ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 6, pp. 1493-1495

Title:

Groups with one conjugacy class of non-normal subgroups - a short proof

Author(s):

H. mousavi

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 41 (2015), No. 6, pp. 1493–1495 Online ISSN: 1735-8515

GROUPS WITH ONE CONJUGACY CLASS OF NON-NORMAL SUBGROUPS - A SHORT PROOF

H. MOUSAVI

(Communicated by Ali Reza Ashrafi)

ABSTRACT. For a finite group G let $\nu(G)$ denote the number of conjugacy classes of non-normal subgroups of G. We give a short proof of a theorem of Brandl, which classifies finite groups with $\nu(G) = 1$. **Keywords:** Dedekind groups; conjugacy classes of non-normal subgroups; classification of finite groups. **MSC(2010):** Primary: 20D25; Secondary: 20E45.

1. Introduction

Let G be a finite group. We denote by $\nu(G)$ the number of conjugacy classes of non-normal subgroups of G. Obviously, $\nu(G) = 0$ if and only if G is Dedekind. In 1995, Brandl [1] classified finite groups with $\nu(G) = 1$. In this paper we give a proof for Brandl's theorem much shorter.

Our notation is standard; for example, \mathbb{Z}_n , D_{2n} and Q_{2^n} denote the cyclic group of order n, the dihedral group of order 2n and the generalized quaternion group of order 2^n , respectively.

2. Proof of the main Theorem

Theorem 2.1 (Brandl). Let G be a finite group. Then $\nu(G) = 1$ if and only if

- (i) $G \cong Q \rtimes P$ is a non-abelian split extension with $[Q, \Phi(P)] = 1$, where $Q \cong \mathbb{Z}_q$ and $P \cong \mathbb{Z}_{p^n}$, p and q primes with $p \mid q-1$; or
- $Q \cong \mathbb{Z}_q \text{ and } P \cong \mathbb{Z}_{p^n}, p \text{ and } q \text{ primes with } p \mid q-1; \text{ or}$ (ii) $G \cong \langle g, h | g^{p^n} = h^p = 1, g^h = g^{1+p^{n-1}} \rangle, \text{ where } p \text{ is a prime, } n \ge 2 \text{ and}$ n > 3 if p = 2.

Proof. We assume first that G is a finite group such that $\nu(G) = 1$. We prove the necessary condition by distinguishing the non-nilpotent and nilpotent cases.

Case 1: G is a non-nilpotent group. Let P be a non-normal Sylow p-subgroup of G. Then $\mathcal{N}_G(P) \not \leq G$. Suppose

©2015 Iranian Mathematical Society

1493

Article electronically published on December 15, 2015. Received: 7 April 2014, Accepted: 15 September 2014.

that M is a maximal subgroup of G containing $\mathcal{N}_G(P)$. By the Frattini argument $M \not \leq G$. Since $\nu(G) = 1$, then P must be a maximal subgroup of G. Since any maximal subgroup of P is normal in G, P is cyclic. Let $q \neq p$ be a prime divisor of |G| and Q be the Sylow q-subgroup of G. Since any subgroup of Q is normal in G and P is maximal, we have |Q| = q. Moreover, $\Phi(P) \leq G$ implies $[\Phi(P), Q] = 1$ and $p \mid q - 1$. So G is a group as in part (i).

Case 2: G is a nilpotent group.

Suppose that G is not of prime power order. Then $G = A \times B$ where $1 \neq A, B \leq G$ and (|A|, |B|) = 1. Since $\nu(A \times B) = 1$, we deduce that both $\nu(A)$ and $\nu(B)$ can not be zero simultaneously. Without lose of generality we may assume that $\nu(A) = 1$. If $A_1 \not \leq A$, then $A_1 \times 1$ and $A_1 \times B$ are non-conjugate non-normal subgroups of G which implies $\nu(G) \geq 2$, a contradiction. Therefore, G is a p-group, p a prime. Let H be a non-normal subgroup of G. Then H is cyclic, since any maximal subgroup of H is normal in G.

We split the proof of case 2 into the following steps:

Step 1: |H| = p, Z(G) is cyclic and G' is the only central subgroup of order p.

Assume that |H| > p and let $h \in H$ be of order p. We note that G is not a generalized quaternion group, since otherwise it would have a quotient isomorphic to D_8 , which is not possible because $\nu(D_8) = 2$. Hence we may consider a central subgroup $Z = \langle z \rangle$ of order p such that $Z \notin H$. Then we note that $\nu(G/Z) = 0$, i.e., G/Z is a Dedekind group. If p is odd, then G/Zis abelian, which implies G' = Z. Since $zh \in Z(G)$, and $zh \notin H$, $G' = \langle zh \rangle$, a contradiction. Therefore, p = 2.

Since $HZ \subseteq G$, it follows that $H^t \leq HZ$ for all $t \in G$. Let $g \notin \mathcal{N}_G(H)$. Then $\langle g \rangle \subseteq G$, since $g \notin HZ$. Moreover, |g| > 2; otherwise $g \in Z(G) \leq \mathcal{N}_G(H)$, a contradiction. Now we can consider $Z \leq \Omega_1(G)$ such that $Z \nleq H$ and $Z \nleq \langle g \rangle$. If G/Z were abelian, $Z = [H,g] \leq \langle g \rangle$, which is not the case. Then G/Z is a non-abelian Dedekind group and so it has exponent 4. Consequently, |H| = |g| = 4 and $g^x = g^{-1}$ where $H = \langle x \rangle$. It follows that $\langle x, g \rangle$ has a quotient isomorphic to D_8 , a contradiction. Therefore |H| = p.

Let Z_1 and Z_2 be two central subgroup of order p. Since $HZ_i \subseteq G$, for i = 1, 2, then $H = HZ_1 \cap HZ_2 \subseteq G$, a contradiction. Thus Z(G) is cyclic. Let $Z \leq Z(G), |Z| = p$. Now if G/Z were not abelian, then G would contain a subgroup K such that $K/Z \cong Q_8$, which would imply that $Z \lneq Z(K)$. Therefore, $K/Z(K) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, and then |K'| = 2. Since $K \leq G$ it would follow that K' = Z, a contradiction. Therefore, G' = Z has order p.

Step 2: G = MH where M is a cyclic maximal subgroup of G and $[\Phi(M), H] = 1$.

Let $H = \langle h \rangle$. By step 1, $\Phi(G) \leq Z(G)$, so there exists a maximal subgroup M of G such that G = MH. Since any subgroup of M must be normal in G, $\Omega_1(M) \leq Z(G)$, therefore, either M is cyclic, as desired, or M is generalized

Mousavi

quaternion. Assume that M in not cyclic. Then it should be $M \cong Q_8$. We note that $G' = Z(M) \leq Z(G)$. Also $H^g \leq HZ(M)$ for all $g \in G$. Since H is not normal in G, there is $x \in M \setminus Z(M)$ such that $h^x \neq h$. Therefore, $x^h = x^{-1}$. Moreover, $hx \notin HZ(M)$. It follows now that $\langle hx \rangle$ is a normal subgroup of order 2, and consequently, $G' = Z(M) = \langle hx \rangle$, a contradiction.

Now suppose that $M = \langle g \rangle$ and $|g| = p^n$. Since $[g,h] \in M$ is of order p, we may consider $[g,h] = g^{p^{n-1}}$. Therefore, $g^h = g^{1+p^{n-1}}$. If p = n = 2 then $g^h = g^{-1}$ and $G \cong D_8$, so $\nu(G) = 2$, a contradiction. Thus G is a group as in part (ii), as desired.

Conversely, let $G = Q \rtimes P$ be a group as in part (i). Then $P \not \leq G$. Let H be a non-normal subgroup of G. Since H does not contain Q and is not properly contained in P, then H is conjugate with P. So, $\nu(G) = 1$.

Let $G = \langle g, h \rangle$ be a group as in part (ii). Then $G' \leq Z(G) = \langle g^p \rangle$ has order p. Let $x = g^i h^j \in G$. If $p^{n-1} \nmid i$ and $j \ge 0$, then $x^p = g^{pi}[h,g]^{ijp(p-1)/2} \in Z(G)$, thus $G' \leq \langle x \rangle$. Otherwise $x^p = 1$ and $x \in \langle g^{p^{n-1}}, h \rangle$. Therefore, $\Omega_1(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$. Let H be a non-normal subgroup of G. As H does not contain any element of order greater than p, $\exp(H) = p$. Hence, $H \leq \Omega_1(G)$ and so $\nu(G) = 1$.

References

 R. Brandl, Groups with few non-normal subgroups, Comm. Algebra 23 (1995), no. 6, 2091–2098.

(Hamid Mousavi) DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF TABRIZ, P.O. BOX 5166617766, TABRIZ, IRAN

E-mail address: hmousavi@tabrizu.ac.ir

1495