then $m_{k} x^{k} R x^{t} b_{n} x^{n}=0$, by Lemma 2.3. Since M_{R} is qusi-Baer, there exists $e_{k}^{2}=e_{k} \in R$ such that $\operatorname{ann}_{\mathrm{R}}\left(m_{k} R\right)=e_{k} R$ and so $b_{n}=e_{k} b_{n}$. Replacing R by $R e_{k}$ in Eq.(2.2) and using Lemma 2.3, we obtain $\left(m_{0}+m_{1} x+\ldots+\right.$ $\left.m_{k-1} x^{k-1}\right) R e_{k}\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right)=0$. Hence $m_{k-1} R b_{n}=0$ and $b_{n} \in$ $\operatorname{ann}_{\mathrm{R}}\left(m_{k-1} R\right)$. Then $m_{k-1} x^{k-1} R x^{t} b_{n} x^{n}=0$, by Lemma 2.3. Hence $b_{n} \in \operatorname{ann}_{\mathrm{R}}\left(m_{k} R\right) \cap \operatorname{ann}_{\mathrm{R}}\left(m_{k-1} R\right)$. Since M_{R} is 0qusi-Baer, there exists $f^{2}=f \in R$ such that $\operatorname{ann}_{R}\left(m_{k} R\right)=f R$ and so $b_{n}=f b_{n}$. If we put $e_{k-1}=e_{m} f$, then $e_{k-1} b_{n}=b_{n}$ and $e_{k-1} \in \operatorname{ann}_{\mathrm{R}}\left(m_{k} R\right) \cap \operatorname{ann}_{\mathrm{R}}\left(m_{k-1} R\right)$. Next, replacing R by $R e_{k-1}$ in Eq.(2.2), and using Lemma 2.3, we obtain $\left(m_{0}+m_{1} x+\ldots+m_{k-2} x^{k-2}\right) R e_{k-1}\left(b_{0}+b_{1} x+\ldots+b_{n} x^{n}\right)=0$. Hence we have $b_{n} \in \operatorname{ann}_{\mathrm{R}}\left(m_{k-2} R\right)$ and so $m_{k-2} x^{k-2} R x^{t} b_{n} x^{n}=0$, by Lemma 2.3. Continuing this process, we get $m_{i} x^{i} R x^{t} b_{n} x^{n}=0$ for $i=0, \cdots, k$. Using induction on $k+n$, we obtain $m_{i} x^{i} R x^{t} b_{j} x^{j}=0$ for all i, j, t. Therefore M_{R} is δ-quasi Armendariz. Let J be a S-submodule of $M[x]$. Let $N=$ $\{m \in M \mid m$ is a leding coefficient of some non-zero element of $J\} \cup\{0\}$. Clearly, N is a submodule of M. Since M_{R} is quasi-Baer, there exists $e^{2}=e \in R$ such that $\operatorname{ann}_{\mathrm{R}}(N)=e R$. Hence $e S \subseteq \operatorname{ann}_{S}(J)$ by Lemma 2.3. Let $f(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n} \in \operatorname{ann}_{S}(J)$. Then $N b_{j}=0$ for each $j=0, \cdots, n$ since M_{R} is δ-quasi Armendariz. Hence $b_{j}=e b_{j}$ for each $j=0, \cdots, n$ and $f(x)=e f(x) \in e S$. Thus $\operatorname{ann}_{S}(J)=e S$ and $M[x]_{S}$ is quasi-Baer.

Assume that $M[x]_{S}$ is quasi-Baer and I is a submodule of M. Then $I[x]$ is a submodule of $M[x]$. Since $M[x]$ is quasi-Baer, there exists an
idempotent $e(x)=e_{0}+\cdots+e_{n} x^{n} \in S$ such that $\operatorname{ann}_{\mathrm{S}}(I[x])=e(x) S$. Hence $I e_{0}=0$ and $e_{0} R \subseteq \operatorname{ann}_{\mathrm{R}}(I)$. Let $t \in \operatorname{ann}_{\mathrm{R}}(I)$. Then $I[x] t=0$ by Lemma 2.4. Hence $t=e(x) t$ and so $t=e_{0} t \in e_{0} R$. Thus $\operatorname{ann}_{\mathrm{R}}(I)=e_{0} R$ and M_{R} is quasi-Baer.

Corollary 2.10. Let R be a δ-compatible ring. Then R is quasi-Baer (resp. right p.q.-Baer) if and only if $R[x ; \delta]$ is quasi-Baer (resp. right p.q.-Baer).

The following example shows that δ-compatibility condition on R_{R} in Corollary 2.10 is not superfluous.

Example 2.11. [4, Example 11] There is a ring R and a derivation δ of R such that $R[x ; \delta]$ is a Baer (hence quasi-Baer) ring, but R is not quasi-Baer. In fact let $R=\mathbb{Z}_{2}[t] /\left(t^{2}\right)$ with the derivation δ such that $\delta(\bar{t})=1$ where $\bar{t}=t+\left(t^{2}\right)$ in R and $\mathbb{Z}_{2}[t]$ is the polynomial ring over the field \mathbb{Z}_{2} of two elements. Consider the Ore extension $R[x ; \delta]$. If we set $e_{11}=\bar{t} x, e_{12}=\bar{t}, e_{21}=\bar{t} x^{2}+x$, and $e_{22}=1+\bar{t} x$ in $R[x ; \delta]$, then they form a system of matrix units in $R[x ; \delta]$. Now the centralizer of these matrix units in $R[x ; \delta]$ is $\mathbb{Z}_{2}\left[x^{2}\right]$. Therefore $R[x ; \delta] \cong M_{2}\left(\mathbb{Z}_{2}\left[x^{2}\right]\right)$ $\cong M_{2}\left(\mathbb{Z}_{2}\right)[y]$, where $M_{2}\left(\mathbb{Z}_{2}\right)[y]$ is the polynomial ring over $M_{2}\left(\mathbb{Z}_{2}\right)$. So the ring $R[x ; \delta]$ is a Baer ring, but R is not quasi-Baer.

Corollary 2.12. [7, Corollary 2.8] Let R be a ring. Then R is quasiBaer (resp. right p.q.-Baer) if and only if $R[x]$ is quasi-Baer (resp. right p.q.-Baer).

According to Lee-Zhou [22], a module M_{R} is called reduced if for any $m \in M$ and any $a \in R, m a=0$ implies $m R \cap M a=0$. It is clear that R is a reduced ring if an only if R_{R} is reduced. If M_{R} is reduced, then M_{R} is p.p. if and only if M_{R} is p.q.-Baer.

Lemma 2.13. The following are equivalent for a module M_{R}.
(i) M_{R} is reduced and δ-compatible;
(ii) The following conditions hold. For any $m \in M$ and $a \in R$,
(a) $m a=0$ implies $m R a=0$,
(b) $m a=0$ implies $m \delta(a)=0$,
(c) $m a^{2}=0$ implies $m a=0$.

Proof. The proof is straightforward.
McCoy [23,Theorem 2] proved that if R is a commutative ring, then whenever $g(x)$ is a zero-divisor in $R[x]$ there exists a nonzero $c \in R$ such that $c g(x)=0$. We shall extend this result as follows.

Proposition 2.14. Let M be a reduced and δ-compatible module. If $m(x)$ is a torsion element in $M[x]$ (i.e. $m(x) h(x)=0$ for some $0 \neq$ $h(x) \in R[x ; \delta]$), then there exists a non-zero element c of R such that $m(x) c=0$.

Proof. Let $m(x)=\sum_{i=0}^{n} m_{i} x^{i}$ and $h(x)=\sum_{j=0}^{s} h_{j} x^{j}$ and $m(x) h(x)=$ 0 . Then

$$
\begin{equation*}
m_{n} h_{s}=0 . \tag{2.4}
\end{equation*}
$$

Note that for a reduced module M, for any $m \in M$ and any $a \in R$, $m a=0$ implies $m R a=0$ and $m a^{2}=0$ implies $m a=0$ by Lemma 2.13. By (2.4) $m_{n} R h_{s}=0$ and $m_{n} \delta^{j}\left(h_{s}\right)=0$ for each $j \geq 0$. Hence the coefficient of x^{n+s-1} in $m(x) h(x)=0$ is

$$
\begin{equation*}
m_{n} h_{s-1}+m_{n-1} h_{s}=0 . \tag{2.5}
\end{equation*}
$$

Multiplying Eq. (2.5) by h_{s} from the right-hand side and using the hypothesis we obtain $m_{n-1} h_{s}=0$. Hence $m_{n-1} R h_{s}=0$ and $m_{n-1} \delta^{j}\left(h_{s}\right)=$ 0 for each $j \geq 0$. Thus the coefficient of x^{n+s-2} in $m(x) h(x)=0$ is

$$
\begin{equation*}
m_{n} h_{s-2}+m_{n-1} h_{s-1}+m_{n-2} h_{s}=0 . \tag{2.6}
\end{equation*}
$$

Multiplying Eq. (2.6) by h_{s} from the right-hand side and using the hypothesis, we obtain $m_{n-2} h_{s}=0$. Continuing this process, we may prove $m_{j} h_{s}=0$ for each j. Since $h(x) \neq 0$ we may assume $h_{s} \neq 0$. Then $m(x) h_{s}=0$ by Lemma 2.4.

Proposition 2.15. Let M_{R} be a reduced and δ-compatible module. Then M_{R} is δ-Armendariz.

Proof. Let $m(x)=m_{0}+\cdots+m_{k} x^{k} \in M[x], f(x)=a_{0}+\cdots+a_{n} x^{n} \in$ $R[x ; \delta]$ and $m(x) f(x)=0$. Hence $m_{k} R a_{n}=0$. Thus the coefficient of x^{k+n-1} in equation $m(x) f(x)=0$ is $m_{k} a_{n-1}+m_{k-1} a_{n}=0$. Multiplying this equation from the right-hand side by a_{n}, we obtain $m_{k-1} a_{n}^{2}=0$. Hence $m_{k-1} a_{n}=0$ by Lemma 2.13. Therefore $m_{k} a_{n-1}=0$, and so
$m_{k} x^{k} a_{n-1} x^{n-1}=m_{k-1} x^{k-1} a_{n} x^{n}=0$ by Lemma 2.3. Continuing this process, we can prove $m_{i} x^{i} a_{j} x^{j}=0$ for each i, j.

Theorem 2.16. Let M_{R} be a δ-compatible module and $S=R[x ; \delta]$. If M_{R} is δ-Armendariz, then M_{R} is Baer (resp. p.p) if and only if $M[x]_{S}$ is Baer (resp. p.p).

Proof. The proof is similar to that of Theorem 2.9.
Corollary 2.17. Let M_{R} be a reduced and δ-compatible module and $S=R[x ; \delta]$. Then M_{R} is Baer (resp. p.p) if and only if $M[x]_{S}$ is Baer (resp. p.p).

Proof. This follows from Proposition 2.14 and Theorem 2.16.
Corollary 2.18. Let R be a reduced ring and $S=R[x ; \delta]$. Then R is Baer (resp. p.p) if and only if S is Baer (resp. p.p).

Proof. By using Corollary 2.17, it remains to show that R is δ-compatible. Let $a b=0$. Then $\delta(a b)=\delta(a) b+a \delta(b)=0$. Multiplying this equation by b from the right-hand side, we obtain $\delta(a) b^{2}=0$ and so $\delta(a) b=0=$ $a \delta(b)$, since R is reduced.

Acknowledgment

The author thank the referee for his/her helpful suggestions. This research is supported by the Shahrood University of Technology.

References

[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (7) (1998), 2265-2275.
[2] S. Annin, Associated primes over skew polynomials rings, Comm. Algebra 30 (2002), 2511-2528.
[3] S. Annin, Associated primes over Ore extension rings, Journal of Algebra and its Appl., 3 (2) (2004), 193-205.
[4] E. P. Armendariz, A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. 18 (1974), 470-473.
[5] G. F. Birkenmeier, J. Y. Kim and J. K. Park, On quasi-Baer rings, Contemp. Math.. 259 (2000), 67-92.
[6] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Principally quasi-Baer rings, Comm. Algebra 29 (2) (2001), 639-660.
[7] G. F. Birkenmeier, J. Y. Kim and J. K. Park, Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra 159 (2001), 24-42.
[8] J. W. Brewer, Power Series over Commutative Rings, Marcel Dekker Inc., New York, 1981.
[9] W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-424.
[10] J. Han, Y. Hirano and H. Kim, Some results on skew polynomial rings over a reduced rings, International Symposium on Ring Theory, Kyongiu, 1999, 123129, Trends Math., Birkhauser Boston, 2001.
[11] E. Hashemi and A. Moussavi, Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. 107 (3) (2005), 207-224.
[12] Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), 45-52.
[13] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
[14] C. Y. Hong, N.K. Kim and T.K. Kwak, On skew Armendariz rings, Comm. Algebra 31 (1) (2003), 103-122.
[15] C. Huh, Y. Lee and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2) (2002), 751-761.
[16] I. Kaplansky, Rings of Operators, Benjamin, New York, 1965.
[17] N. K. Kim, K. H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra, 34 (6) (2006), 2205-2218.
[18] N. H. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), 477-488.
[19] J. Krempa, Some examples of reduced rings, Algebra Colloq. 3 (4) (1996), 289300.
[20] T. Y. Lam, An Introduction to Division Rings, to appear in monograph serieo Graduate Texts in Math.
[21] T. K. Lee and Y. Zhou, Armendariz and reduced rings, Comm. Algebra 32 (6) (2004), 2287-2299.
[22] T. K. Lee and Y. Zhou, Reduced Modules, Rings, Modules, Algebras, and Abelian Groups, Lecture Notes in Pure and Appl. Math., vol. 236, Marcel Dekker, New York, 2004, pp. 365-377.
[23] N. H. McCoy, Remarks on divisors of zero, Amer. Math. Monthly 49 (1942), 286-296.
[24] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad., Ser. A, Math. Sci., 73 (1997), 14-17.
[25] H. Tominaga, On s-unital rings, Math. J. Okayama Univ. 18 (1976), 117-134.
[26] L. Zhongkui and Z. Renyu, A generalization of p.p.-rings and p.q.-Baer rings, Glasgow Math. J. 48 (2) (2006), 217-229.

Ebrahim Hashemi
Islamic Azad University
Shahrood Branch
and
Department of Mathematics
Shahrood University of Thechnology
P. O. Box: 316-3619995161

Shahrood, Iran
e-mail: eb_hashemi@yahoo.com
e-mail: eb_hashemi@shahroodut.ac.ir

[^0]: MSC(2000): Primary: 16D80; Secondary: 16S36
 Keywords: δ-compatible modules; Reduced modules; Baer modules; Quasi-Baer module; differential polynomial ring
 Received: 28 March 2007, Accepted: 16 June 2007

