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ON δ-QUASI ARMENDARIZ MODULES

E. HASHEMI

Abstract. Let δ be a derivation on R and S = R[x; δ] be the
differential polynomial ring. A module M is called Baer (resp.
quasi-Baer) if the annihilator of every subset (resp. submodule)
of M is generated by an idempotent of R. In this note we impose
δ-compatibility assumption on the module M and prove the follow-
ing results. (1) The module M is quasi-Baer (resp. p.q.-Baer) if
and only if M [x]S is quasi-Baer (resp. p.q.-Baer). (2) If MR is
δ-Armendariz, then MR is Baer (resp. p.p) if and only if M [x]S is
Baer (resp. p.p). (3) A necessary and sufficient condition for the
trivial extension T (R, R) to be δ-quasi Armendariz is obtained.

1. Introduction

Throughout the paper R always denotes an associative ring with unity
and MR will stand for a right R-module. Recall from [16] that R is a
Baer ring if the right annihilator of every nonempty subset of R is
generated by an idempotent. In [16] Kaplansky introduced Baer rings
to abstract various properties of von Neumann algebras and complete
∗-regular rings. The class of Baer rings includes the von Neumann alge-
bras. In [9] Clark defines a ring to be quasi-Baer if the left annihilator
of every ideal is generated, as a left ideal, by an idempotent. Another
generalization of Baer rings are the p.p.-rings. A ring R is called right
(resp. left) p.p if right (resp. left) annihilator of an element of R is
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generated by an idempotent. Birkenmeier et al. in [6] introduced the
concept of principally quasi-Baer rings. A ring R is called right princi-
pally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a
principal right ideal of R is generated by an idempotent.

In 1974, Armendariz considered the behavior of a polynomial ring
over a Baer ring by obtaining the following result: Let R be a reduced
ring (i.e. R has no nonzero nilpotent elements). Then R[x] is a Baer ring
if and only if R is a Baer ring ([4], Theorem B). Armendariz provided an
example to show that the reduced condition is not superfluous. Recently,
this result has been extended in several directions by Birkenmeier-Kim-
Park [7], Han-Hirano-Kim [10], Hirano [12], Hong-Kim-Kwak [14], and
Kim-Lee [18].

From now on, we always denote the differential polynomial ring by
S := R[x; δ], where δ : R → R is a derivation on R. Recall that a
derivation δ is an additive operator on R with the property that δ(ab) =
δ(a)b + aδ(b) for all a, b ∈ R. The differential polynomial ring S is
then the ring consisting of all (left) polynomials of the form

∑
aix

i

(ai ∈ R), where the addition is defined as usual and the multiplication
by xb = bx + δ(b) for any b ∈ R. From this rule, an inductive argument
can be made to calculate an expression for xja, for all j ∈ N and a ∈ R.

One can show with a routine computation that

xja =
j∑

i=0

(
j
i

)
δj−i(a)xi. (1.1)

Given a right R-module MR, we can make M [x] into a right S-module
by allowing polynomials from S to act on polynomials in M [x] in the
obvious way, and applying the above “twist” whenever necessary.

For a nonempty subset X of M , put annR(X) = {a ∈ R |Xa = 0}.
In [22], Lee-Zhou introduced Baer, quasi-Baer and p.p.-modules as

follows: (1) MR is called Baer if, for any subset X of M , annR(X) = eR
where e2 = e ∈ R. (2) MR is called quasi-Baer if, for any submodule
X ⊆ M , annR(X) = eR where e2 = e ∈ R. (3) MR is called p.p. if,
for any element m ∈ M , annR(m) = eR where e2 = e ∈ R. Clearly, a
ring R is Baer (resp. p.p. or quasi-Baer) if and only if RR is Baer (resp.
p.p. or quasi-Baer) module. If R is a Baer (resp. p.p. or quasi-Baer)
ring, then for any right ideal I of R, IR is Baer (resp. p.p. or quasi-
Baer) module. Lee-Zhou have extended various results of reduced rings
to reduced modules.
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The module MR is called principally quasi-Baer (or simply p.q.-Baer)
if, for any m ∈ M , annR(mR) = eR where e2 = e ∈ R. It is clear that R
is a right p.q.-Baer ring if and only if RR is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer and every Baer module is
quasi-Baer.

In this note we impose δ-compatibility assumption on the module MR

and prove the following results which extend many results on rings to
modules:

(1) The module MR is quasi-Baer (resp. p.q.-Baer) if and only if
M [x]S is quasi-Baer (resp. p.q.-Baer), where S = R[x; δ]. Also we
give an example to show that δ-compatibility assumption on MR is not
superfluous.

(2) If MR is δ-Armendariz, then MR is Baer (resp. p.p) if and only if
M [x]S is Baer (resp. p.p).

(3) A necessary and sufficient condition for the trivial extension T (R,R)
to be δ-quasi Armendariz is obtained.

2. δ-quasi Armendariz modules and Ore extensions of
quasi-Baer modules

Definition 2.1. (Annin, [3]) Given a module MR and a derivation δ :
R → R, we say that MR is δ-compatible if for each m ∈ M , r ∈ R, we
have mr = 0 ⇒ mδ(r) = 0.

Remark 2.2. If MR is δ-compatible, then so is any submodule of MR.

Lemma 2.3. Let MR be a δ-compatible module. Let m ∈ M , a, b ∈ R.
Then we have the following:
(i) if ma = 0, then mδj(a) = 0 for any positive integer j;
(ii) if mab = 0, then maδj(b) = 0 = mδj(a)b for any positive integer j;
(iii) annR(ma) ⊆ annR(mδ(a)).

Proof. (i) This follows from Remark 2.2.
(ii) It is enough to show that maδ(b) = 0 = mδ(a)b. Since MR is

δ-compatible, mab = 0 implies that maδ(b) = 0 and mδ(ab) = mδ(a)b+
maδ(b) = 0. Hence mδ(a)b = 0.
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(iii) Let mab = 0 for some b ∈ R. Using δ-compatibility, we get 0 =
mδ(ab) = maδ(b) + mδ(a)b = 0 and hence mδ(a)b = 0, as desired. �

Lemma 2.4. Let MR be a δ-compatible module and m(x) = m0 + · · ·+
mkx

k ∈ M [x] and r ∈ R. Then m(x)r = 0 if and only if mir = 0 for all
i.

Proof. Assume m(x)r = 0. An easy calculation using (1.1) shows that

m(x)r =
∑k

i=0

[∑k
j=i

(
j
i

)
mjδ

j−i(r)
]
xi and so

k∑
j=i

(
j
i

)
mjδ

j−i(r) = 0 for each i ≤ k. (2.1)

Starting with i = k, Eq.(2.1) yields mkr = 0. Now assume inductively
that mjr = 0 for each j > i. By δ-compatibility of MR, for j > i, we
have mjδ

j−i(r) = 0. Using (2.1) again, we deduce that mir = 0, as
needed.

The converse follows from δ-compatibility assumption on M . �

Following Anderson and Camillo [1], a module MR is called Armen-
dariz if, whenever m(x)f(x) = 0 where m(x) =

∑s
i=0 mix

i ∈ M [x] and
f(x) =

∑t
j=0 ajx

j ∈ R[x], we have miaj = 0 for all i, j.

Definition 2.5. Given a module MR and a derivation δ : R → R, we say
MR is δ-quasi Armendariz (resp. δ-Armendariz), if whenever m(x) =∑k

i=0 mix
i ∈ M [x], f(x) =

∑n
j=0 bjx

j ∈ R[x; δ] satisfy
m(x)R[x; δ]f(x) = 0 (resp. m(x)f(x) = 0), we have mix

iRxtbjx
j = 0

(resp. mix
iajx

j = 0) for t ≥ 0, i = 0, · · · , k and j = 0, · · · , n.

Let R be a ring. The trivial extension of R is given by:

T (R,R) =
{(

a r
0 a

)
|a, r ∈ R

}
. Clearly, T (R,R) is a subring of the

ring of 2× 2 matrices over R. The derivation δ on R is extended to δ :

T (R,R) → T (R,R) by δ

((
a r
0 a

))
=

(
δ(a) δ(r)
0 δ(a)

)
. One can show

that δ is a derivation on T (R,R) and T (R,R)[x; δ] ∼= T (R[x; δ], R[x; δ]).

Proposition 2.6. Let R be a δ-compatible ring. If the trivial extension
T (R,R) is δ-quasi Armendariz, then R is δ-quasi Armendariz.
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Proof. Let f(x) = a0 + · · ·+anxn, g(x) = b0 + · · ·+ bmxm ∈ R[x; δ] and
f(x)R[x; δ]g(x) = 0. For each a, r ∈ R and t ≥ 0, we have the following
equation:[

n∑
i=0

(
ai 0
0 ai

)
xi

] (
a r
0 a

)
xt

 m∑
j=0

(
0 bj

0 0

)
xj

 =

(
f(x) 0

0 f(x)

) (
axt rxt

0 axt

) (
0 g(x)
0 0

)
=

(
0 f(x)axtg(x)
0 0

)
= 0.

Since T (R,R) is δ-quasi Armendariz,(
aix

i 0
0 aix

i

) (
axt rxt

0 axt

) (
0 bjx

j

0 0

)
= 0 and so aix

iaxtbjx
j = 0

for all i, j, t. Therefore R is δ-quasi rmendariz. �

When the trivial extension T (R,R) is δ-quasi Armendariz?

Theorem 2.7. Let R be a δ-compatible ring such that
(i) R is δ-quasi Armendariz;
(ii) if f(x)R[x; δ]g(x) = 0, then f(x)R[x; δ] ∩R[x; δ]g(x) = 0.
Then the trivial extension T (R,R) is δ-quasi Armendariz.

Proof. Suppose that α(x)T (R,R)β(x) = 0, where

α(x) =
(

a0 r0

0 a0

)
+

(
a1 r1

0 a1

)
x + · · ·+

(
an rn

0 an

)
xn and

β(x) =
(

b0 s0

0 b0

)
+

(
b1 s1

0 b1

)
x+· · ·+

(
bm sm

0 bm

)
xm ∈ T (R,R)[x; δ].

Let f(x) = a0 + a1x + · · ·+ anxn, r(x) = r0 + r1x + · · ·+ rnxn,
g(x) = b0 + b1x+ · · ·+ bmxm and s(x) = s0 +s1x+ · · ·+smxm ∈ R[x; δ].

For each
(

a r
0 a

)
xt ∈ T (R,R)[x; δ], it follows that

0 =
(

f(x) r(x)
0 f(x)

) (
axt rxt

0 axt

) (
g(x) s(x)

0 g(x)

)
=

(
f(x)axtg(x) f(x)axts(x) + f(x)rxtg(x) + r(x)axtg(x)

0 f(x)axtg(x)

)
. Hence

f(x)axtg(x) = 0 and f(x)axts(x) + f(x)rxtg(x) + r(x)axtg(x) = 0.
Since axt is an arbitrary element of R[x; δ], f(x)R[x; δ]g(x) = 0. But
R is δ-quasi Armendariz and hence aix

iRxtbjx
j = 0 for all i, j, t. Since

f(x)[axts(x)+r(x)xtg(x)]+[r(x)axt]g(x) = 0, f(x)[axts(x)+r(x)xtg(x)] =
−[r(x)axt]g(x) ∈ f(x)R[x; δ] ∩R[x; δ]g(x), so
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f(x)[axts(x) + r(x)xtg(x)] = [r(x)axt]g(x) = 0. Since axt is an arbi-
trary element of R[x; δ], r(x)R[x; δ]g(x) = 0. Then rix

iRxtbjx
j = 0

for all i, j, t, since R is δ-quasi Armendariz. Thus f(x)[axts(x)] =
−[f(x)r(x)xt]g(x) ∈ f(x)R[x; δ] ∩R[x; δ]g(x) = 0. So f(x)R[x; δ]s(x) =
0 and aix

iRxtsjx
j = 0 for all i, j, t, since R is δ-quasi Armendariz.

Therefore(
ai ri

0 ai

)
xi

(
a r
0 a

)
xt

(
bj sj

0 bj

)
xj =(

aix
iaxtbjx

j aix
irxtbjx

j + aix
irxtbjx

j + rix
iaxtbjx

j

0 aix
iaxtbjx

j

)
= 0 for all i, j

and each
(

a r
0 a

)
xt ∈ T (R, R). Therefore the trivial extension T (R,R)

is δ-quasi Armendariz. �

Theorem 2.8. Let MR be a δ-compatible and δ-quasi Armendariz mod-
ule. Then MR satisfies the ascending chain condition on annihilator of
submodules if and only if so does M [x]S.

Proof. Assume that MR satisfies the ascending chain condition on
annihilator of submodules. Let I1 ⊆ I2 ⊆ I3 · · · be a chain of annihilator
of submodules of M [x]S . Then there exist submodules Ki of M [x]S such
that annS(Ki) = Ii and K1 ⊇ K2 ⊇ K3 ⊇ · · · for all i ≥ 1. Let Mi =
{all coefficients of elements of Ki}. Since M is δ-quasi Armendariz, Mi

is submodule of M for all i ≥ 1. Clearly Mi ⊇ Mi+1 for all i ≥ 1.
Thus annR(M1) ⊆ annR(M2) ⊆ annR(M3) ⊆ · · · . Since MR satisfies
the ascending chain condition on annihilator of submodules, there exists
n ≥ 1 such that annR(Mi) = annR(Mn) for all i ≥ n. We show that
annS(Ki) = annS(Kn) for all i ≥ n. Let f(x) = a0 + a1x + · · · +
amxm ∈ annS(Ki). Then Miaj = 0 for j = 0, · · · ,m, since M is δ-quasi
Armendariz. Thus Mnaj = 0 for j = 0, · · · ,m and so Knf(x) = 0 by
Lemma 2.4. Therefore annS(Ki) = annS(Kn) for all i ≥ n and M [x]S
satisfies the ascending chain condition on annihilator of submodules.

Now assume M [x]S satisfies the ascending chain condition on anni-
hilator of submodules. Let J1 ⊆ J2 ⊆ J3 · · · be a chain of annihilator
of submodules of MR. Then there exist submodules Mi of M such that
annR(Mi) = Ji and
M1 ⊇ M2 ⊇ M3 ⊇ · · · for all i ≥ 1. Hence Mi[x] is a submodule of M [x]
and Mi[x] ⊇ Mi+1[x] and annS(Mi[x]) ⊆ annS(Mi+1[x]) for all i ≥ 1.
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Since MS [x] satisfies the ascending chain condition on annihilator of sub-
modules, there exists n ≥ 1 such that annS(Mi[x]) = annS(Mn[x]) for
all i ≥ n. Since M is δ-quasi Armendariz, by a similar argument as used
in the previous paragraph, one can show that annR(Mi) = annR(Mn)
for all i ≥ n. �

Theorem 2.9. Let MR be a δ-compatible module. Then MR is quasi-
Baer (resp. p.q.-Baer) if and only if M [x]S is quasi-Baer (resp. p.q.-
Baer). In this case MR is δ-quasi Armendariz.

Proof. Assume MR is quasi-Baer. First we shall prove that MR is δ-
quasi Armendariz. Suppose that (m0 + m1x + ... + mkx

k)S(b0 + b1x +
... + bnxn) = 0, with mi ∈ M , bj ∈ R. Then

(m0 + m1x + ... + mkx
k)R(b0 + b1x + ... + bnxn) = 0. (2.2)

Thus mkRbn = 0 and bn ∈ annR(mkR). Then mkx
kRxtbnxn = 0,

by Lemma 2.3. Since MR is qusi-Baer, there exists e2
k = ek ∈ R

such that annR(mkR) = ekR and so bn = ekbn. Replacing R by
Rek in Eq.(2.2) and using Lemma 2.3, we obtain (m0 + m1x + ... +
mk−1x

k−1)Rek(b0 + b1x+ ...+ bnxn) = 0. Hence mk−1Rbn = 0 and bn ∈
annR(mk−1R). Then mk−1x

k−1Rxtbnxn = 0, by Lemma 2.3. Hence
bn ∈ annR(mkR) ∩ annR(mk−1R). Since MR is 0qusi-Baer, there exists
f2 = f ∈ R such that annR(mkR) = fR and so bn = fbn. If we put
ek−1 = emf , then ek−1bn = bn and ek−1 ∈ annR(mkR) ∩ annR(mk−1R).
Next, replacing R by Rek−1 in Eq.(2.2), and using Lemma 2.3, we obtain
(m0 + m1x + ... + mk−2x

k−2)Rek−1(b0 + b1x + ... + bnxn) = 0. Hence we
have bn ∈ annR(mk−2R) and so mk−2x

k−2Rxtbnxn = 0, by Lemma 2.3.
Continuing this process, we get mix

iRxtbnxn = 0 for i = 0, · · · , k. Using
induction on k + n, we obtain mix

iRxtbjx
j = 0 for all i, j, t. Therefore

MR is δ-quasi Armendariz. Let J be a S-submodule of M [x]. Let N =
{m ∈ M |m is a leding coefficient of some non-zero element of J} ∪ {0}.
Clearly, N is a submodule of M . Since MR is quasi-Baer, there exists
e2 = e ∈ R such that annR(N) = eR. Hence eS ⊆ annS(J) by Lemma
2.3. Let f(x) = b0 + b1x + ... + bnxn ∈ annS(J). Then Nbj = 0 for each
j = 0, · · · , n since MR is δ-quasi Armendariz. Hence bj = ebj for each
j = 0, · · · , n and f(x) = ef(x) ∈ eS. Thus annS(J) = eS and M [x]S is
quasi-Baer.

Assume that M [x]S is quasi-Baer and I is a submodule of M . Then
I[x] is a submodule of M [x]. Since M [x] is quasi-Baer, there exists an
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idempotent e(x) = e0 + · · · + enxn ∈ S such that annS(I[x]) = e(x)S.
Hence Ie0 = 0 and e0R ⊆ annR(I). Let t ∈ annR(I). Then I[x]t = 0 by
Lemma 2.4. Hence t = e(x)t and so t = e0t ∈ e0R. Thus annR(I) = e0R
and MR is quasi-Baer. �

Corollary 2.10. Let R be a δ-compatible ring. Then R is quasi-Baer
(resp. right p.q.-Baer) if and only if R[x; δ] is quasi-Baer (resp. right
p.q.-Baer).

The following example shows that δ-compatibility condition on RR in
Corollary 2.10 is not superfluous.

Example 2.11. [4, Example 11] There is a ring R and a derivation δ
of R such that R[x; δ] is a Baer (hence quasi-Baer) ring, but R is not
quasi-Baer. In fact let R =Z2[t]/(t2) with the derivation δ such that
δ(t̄) = 1 where t̄ = t + (t2) in R and Z2[t] is the polynomial ring over
the field Z2 of two elements. Consider the Ore extension R[x; δ]. If we
set e11 = tx, e12 = t, e21 = tx2 + x, and e22 = 1 + tx in R[x; δ], then
they form a system of matrix units in R[x; δ]. Now the centralizer of
these matrix units in R[x; δ] is Z2[x2]. Therefore R[x; δ] ∼= M2(Z2[x2])
∼= M2(Z2)[y], where M2(Z2)[y] is the polynomial ring over M2(Z2). So
the ring R[x; δ] is a Baer ring, but R is not quasi-Baer.

Corollary 2.12. [7, Corollary 2.8] Let R be a ring. Then R is quasi-
Baer (resp. right p.q.-Baer) if and only if R[x] is quasi-Baer (resp. right
p.q.-Baer).

According to Lee-Zhou [22], a module MR is called reduced if for any
m ∈ M and any a ∈ R, ma = 0 implies mR ∩Ma = 0. It is clear that
R is a reduced ring if an only if RR is reduced. If MR is reduced, then
MR is p.p. if and only if MR is p.q.-Baer.

Lemma 2.13. The following are equivalent for a module MR.
(i) MR is reduced and δ-compatible;
(ii) The following conditions hold. For any m ∈ M and a ∈ R,

(a) ma = 0 implies mRa = 0,
(b) ma = 0 implies mδ(a) = 0,
(c) ma2 = 0 implies ma = 0.
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Proof. The proof is straightforward. �

McCoy [23,Theorem 2] proved that if R is a commutative ring, then
whenever g(x) is a zero-divisor in R[x] there exists a nonzero c ∈ R such
that cg(x) = 0. We shall extend this result as follows.

Proposition 2.14. Let M be a reduced and δ-compatible module. If
m(x) is a torsion element in M [x] (i.e. m(x)h(x) = 0 for some 0 6=
h(x) ∈ R[x; δ]), then there exists a non-zero element c of R such that
m(x)c = 0.

Proof. Let m(x) =
∑n

i=0 mix
i and h(x) =

∑s
j=0 hjx

j and m(x)h(x) =
0. Then

mnhs = 0. (2.4)

Note that for a reduced module M , for any m ∈ M and any a ∈ R,
ma = 0 implies mRa = 0 and ma2 = 0 implies ma = 0 by Lemma
2.13. By (2.4) mnRhs = 0 and mnδj(hs) = 0 for each j ≥ 0. Hence the
coefficient of xn+s−1 in m(x)h(x) = 0 is

mnhs−1 + mn−1hs = 0. (2.5)

Multiplying Eq. (2.5) by hs from the right-hand side and using the hy-
pothesis we obtain mn−1hs = 0. Hence mn−1Rhs = 0 and mn−1δ

j(hs) =
0 for each j ≥ 0. Thus the coefficient of xn+s−2 in m(x)h(x) = 0 is

mnhs−2 + mn−1hs−1 + mn−2hs = 0. (2.6)

Multiplying Eq. (2.6) by hs from the right-hand side and using the
hypothesis, we obtain mn−2hs = 0. Continuing this process, we may
prove mjhs = 0 for each j. Since h(x) 6= 0 we may assume hs 6= 0. Then
m(x)hs = 0 by Lemma 2.4. �

Proposition 2.15. Let MR be a reduced and δ-compatible module. Then
MR is δ-Armendariz.

Proof. Let m(x) = m0 + · · ·+ mkx
k ∈ M [x], f(x) = a0 + · · ·+ anxn ∈

R[x; δ] and m(x)f(x) = 0. Hence mkRan = 0. Thus the coefficient of
xk+n−1 in equation m(x)f(x) = 0 is mkan−1 +mk−1an = 0. Multiplying
this equation from the right-hand side by an, we obtain mk−1a

2
n = 0.

Hence mk−1an = 0 by Lemma 2.13. Therefore mkan−1 = 0, and so
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mkx
kan−1x

n−1 = mk−1x
k−1anxn = 0 by Lemma 2.3. Continuing this

process, we can prove mix
iajx

j = 0 for each i, j. �

Theorem 2.16. Let MR be a δ-compatible module and S = R[x; δ]. If
MR is δ-Armendariz, then MR is Baer (resp. p.p) if and only if M [x]S
is Baer (resp. p.p).

Proof. The proof is similar to that of Theorem 2.9. �

Corollary 2.17. Let MR be a reduced and δ-compatible module and
S = R[x; δ]. Then MR is Baer (resp. p.p) if and only if M [x]S is Baer
(resp. p.p).

Proof. This follows from Proposition 2.14 and Theorem 2.16. �

Corollary 2.18. Let R be a reduced ring and S = R[x; δ]. Then R is
Baer (resp. p.p) if and only if S is Baer (resp. p.p).

Proof. By using Corollary 2.17, it remains to show that R is δ-compatible.
Let ab = 0. Then δ(ab) = δ(a)b + aδ(b) = 0. Multiplying this equation
by b from the right-hand side, we obtain δ(a)b2 = 0 and so δ(a)b = 0 =
aδ(b), since R is reduced. �
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