d\;}‘u&‘i O
ISSN: 1017-060X (Print) %%5 ISSN: 1735-8515 (Online)
% 4

ATHEMATICAL,

Bulletin of the

Iranian Mathematical Society

Vol. 41 (2015), No. 6, pp. 1511-1517

Title:

The Libera operator on Dirichlet spaces

Author(s):

G. Bao and J. Yang

Published by Iranian Mathematical Society
http://bims.ims.ir




Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 6, pp. 1511-1517
Online ISSN: 1735-8515

THE LIBERA OPERATOR ON DIRICHLET SPACES

G. BAO AND J. YANG*

(Communicated by Hamid Reza Ebrahimi Vishki)

ABSTRACT. In this paper, we consider the boundedness of the Libera
operator on Dirichlet spaces in terms of the Schur test. Moreover, we get
its point spectrum and norm.
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1. Introduction

Let D be the unit disk in the complex plane C. Denote by D,, a € R, the
Hilbert space of all analytic functions f(z) = > " ja,z" in D with f(0) = 0
and

If15, =Y n'=*anf* < co.
n=1
Note that the classical Dirichlet space D is obtained for &« = 0. See [1,2,7,9,11]
for D, spaces.
The Libera operator £ on D,, a < 2, is defined by

1 z 1
L) = 5 | fwidw- [ fwd
z=1J; 0
for all f € D,. See [4,6,10] for the Libera operator on other spaces. Rhaly [8]
gave a series of results about the Libera operator on the classical Dirichlet

space D. In this paper, we consider the Libera operator on D, spaces. By [2],
if @ > 0, then there exists a constant C' such that

1 a/2
<C —_—
I <Clfl. (=)
for all f € D,. Clearly, D, € Dg when o < 3. Consequently, the Libera
operator L is well defined on D,, a < 2.
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The Libera operator on Dirichlet spaces 1512

Let e,(z) = nanlz", n =1, 2,---. Then the set {e,}52, forms an or-
thonormal basis for D,. Note that
1 i a—1 ! a—1
Len(z) = n 2 wdw— | n? wdw
z—=1/; 0
= 2;1(2”+Z"—1+...+Z)
"azl(”‘<>+< D5 ena(e) + o+ ()
= 2 — 2 oo .
T n 2z ey(z n en_1(z e1(z
Thus, £ has matrix entries
0 1>72>1,
aij = (Lej,e;) = 1 (i 1ze .
7+ (3) jzizl

If £(2) = S, f(n)en(2), then

For v > —1, a direct calculation gives that | f||3, is comparable with

(11) / PP = [2[2)dady.

Pavlovié¢ [6] investigated the Libera operator on mixed norm spaces. In
particular, under the seminorm (1.1) of D, spaces, he showed that if o > —1,
then £ is bounded on D, if and only if < 2. In this paper, by different
technique, we give that £ is bounded on D,, if and only if o < 2. Particularly,
we obtain that £ is also bounded on D, for a < —1. Furthermore, the point
spectrum and norm of £ on the D, space are also considered.

2. Main results

Let T be a bounded linear operator on a Hilbert space H. Recall that the
point spectrum o,(T") of T is

op(T) ={A € C:ker(M\ —T) # 0},

where [ is the identical operator of H. The point spectrum of £ on the Dirichlet
space D was obtained in [8]. Using the Schur test, we get the following result.

Theorem 2.1. The Libera operator L is bounded on D, if and only if a < 2.
Moreover,

1 1 1
Jp(ﬁ)—{)\EC.|>\—m|< a}u{ﬁ'n_zgy...}.

2 —
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Proof. Let p; =1 !

Bao and Yang

Then

/2,
m71:1, 2,
o0
QijP;
; (J+1)j
<
(]+1
S -
(J+1J En

It follows that

Z ampz =

and

92-%
Z aszz =5_

On the other hand,

72 1+ 1

772/ max{t~/2, (t +1)"%/2}dt

/ max{t~/2, (¢ + 1)~/?}dt,

2 pj,0<a<2

5 abi a<0.

l—a

oo > 4 i j1/2
2 cur ;jﬂ(E) e
a/2 a/2
j t
Jj=i
a/2
; (/2%
12
Hence,
_ 4
Zaljpj = 2 1/2 ﬂpiv 0 S a < 27
and

a

For a > 2, let

2 ._1/2

oo 21,,
;aijpj < 24"

By the Schur test (see [3, P. 24]), we get that £ is bounded on D, for a < 2.

a

22
<72 pi, a <O0.

> Zn
fa z)= I T ——
(=) et n*2* log(n + 1)

that is,

> 1

fa(z) = ) —=———en(2).

ngl vnlog(n+ 1)

Then

oo

2
[ fall,

-3

n=1

—— T < 0.
nlog?(n + 1)
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Note that o > 2. We deduce that

> 1 n lga
Hﬁfa||2a = _
7 7;1 n;ﬂ/rn(erl)lOg(erl) (m)
: &)
B (m+1)
00 2
2 = 400,

1
mZ:1 (m+1)log(m+1)

which implies that £ is not bounded on D,, a > 2. Thus, £ is bounded on D,
if and only if a < 2.
We now compute the point spectrum of £. If f(z) = >, f(n)en(z), then

9=3 Y I () T ae

Thus,
B (L N
Lf(n)=n Z(m+1) o L 2
Consequently,
naT_lﬁf(n)—(n—Fl)QT_lﬁf(”"'l):%’
(n+1n—=

which gives
F(n) = (n+1)Lf(n) —n 2" (n+1)5 Lf(n+1).
If Lf = \f, then
AnT (n + 1) f(n +1)=[An+1)—1]f(n).
If A =0, then f(n) = 0 for all n. Hence, 0 ¢ 0,(£). It follows that

o= (22 syl

Thus,

f(n) =n'"5" f[(l—;]) f1), n>2

Jj=2

We now want to know what nonzero values of A will result in the convergence
of Y07 | f(n)[?. Clearly, {£ : n=2,3,---} C 6,(L). Suppose that A ¢ {2 :
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n=2,3,---}. Then

Fm?
|fn+ 1)
(n+1*n' " = (n+ 1)) AP+ + 1) *A+X) = (n+ 1)
(n+ 1372 A2 = (n+ 12X+ A) + (n+ 1)1-@ '

Hence,

TP ] (- DR+ ()
Jim | ) AP |

By Raabe’s test [5, Theorem II, P. 396], >-> | |f(n)|> converges for % +

a —1 > 1 and diverges for "\;lgx + a —1 < 1. Namely, the series converges for

A — 72| < 72 and diverges for |A — 72—| > A If [\ — 72| = -1 then
~ IFmP
nlgréoln”{”[|f(n+1)|2 1} 1}
i gl DR = (0 DT 4 (2 a)(n D]
T oo n (o DF (o~ DIAE T (n+ D7-e
_ n(n+1)*"° )

(n+1*(n+a-DAP+ (n+1)
a2fga+2|)\|2 -1

pE

= 0-

By [5, Theorem III, P. 396], we obtain that the series >~ | |f(n)|? diverges
if [\ — 5~| = 51~. Therefore,

o

1 1

}U{%:n:2,3,«-~}.

For a < 2, let ||L]|p, be the norm of £ on D, spaces. H. Rhaly [8] proved
that || £]|p = 1. Now we give the following result.

Theorem 2.2. Let 0 < a < 2. Then ||L||p, = 2.

[
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1/2

Proof. Let p; = i~ 1/2, q; = ;ﬁ’ i, j =1, 2,---. Note that 0 < o < 2. We
have
o 1 J
_ /2
I e tye e DU
i=1 (G+1ji= =
1 L
< — / t~ ' dt
G+1)5= ; i1
J
— L — / 2 dt
G+1)i= Jo
2 /2 2
T 2 aj+1 2%
Similarly,
o) B o) /2 B oo j+1
oo J oo a/2-2
Seve = Y T iy [ e
=1 e (G+1) =i
1—a [ 2 2
o LS ta/272dt _ .—1/2 _ ;
‘ /Z 2-a' 72— ot

By the Schur test, we get that ||£||p, < 52 . Here we give the details for the
completeness. If f(z) =3 72| f(n)e,(z), then

=] oo 2
Cf1Be = D |0 Fm)anm

n=1|m=1
[eS] oo a =)

< ( |f(m)|2 nm) ( aanm)
n=1 \m=1 dm m=1

2 o0 o0
<

= D )P,

dm

) 2
~(522) Wik
m=1

Hence ||L||p, < 52-. Since ||£|p, > |A| for X € 0,,(L), we get that || £|p, >
2

5=—. The proof is complete. 0

2—a”

IN
VR
(V)
[ v
Q
~—
[\v]
(18
=
B
T
|

Remark 2.3. Observe that | L|p, > max{1/2, 52-}. If o < —2, then Theo-
rem 2.2 1s not true.
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