Special Issue of the

Bulletin of the
 Iranian Mathematical Society

in Honor of Professor Heydar Radjavi's 80th Birthday

Vol. 41 (2015), No. 7, pp. 15-27

Title:
Upper and lower bounds for numerical radif of block shifts
Author(s):
H.-L. Gau and P. Y. Wu

UPPER AND LOWER BOUNDS FOR NUMERICAL RADII OF BLOCK SHIFTS

H.-L. GAU AND P. Y. WU*
(Communicated by Peter Šemrl)
Dedicated to Professor Heydar Radjavi on his 80th birthday

Abstract

For an n-by-n complex matrix A in a block form with the (possibly) nonzero blocks only on the diagonal above the main one, we consider two other matrices whose nonzero entries are along the diagonal above the main one and consist of the norms or minimum moduli of the diagonal blocks of A. In this paper, we obtain two inequalities relating the numeical radii of these matrices and also determine when either of them becomes an equality. Keywords: Numerical radius, block shift, minimum modulus. MSC(2010): Primary: 15A60; Secondary: 47A12.

1. Introduction

An n-by- n complex matrix A is called a block shift if it is of the form

$$
\left[\begin{array}{cccc}
0 & A_{1} & & \\
& 0 & \ddots & \\
& & \ddots & A_{k-1} \\
& & & 0
\end{array}\right]
$$

where A_{j} 's are in general rectangular matrices. In this paper, we obtain sharp upper and lower bounds for the numerical radius of such a matrix. Recall that the numerical radius $w(X)$ of an n-by- n matrix X is the quantity

$$
\max \left\{|\langle X x, x\rangle|: x \in \mathbb{C}^{n},\|x\|=1\right\},
$$

where $\langle\cdot, \cdot\rangle$ and $\|\cdot\|$ denote the standard inner product and norm of vectors in \mathbb{C}^{n}, respectively. Note that $w(X)$ is the radius of the smallest circular disc

[^0]centered at the origin which contains the numerical range
$$
W(X)=\left\{\langle X x, x\rangle: x \in \mathbb{C}^{n},\|x\|=1\right\}
$$
of X. For properties of the numerical range and numerical radius, the reader is referred to $[2$, Chapter 22] or [3, Chapter 1].

Note that if A is a block shift of the above form, then it is unitarily similar to $e^{i \theta} A$ for all real θ. Hence its numerical range is a closed circular disc centered at the origin with radius equal to its numerical radius. To estimate the latter, we consider the scalar matrices

$$
B=\left[\begin{array}{cccc}
0 & \left\|A_{1}\right\| & & \\
& 0 & \ddots & \\
& & \ddots & \left\|A_{k-1}\right\|
\end{array}\right] \text { and } B^{\prime}=\left[\begin{array}{cccc}
0 & m\left(A_{1}\right) & & \\
& & & \ddots \\
& & 0 & m\left(A_{k-1}\right) \\
& & & \\
& & & 0
\end{array}\right]
$$

where $m(\cdot)$ denotes the minimum modulus of a matrix. Recall that the minimum modulus $m(X)$ of an m-by- n matrix X is, by definition, $\min \{\|X x\|: x \in$ $\left.\mathbb{C}^{n},\|x\|=1\right\}$. In Sections 2 and 3 below, we show that $w\left(B^{\prime}\right) \leq w(A) \leq w(B)$ always hold, and that, under the extra condition that A_{j} 's are all nonzero (resp., $m\left(A_{j}\right)$'s are nonzero), $w(A)=w(B)$ (resp., $w(A)=w\left(B^{\prime}\right)$) implies that B (resp., B^{\prime}) is a direct summand of A (cf. Theorem 2.1 and Corollary 3.3). Examples are given showing that the nonzero conditions on A_{j} 's are essential.

2. Upper bound

The main result of this section is the following theorem.
Theorem 2.1. Let

$$
A=\left[\begin{array}{cccc}
0 & A_{1} & & \tag{2.1}\\
& 0 & \ddots & \\
& & \ddots & A_{k-1} \\
& & & 0
\end{array}\right] \quad \text { on } \mathbb{C}^{n}=\mathbb{C}^{n_{1}} \oplus \cdots \oplus \mathbb{C}^{n_{k}}
$$

be an n-by-n block shift, where A_{j} is an n_{j}-by- n_{j+1} matrix for $1 \leq j \leq k-1$, and let

$$
B=\left[\begin{array}{cccc}
0 & \left\|A_{1}\right\| & & \\
& 0 & \ddots & \\
& & \ddots & \left\|A_{k-1}\right\| \\
& & & 0
\end{array}\right] \text { on } \mathbb{C}^{k}
$$

Express A and B as $\sum_{j=1}^{m} \oplus A_{j}^{\prime}$ and $\sum_{j=1}^{m} \oplus B_{j}^{\prime}$, respectively, where A_{j}^{\prime} (resp., $\left.B_{j}^{\prime}\right)$ is either a zero matrix or of the form

$$
\left.\left[\begin{array}{cccc}
0 & A_{s} & & \\
& 0 & \ddots & \\
& & \ddots & A_{t} \\
& & & 0
\end{array}\right] \quad \text { (resp. }\left[\begin{array}{cccc}
0 & \left\|A_{s}\right\| & & \\
& 0 & \ddots & \\
& & \ddots & \left\|A_{t}\right\| \\
& & & 0
\end{array}\right]\right)
$$

with $1 \leq s \leq t \leq k-1$ and the A_{j} 's in such expressions all nonzero. Then
(a) $w(A) \leq w(B)$,
(b) $w(A)=w(B)$ if and only if A is unitarily similar to $B_{j_{0}}^{\prime} \oplus C$, where j_{0} $\left(1 \leq j_{0} \leq m\right)$ is such that $w\left(A_{j_{0}}^{\prime}\right)=\max _{j} w\left(A_{j}^{\prime}\right)(=w(A))$, and C is a block shift with $w(C) \leq w\left(B_{j_{0}}^{\prime}\right)$, and
(c) under the assumption that $A_{j} \neq 0$ for all j in (2.1), we have $w(A)=$ $w(B)$ if and only if A is unitarily similar to $B \oplus C$, where C is a block shift with $w(C) \leq w(B)$.

Proof. (a) Let $x=\left[\begin{array}{lll}x_{1} & \ldots & x_{k}\end{array}\right]^{T}$ be a unit vector in \mathbb{C}^{n} such that $|\langle A x, x\rangle|=$ $w(A)$. Hence

$$
\begin{align*}
& w(A)=\left|\left\langle\left[\begin{array}{cccc}
0 & A_{1} & & \\
& 0 & \ddots & \\
& & \ddots & A_{k-1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right],\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{k}
\end{array}\right]\right\rangle\right| \\
= & \left|\sum_{j=1}^{k-1}\left\langle A_{j} x_{j+1}, x_{j}\right\rangle\right| \\
\leq & \sum_{j=1}^{k-1}\left|\left\langle A_{j} x_{j+1}, x_{j}\right\rangle\right| \\
\leq & \sum_{j=1}^{k-1}\left\|A_{j}\right\|\left\|x_{j+1}\right\|\left\|x_{j}\right\| \tag{2.2}\\
= & \left\langle\left[\begin{array}{ccc}
0 & \left\|A_{1}\right\| & \\
& \ddots & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right]\left[\begin{array}{c}
\left\|A_{k-1}\right\| \\
\vdots \\
\left\|x_{k}\right\|
\end{array}\right],\left[\begin{array}{c}
\left\|x_{1}\right\| \\
\vdots \\
\left\|x_{k}\right\|
\end{array}\right]\right\rangle
\end{align*}
$$

where the last inequality follows from the fact that $\left[\left\|x_{1}\right\| \ldots\left\|x_{k}\right\|\right]^{T}$ is a unit vector in \mathbb{C}^{k}.
(b) Assume that $w(A)=w(B)$. Let $A_{j_{0}}^{\prime}\left(1 \leq j_{0} \leq m\right)$ be such that $w\left(A_{j_{0}}^{\prime}\right)=$ $\max _{j} w\left(A_{j}^{\prime}\right)=w(A)$. Then

$$
w(A)=w\left(A_{j_{0}}^{\prime}\right) \leq w\left(B_{j_{0}}^{\prime}\right) \leq w(B)=w(A)
$$

where the first inequality follows from (a). This yields equalities throughout. Hence considering $A_{j_{0}}^{\prime}$ and $B_{j_{0}}^{\prime}$ instead of A and B, we may assume that A_{j} 's in (2.1) are all nonzero. The assumption $w(A)=w(B)$ also yields equalities throughout the chain of inequalities in the proof of (a). Since B is an (entrywise) nonnegative matrix with irreducible real part, the equality in (2.3) yields, by [4, Proposition 3.3], that $x_{j} \neq 0$ for all j. Let $\widehat{x}_{j}=\left[\begin{array}{lllllll}0 & \ldots & 0 & x_{j} & 0 & \ldots & 0\end{array}\right]^{T}$ for $1 \leq j \leq k$, and let K be the subspace of \mathbb{C}^{n} spanned by \widehat{x}_{j} 's. The equality in (2.2) implies that

$$
\begin{equation*}
\left|\left\langle A_{j} x_{j+1}, x_{j}\right\rangle\right|=\left\|A_{j} x_{j+1}\right\|\left\|x_{j}\right\|=\left\|A_{j}\right\|\left\|x_{j+1}\right\|\left\|x_{j}\right\| \tag{2.4}
\end{equation*}
$$

Hence $A_{j} x_{j+1}=a_{j} x_{j}$ for some scalar a_{j}. Therefore, $A \widehat{x}_{1}=0$ and

$$
A \widehat{x}_{j}=\left[\begin{array}{lllllll}
0 & \ldots & 0 & A_{j-1} x_{j} & 0 & \ldots & 0
\end{array}\right]^{T}=\left[\begin{array}{llllll}
0 & \ldots & 0 & a_{j-1) \mathrm{st}} x_{j-1} & 0 & \ldots
\end{array}\right]^{T}=a_{j-1) \mathrm{st}} \widehat{x}_{j-1}
$$

is in K for all $j, 2 \leq j \leq k$. This shows that $A K \subseteq K$.
We next prove that $A^{*} K \subseteq K$. Indeed, we have $A^{*} \widehat{x}_{j}=\left[\begin{array}{llll}0 & \ldots & 0 & \underset{(j+1) \text { st }}{A_{j}^{*} x_{j}} 0\end{array} \ldots\right.$
for $1 \leq j \leq k-1$. Since

$$
\left|a_{j}\right|\left\|x_{j}\right\|^{2}=\left\|a_{j} x_{j}\right\|\left\|x_{j}\right\|=\left\|A_{j} x_{j+1}\right\|\left\|x_{j}\right\|=\left\|A_{j}\right\|\left\|x_{j+1}\right\|\left\|x_{j}\right\|
$$

by (2.4), the nonzeroness of A_{j} 's and x_{j} 's yields the same for a_{j} 's. Letting $B_{j}=A_{j} /\left\|A_{j}\right\|$ and $y_{j}=\left(\left\|A_{j}\right\| / a_{j}\right) x_{j+1}$, we have $B_{j} y_{j}=\left(1 / a_{j}\right) A_{j} x_{j+1}=x_{j}$ with $\left\|B_{j}\right\|=1$ and

$$
\left\|y_{j}\right\|=\frac{\left\|A_{j}\right\|}{\left|a_{j}\right|}\left\|x_{j+1}\right\|=\frac{\left\|A_{j} x_{j+1}\right\|}{\left|a_{j}\right|}=\left\|x_{j}\right\|
$$

by (2.4). It follows from an extension of a lemma of Riesz and Sz.-Nagy that $B_{j}^{*} x_{j}=y_{j}$ (cf. [6, p. 215]). Therefore, we have $A_{j}^{*} x_{j}=\left(\left\|A_{j}\right\|^{2} / a_{j}\right) x_{j+1}$, which shows that $A_{j}^{*} \widehat{x}_{j}=\left(\left\|A_{j}\right\|^{2} / a_{j}\right) \widehat{x}_{j+1}$ is in K for $1 \leq j \leq k-1$. Moreover, we also have $A^{*} \widehat{x}_{k}=0$. Thus $A^{*} K \subseteq K$ as asserted.

Since $\left\{\widehat{x}_{j} /\left\|x_{j}\right\|\right\}_{j=1}^{k}$ is an orthonormal basis of $K, A\left(\widehat{x}_{1} /\left\|x_{1}\right\|\right)=0$, and

$$
\begin{aligned}
& A\left(\frac{\widehat{x}_{j}}{\left\|x_{j}\right\|}\right)=\frac{a_{j-1}\left\|x_{j-1}\right\|}{\left\|x_{j}\right\|} \frac{\widehat{x}_{j-1}}{\left\|x_{j-1}\right\|}=\frac{a_{j-1}}{\left|a_{j-1}\right|} \frac{\left\|a_{j-1} x_{j-1}\right\|}{\left\|x_{j}\right\|} \frac{\widehat{x}_{j-1}}{\left\|x_{j-1}\right\|} \\
= & \frac{a_{j-1}}{\left|a_{j-1}\right|} \frac{\left\|A_{j-1} x_{j}\right\|}{\left\|x_{j}\right\|} \frac{\widehat{x}_{j-1}}{\left\|x_{j-1}\right\|}=\frac{a_{j-1}}{\left|a_{j-1}\right|}\left\|A_{j-1}\right\| \frac{\widehat{x}_{j-1}}{\left\|x_{j-1}\right\|}
\end{aligned}
$$

for $2 \leq j \leq k$ by (2.4), we derive that the restriction $\left.A\right|_{K}$ is unitarily similar to B. Thus A is unitarily similar to $B \oplus\left(\left.A\right|_{K^{\perp}}\right)$. We now show that $\left.A\right|_{K^{\perp}}$ is
unitarily similar to a block shift. Indeed, let $\widehat{H}_{j}=0 \oplus \cdots \oplus 0 \oplus \mathbb{C}^{n_{j}} \oplus 0 \oplus \cdots \oplus 0$, j th
$K_{j}=\mathbb{C}^{n_{j}} \ominus \bigvee\left\{x_{j}\right\}$, and $\widehat{K}_{j}=0 \oplus \cdots \oplus 0 \oplus K_{j} \oplus 0 \oplus \cdots \oplus 0$ for $1 \leq j \leq k$. Then $K^{\perp}=K_{1} \oplus \cdots \oplus K_{k}$. Since $A \widehat{H}_{j+1} \subseteq \widehat{H}_{j}$ and $A^{*} \widehat{x}_{j} \in \bigvee\left\{\widehat{x}_{j+1}\right\}$ from before, we have $A \widehat{K}_{j+1} \subseteq \widehat{K}_{j}$ for $1 \leq j \leq k-1$. Moreover, $A \widehat{H}_{k}=\{0\}$ implies that $A \widehat{K}_{k}=\{0\}$. We conclude that $\left.C \equiv A\right|_{K^{\perp}}$ is unitarily similar to a block shift with $w(C) \leq w(A)=w(B)$. This proves one direction of (b). The converse is trivial.
(c) is an easy consequence of (b).

Corollary 2.2. Let A be an $n-b y-n$ block shift as in (2.1). Then
(a) $w(A) \leq\|A\| \cos (\pi /(k+1))$, and
(b) $w(A)=\|A\| \cos (\pi /(k+1)$) if and only if A is unitarily similar to $\left(\|A\| J_{k}\right) \oplus C$, where C is a block shift with $w(C) \leq\|A\| \cos (\pi /(k+1))$.

Here J_{k} denotes the k-by- k Jordan block

$$
\left[\begin{array}{cccc}
0 & 1 & & \\
& 0 & \ddots & \\
& & \ddots & 1 \\
& & & 0
\end{array}\right]
$$

whose numerical range is known to be $\{z \in \mathbb{C}:|z| \leq \cos (\pi /(k+1))\}$ (cf. [5]).
The assertions in Corollary 2.2 are easy consequences of Theorem 2.1 and [4, Corollary 3.6].

We remark that the assertion in Theorem 2.1(c) still holds for $n \leq 5$ even without the nonzero assumption on A_{j} 's. This can be proven via a case-bycase verification by invoking, in most cases, the known result on the numerical ranges of square-zero matrices (cf. [8, Theorem 2.1]), which we omit. This is no longer the case for $n \geq 6$. Here we give a counterexample for $n=6$.

Example 2.3. Let

$$
A=\left[\begin{array}{cccccc}
0 & \sqrt{2} & & & & \\
& 0 & 0 & & & \\
& & 0 & 1 & 0 & \\
& & & 0 & 0 & 0 \\
& & & 0 & 0 & 1 \\
& & & & & 0
\end{array}\right]
$$

with $A_{1}=[\sqrt{2}], A_{2}=[0], A_{3}=\left[\begin{array}{ll}1 & 0\end{array}\right]$ and $A_{4}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Then

$$
B=\left[\begin{array}{ccccc}
0 & \sqrt{2} & & & \\
& 0 & 0 & & \\
& & 0 & 1 & \\
& & & 0 & 1 \\
& & & & 0
\end{array}\right]
$$

and thus
$A=\left[\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \oplus\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \quad$ and $\quad B=\left[\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right] \oplus\left[\begin{array}{ccc}0 & 1 & \\ & 0 & 1 \\ & & 0\end{array}\right]$.
Hence $w(A)=w(B)=\sqrt{2} / 2$, but B is not a direct summand of A. To see the latter, note that $\operatorname{ker} A \cap \operatorname{ker} A^{*}=\{0\}$. Hence A cannot have the 1 -by-1 zero matrix [0] as a direct summand, and thus A cannot be unitarily similar to $B \oplus[0]$, or B is not a direct summand of A. However, A has the direct summand $\left[\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right]$ as dictated by Theorem 2.1(b).

3. Lower bound

Let A be an n-by- n block shift as in (2.1). For each $j, 1 \leq j \leq k-1$, let $B_{j}=[0]$ if $A_{j}=0$, and, when $A_{j} \neq 0$, let
$B_{j}=\left[\begin{array}{cccccccc}0 & m\left(A_{s_{j}}\right) & & & & & & \\ & 0 & \ddots & & & & & \\ & & \ddots & m\left(A_{j-1}\right) & & & & \\ & & & 0 & \left\|A_{j}\right\| & & \\ & & & & 0 & m\left(A_{j+1}^{*}\right) & & \\ & & & & & 0 & \ddots & \\ & & & & & & \ddots & m\left(A_{t_{j}}^{*}\right)\end{array}\right]$ on $\mathbb{C}^{t_{j}-s_{j}+2}$,
where $s_{j}=\min \left\{\ell: 1 \leq \ell \leq j-1, m\left(A_{\ell}\right) \cdots m\left(A_{j-1}\right) \neq 0\right\}$ and $t_{j}=\max \{\ell$: $\left.j+1 \leq \ell \leq k-1, m\left(A_{j+1}^{*}\right) \cdots m\left(A_{\ell}^{*}\right) \neq 0\right\}$. Note that
$B_{j}=\left[\begin{array}{ccccc}0 & \left\|A_{j}\right\| & & & \\ & 0 & m\left(A_{j+1}^{*}\right) & & \\ & & 0 & \ddots & \\ & & & \ddots & m\left(A_{t_{j}}^{*}\right)\end{array}\right]$ (resp., $\left[\begin{array}{ccccc}0 & m\left(A_{s_{j}}\right) & & & \\ & 0 & \ddots & & \\ & & & & \\ & & & & m\left(A_{j-1}\right) \\ & & & \left\|A_{j}\right\|\end{array}\right]$)
if $j=1$ or $m\left(A_{j-1}\right)=0$ (resp., $j=k-1$ or $m\left(A_{j+1}^{*}\right)=0$).
The following is the main result of this section.

Theorem 3.1. Let A and $B_{j}, 1 \leq j \leq k-1$, be as above. Then
(a) $w(A) \geq \max _{j} w\left(B_{j}\right)$,
(b) $w(A)=w\left(B_{j}\right)$ for some j if and only if A is unitarily similar to $B_{j} \oplus C$, where C is a block shift with $w(C) \leq w\left(B_{j}\right)$.

The next lemma gives some basic properties of the minimum modulus of a rectangular matrix. For a square matrix (or, for that matter, an operator on a possibly infinite-dimensional Hilbert space), these appeared in [1, Theorem 1].

Lemma 3.2. Let A be an m-by-n matrix. Then
(a) $m(A)>0$ if and only if A is left invertible,
(b) $m(A)$ equals the minimum singular value of A, and
(c) if $m<n$, then $m(A)=0$.

Proof. (a) Note that $m(A)>0$ means that there is a $c>0$ such that $\|A x\| \geq$ $c\|x\|$ for all x in \mathbb{C}^{n}, which is equivalent to the well-definedness of the linear transformation $A x \mapsto x$ from the range of A to \mathbb{C}^{n}, or to the left-invertibility of A.
(b) Consider the polar decomposition of $A: A=V\left(A^{*} A\right)^{1 / 2}$, where V is an m-by- n partial isometry with $\operatorname{ker} V=\operatorname{ker} A($ cf. $[2$, Problem 134] $)$. Then

$$
\begin{aligned}
& m(A)=\min \left\{\|A x\|: x \in \mathbb{C}^{n},\|x\|=1\right\} \\
= & \min \left\{\left\|V\left(A^{*} A\right)^{1 / 2} x\right\|: x \in \mathbb{C}^{n},\|x\|=1\right\} \\
= & \min \left\{\left\|\left(A^{*} A\right)^{1 / 2} x\right\|: x \in \mathbb{C}^{n},\|x\|=1\right\} \\
= & \text { minimum eigenvalue of }\left(A^{*} A\right)^{1 / 2} \\
= & \text { minimum singular value of } A .
\end{aligned}
$$

(c) This is an easy consequence of (a) or (b).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (a) We need to show that $w(A) \geq w\left(B_{j}\right)$ for all j. If $A_{j}=0$, then obviously $w(A) \geq 0=w\left(B_{j}\right)$. Now we assume that $A_{j} \neq 0$. Let x_{j+1} be a unit vector in $\mathbb{C}^{n_{j+1}}$ such that $\left\|A_{j} x_{j+1}\right\|=\left\|A_{j}\right\|$. For any $i, s_{j} \leq i \leq$ $j-1$, we have $m\left(A_{i}\right)>0$ and hence ker $A_{i}=\{0\}$ by Lemma 3.2(a). Thus we may let $x_{i}=A_{i} x_{i+1} /\left\|A_{i} x_{i+1}\right\|$ for $i=j, j-1, \ldots, s_{j}$ successively. Similarly, since $m\left(A_{i}^{*}\right)>0$ for $j+1 \leq i \leq t_{j}$, we may let $x_{i}=A_{i-1}^{*} x_{i-1} /\left\|A_{i-1}^{*} x_{i-1}\right\|$ for each $i, j+2 \leq i \leq t_{j}+1$. Such x_{i} 's are unit vectors in $\mathbb{C}^{n_{i}}$'s. On the other hand, since B_{j} is an (entrywise) nonnegative matrix with irreducible real part, there is a unit vector $u=\left[\begin{array}{lll}r_{s_{j}} & \ldots & r_{t_{j}+1}\end{array}\right]^{T}$ in $\mathbb{C}^{t_{j}-s_{j}+2}$ with $r_{j}>$ 0 for all j such that $\left\langle B_{j} u, u\right\rangle=w\left(B_{j}\right)$ (cf. [4, Proposition 3.3]). Let $\widehat{u}=$
$\left[\begin{array}{llllllll}0 & \ldots & 0 & r_{s_{j}} & x_{s_{j}} & \ldots & r_{t_{j}+1} x_{t_{j}+1} & 0\end{array} \ldots l\right]^{T}$ in \mathbb{C}^{n}. Then \widehat{u} is a unit vector and

$$
\begin{align*}
& \langle A \widehat{u}, \widehat{u}\rangle=\sum_{i=s_{j}}^{t_{j}}\left\langle A_{i}\left(r_{i+1} x_{i+1}\right), r_{i} x_{i}\right\rangle \\
= & \sum_{i=s_{j}}^{j} r_{i+1} r_{i}\left\langle A_{i} x_{i+1}, \frac{A_{i} x_{i+1}}{\left\|A_{i} x_{i+1}\right\|}\right\rangle+\sum_{i=j+1}^{t_{j}} r_{i+1} r_{i}\left\langle\frac{A_{i}^{*} x_{i}}{\left\|A_{i}^{*} x_{i}\right\|}, A_{i}^{*} x_{i}\right\rangle \\
= & \sum_{i=s_{j}}^{j} r_{i+1} r_{i}\left\|A_{i} x_{i+1}\right\|+\sum_{i=j+1}^{t_{j}} r_{i+1} r_{i}\left\|A_{i}^{*} x_{i}\right\| \\
\geq & \left(\sum_{i=s_{j}}^{j-1} r_{i+1} r_{i} m\left(A_{i}\right)\right)+r_{j+1} r_{j}\left\|A_{j}\right\|+\left(\sum_{i=j+1}^{t_{j}} r_{i+1} r_{i} m\left(A_{i}^{*}\right)\right) \tag{3.2}\\
= & \left\langle B_{j} u, u\right\rangle=w\left(B_{j}\right) .
\end{align*}
$$

Hence $w(A) \geq\langle A \widehat{u}, \widehat{u}\rangle \geq w\left(B_{j}\right)$ as asserted.
(b) Assume that $w(A)=w\left(B_{j}\right)$ for some j. From above, we have $w(A)=$ $\langle A \widehat{u}, \widehat{u}\rangle=w\left(B_{j}\right)$ and an equality in (3.2). We derive from the latter that $\left\|A_{i} x_{i+1}\right\|=m\left(A_{i}\right)$ for $s_{j} \leq i \leq j-1$, and $\left\|A_{i}^{*} x_{i}\right\|=m\left(A_{i}^{*}\right)$ for $j+1 \leq$ $i \leq t_{j}$. We now check that $A_{s_{j}-1} x_{s_{j}}=0$ and $A_{t_{j}+1}^{*} x_{t_{j}+1}=0$. To prove the former, assume otherwise that $A_{s_{j}-1} x_{s_{j}} \neq 0$ and $s_{j} \geq 2$. Then let $x_{s_{j}-1}=$ $A_{s_{j}-1} x_{s_{j}} /\left\|A_{s_{j}-1} x_{s_{j}}\right\|$ and

$$
\begin{aligned}
& D=\left[\begin{array}{c|c}
0 & \left\|A_{s_{j}-1} x_{s_{j}}\right\| 0 \ldots 0 \\
\hline & B_{j}
\end{array}\right] \\
& =\left[\begin{array}{ccccccc}
0 & \left\|A_{s_{j}-1} x_{s_{j}}\right\| & & & & & \\
& 0 & m\left(A_{s_{j}}\right) & & & & \\
& & 0 & \ddots & & & \\
& & & \ddots & m\left(A_{j-1}\right) & & \\
& & & & 0 & \left\|A_{j}\right\| & \\
& & & & & 0 & m\left(A_{j+1}^{*}\right)
\end{array}\right. \\
& \begin{array}{ccc}
0 & \ddots & \\
& \ddots & m\left(A_{t_{j}}^{*}\right) \\
& & 0
\end{array}
\end{aligned}
$$

Since $\left\|A_{s_{j}-1} x_{s_{j}}\right\|, m\left(A_{s_{j}}\right), \ldots, m\left(A_{j-1}\right),\left\|A_{j}\right\|, m\left(A_{j+1}^{*}\right), \ldots, m\left(A_{t_{j}}^{*}\right)>0$, we infer from [7, Lemma 5 (3)] that $w(D)>w\left(B_{j}\right)$ and from [4, Proposition 3.3] that there is a unit vector $v=\left[p_{s_{j}-1} \ldots p_{t_{j}+1}\right]^{T}$ in $\mathbb{C}^{t_{j}-s_{j}+3}$ with $p_{i}>0$ for all i such that $\langle D v, v\rangle=w(D)$. Let $\widehat{v}=\left[\begin{array}{llllll}0 & \ldots & p_{s_{j}-1} x_{s_{j}-1} & \ldots & p_{t_{j}+1} & x_{t_{j}+1}\end{array} \quad \ldots 0\right]^{T}$
in \mathbb{C}^{n}. Then \widehat{v} is a unit vector and

$$
\begin{aligned}
& \langle A \widehat{v}, \widehat{v}\rangle=\sum_{i=s_{j}-1}^{t_{j}}\left\langle A_{i}\left(p_{i+1} x_{i+1}\right), p_{i} x_{i}\right\rangle \\
= & \sum_{i=s_{j}-1}^{t_{j}} p_{i+1} p_{i}\left\langle A_{i} x_{i+1}, x_{i}\right\rangle \\
= & \sum_{i=s_{j}-1}^{j} p_{i+1} p_{i}\left\|A_{i} x_{i+1}\right\|+\sum_{i=j+1}^{t_{j}} p_{i+1} p_{i}\left\|A_{i}^{*} x_{i}\right\| \\
= & p_{s_{j}} p_{s_{j}-1}\left\|A_{s_{j}-1} x_{s_{j}}\right\|+\left(\sum_{i=s_{j}}^{j-1} p_{i+1} p_{i} m\left(A_{i}\right)\right)+p_{j+1} p_{j}\left\|A_{j}\right\|+\left(\sum_{i=j+1}^{t_{j}} p_{i+1} p_{i} m\left(A_{i}^{*}\right)\right) \\
= & \langle D v, v\rangle=w(D)>w\left(B_{j}\right)
\end{aligned}
$$

This yields $w(A) \geq\langle A \widehat{v}, \widehat{v}\rangle>w\left(B_{j}\right)$, which contradicts our assumption. Thus we must have $A_{s_{j}-1} x_{s_{j}}=0$.

The proof for $A_{t_{j}+1}^{*} x_{t_{j}+1}=0$ is analogous to the above. Indeed, assume that $A_{t_{j}+1}^{*} x_{t_{j}+1} \neq 0$ and $t_{j} \leq k-2$. Let $x_{t_{j}+2}=A_{t_{j}+1}^{*} x_{t_{j}+1} /\left\|A_{t_{j}+1}^{*} x_{t_{j}+1}\right\|$ and

As before, we have $w(D)>w\left(B_{j}\right)$ and there is a unit vector $w=\left[q_{s_{j}} \ldots q_{t_{j}+2}\right]^{T}$ in $\mathbb{C}^{t_{j}-s_{j}+3}$ with $q_{i}>0$ for all i such that $\langle D w, w\rangle=w(D)$. Let $\widehat{w}=$ $\left.\left[\begin{array}{lllllllll}0 & \ldots & 0 & q_{s_{j}} & x_{s_{j}} & \ldots & q_{t_{j}+2} x_{t_{j}+2} & 0 & \ldots\end{array}\right]\right]^{T}$ in \mathbb{C}^{n}. Then \widehat{w} is a unit vector
and

$$
\begin{aligned}
& \langle A \widehat{w}, \widehat{w}\rangle=\sum_{i=s_{j}}^{t_{j}+1}\left\langle A_{i}\left(q_{i+1} x_{i+1}\right), q_{i} x_{i}\right\rangle \\
= & \sum_{i=s_{j}}^{t_{j}+1} q_{i+1} q_{i}\left\langle A_{i} x_{i+1}, x_{i}\right\rangle \\
= & \left(\sum_{i=s_{j}}^{j} q_{i+1} q_{i}\left\|A_{i} x_{i+1}\right\|\right)+\left(\sum_{i=j+1}^{t_{j}+1} q_{i+1} q_{i}\left\langle x_{i+1}, A_{i}^{*} x_{i}\right\rangle\right) \\
= & \left(\sum_{i=s_{j}}^{j-1} q_{i+1} q_{i} m\left(A_{i}\right)\right)+q_{j+1} q_{j}\left\|A_{j}\right\|+\left(\sum_{i=j+1}^{t_{j}} q_{i+1} q_{i} m\left(A_{i}^{*}\right)\right)+q_{t_{j}+2} q_{t_{j}+1}\left\|A_{t_{j}+1}^{*} x_{t_{j}+1}\right\| \\
= & \langle D w, w\rangle=w(D)>w\left(B_{j}\right) .
\end{aligned}
$$

We thus obtain $w(A) \geq\langle A \widehat{w}, \widehat{w}\rangle>w\left(B_{j}\right)$, a contradiction. Hence $A_{t_{j}+1}^{*} x_{t_{j}+1}=$ 0 holds.

Let $\widehat{x}_{i}=\left[\begin{array}{llllll}0 & \ldots & 0 & x_{i} & 0 & \ldots\end{array}\right]^{T}$ for $s_{j} \leq i \leq t_{j}+1$, and let K be the subspace of \mathbb{C}^{n} spanned by the \widehat{x}_{i} 's. Since $A_{s_{j}-1} x_{s_{j}}=0$ as proven above, we have $A \widehat{x}_{s_{j}}=0$. Since $A_{i-1} x_{i}=\left\|A_{i-1} x_{i}\right\| x_{i-1}$ for $s_{j}+1 \leq i \leq j+1$, we also have

$$
A \widehat{x}_{i}=\left[\begin{array}{llllll}
0 & \ldots & 0 & A_{i-1} x_{i} & 0 & \ldots
\end{array}\right]^{T}=\left\|A_{i-1} x_{i}\right\| \widehat{x}_{i-1}
$$

for such i 's. We now check that $A \widehat{x}_{i}=m\left(A_{i-1}^{*}\right) \widehat{x}_{i-1}$ for $j+2 \leq i \leq t_{j}+1$. Indeed, since $\left\|A_{i-1}^{*} x_{i-1}\right\|=m\left(A_{i-1}^{*}\right)$ from before, we have

$$
\left\langle\left(A_{i-1} A_{i-1}^{*}-m\left(A_{i-1}^{*}\right)^{2} I_{n_{i-1}}\right) x_{i-1}, x_{i-1}\right\rangle=\left\|A_{i-1}^{*} x_{i-1}\right\|^{2}-m\left(A_{i-1}^{*}\right)^{2}=0
$$

The positive semidefiniteness of $A_{i-1} A_{i-1}^{*}-m\left(A_{i-1}^{*}\right)^{2} I_{n_{i-1}}$ yields that $A_{i-1} A_{i-1}^{*} x_{i-1}=m\left(A_{i-1}^{*}\right)^{2} x_{i-1}$. Hence

$$
A_{i-1} x_{i}=A_{i-1} \frac{A_{i-1}^{*} x_{i-1}}{\left\|A_{i-1}^{*} x_{i-1}\right\|}=\frac{m\left(A_{i-1}^{*}\right)^{2} x_{i-1}}{m\left(A_{i-1}^{*}\right)}=m\left(A_{i-1}^{*}\right) x_{i-1}
$$

and therefore $A \widehat{x}_{i}=m\left(A_{i-1}^{*}\right) \widehat{x}_{i-1}$ as asserted. These show that $A K \subseteq K$.
We next show that $A^{*} K \subseteq K$. Indeed, for $s_{j} \leq i \leq j-1$, we have $\left\|A_{i} x_{i+1}\right\|=$ $m\left(A_{i}\right)$. Hence

$$
\left\langle\left(A_{i}^{*} A_{i}-m\left(A_{i}\right)^{2} I_{n_{i+1}}\right) x_{i+1}, x_{i+1}\right\rangle=\left\|A_{i} x_{i+1}\right\|^{2}-m\left(A_{i}\right)^{2}=0
$$

Since $A_{i}^{*} A_{i} \geq m\left(A_{i}\right)^{2} I_{n_{i+1}}$, we infer that $A_{i}^{*} A_{i} x_{i+1}=m\left(A_{i}\right)^{2} x_{i+1}$ and hence $A_{i}^{*} x_{i}=\left(m\left(A_{i}\right)^{2} /\left\|A_{i} x_{i+1}\right\|\right) x_{i+1}=m\left(A_{i}\right) x_{i+1}$. It follows that $A^{*} \widehat{x}_{i}=m\left(A_{i}\right) \widehat{x}_{i+1}$ is in K for $s_{j} \leq i \leq j-1$. For $i=j$, we have

$$
\left\|A_{j}^{*} x_{j}\right\| \leq\left\|A_{j}^{*}\right\|=\left\|A_{j}\right\|=\left\|A_{j} x_{j+1}\right\|=\left\langle A_{j} x_{j+1}, x_{j}\right\rangle=\left\langle x_{j+1}, A_{j}^{*} x_{j}\right\rangle \leq\left\|A_{j}^{*} x_{j}\right\| .
$$

Thus the equalities hold throughout. In particular, this implies that $A_{j}^{*} x_{j}$ is a multiple of x_{j+1}. Again, $A^{*} \widehat{x}_{j}$ is in K. For $j+1 \leq i \leq t_{j}$, we have
$A_{i}^{*} x_{i}=\left\|A_{i}^{*} x_{i}\right\| x_{i+1}$, which implies that $A^{*} \widehat{x}_{i}=\left\|A_{i}^{*} x_{i}\right\| \widehat{x}_{i+1}$ is in K. Finally, for $i=t_{j}+1$, since $A_{t_{j}+1}^{*} x_{t_{j}+1}=0$, we have $A^{*} \widehat{x}_{t_{j}+1}=0$. Thus $A^{*} K \subseteq K$ as asserted.

From above, we conclude that A is unitarily similar to $\left(\left.A\right|_{K}\right) \oplus\left(\left.A\right|_{K^{\perp}}\right)$. Since $\left\{\widehat{x}_{s_{j}}, \ldots, \widehat{x}_{t_{j}+1}\right\}$ is an orthonormal basis of K and

$$
A \widehat{x}_{i}= \begin{cases}0 & \text { if } i=s_{j} \\ m\left(A_{i-1}\right) \widehat{x}_{i-1} & \text { if } s_{j}+1 \leq i \leq j \\ \left\|A_{j}\right\| \widehat{x}_{j} & \text { if } i=j+1 \\ m\left(A_{i-1}^{*}\right) \widehat{x}_{i-1} & \text { if } j+2 \leq i \leq t_{j}+1\end{cases}
$$

we infer that $\left.A\right|_{K}$ is unitarily similar to B_{j}. The unitary similarity of $\left.A\right|_{K^{\perp}}$ to a block shift follows as in the last part of the proof of Theorem 2.1(b). This proves one direction of (b). The converse is trivial.

Corollary 3.3. Let A be an $n-b y-n$ block shift as in (2.1), and let

$$
B^{\prime}=\left[\begin{array}{cccc}
0 & m\left(A_{1}\right) & & \\
& 0 & \ddots & \\
& & \ddots & m\left(A_{k-1}\right) \\
& & & 0
\end{array}\right]
$$

and

$$
B^{\prime \prime}=\left[\begin{array}{cccc}
0 & m\left(A_{1}^{*}\right) & & \\
& 0 & \ddots & \\
& & \ddots & m\left(A_{k-1}^{*}\right)
\end{array}\right] \text { on } \mathbb{C}^{k}
$$

Then
(a) $w(A) \geq w\left(B^{\prime}\right), w\left(B^{\prime \prime}\right)$, and
(b) under the assumption of $m\left(A_{j}\right)>0$ for all j (resp. $m\left(A_{j}^{*}\right)>0$ for all j), we have $w(A)=w\left(B^{\prime}\right)\left(\right.$ resp. $\left.w(A)=w\left(B^{\prime \prime}\right)\right)$ if and only if A is unitarily similar to $B^{\prime} \oplus C$ (resp. $B^{\prime \prime} \oplus C$), where C is a block shift with $w(C) \leq w\left(B^{\prime}\right)\left(\right.$ resp. $\left.w(C) \leq w\left(B^{\prime \prime}\right)\right)$. In this case, $m\left(A_{k-1}\right)=\left\|A_{k-1}\right\|\left(\operatorname{resp} . m\left(A_{1}^{*}\right)=\left\|A_{1}\right\|\right)$.

Proof. We only prove for B^{\prime}. The case involving $B^{\prime \prime}$ can be dealt with analogously.
(a) Note that B^{\prime} is unitarily similar to a matrix of the form $\left(\sum_{i=1}^{r} \oplus B_{i}^{\prime}\right) \oplus 0_{m}$, where, for each i,

$$
B_{i}^{\prime}=\left[\begin{array}{cccc}
0 & m\left(A_{p_{i}}\right) & & \\
& 0 & \ddots & \\
& & \ddots & m\left(A_{q_{i}}\right) \\
& & & 0
\end{array}\right]
$$

with $m\left(A_{\ell}\right)>0$ for $p_{i} \leq \ell \leq q_{i}, 1 \leq p_{i} \leq q_{i}<p_{i+1} \leq q_{i+1} \leq k-1$, and 0_{m} denotes the m-by- m zero matrix. Since $m\left(A_{j}\right) \leq\left\|A_{j}\right\|$ for all j, we have $w\left(B_{i}^{\prime}\right) \leq w\left(C_{i}\right)$, where

$$
C_{i}=\left[\begin{array}{ccccc}
0 & m\left(A_{p_{i}}\right) & & & \\
& 0 & \ddots & & \\
& & \ddots & m\left(A_{q_{i}-1}\right) & \\
& & & 0 & \left\|A_{q_{i}}\right\| \\
& & & & 0
\end{array}\right]
$$

by [4, Corollary 3.6]. But, obviously, $w\left(C_{i}\right) \leq w\left(B_{q_{i}}\right)$, where $B_{q_{i}}$ is given by (3.1). Thus we obtain

$$
w\left(B^{\prime}\right)=\max _{1 \leq i \leq r} w\left(B_{i}^{\prime}\right) \leq \max _{1 \leq i \leq r} w\left(C_{i}\right) \leq \max _{1 \leq i \leq r} w\left(B_{q_{i}}\right) \leq \max _{1 \leq j \leq k-1} w\left(B_{j}\right) \leq w(A)
$$

by Theorem 3.1(a).
(b) If $m\left(A_{j}\right)>0$ for all j, then $r=1, B^{\prime}=B_{1}^{\prime}$ and $C_{1}=B_{k-1}$ in (a). Hence if $w(A)=w\left(B^{\prime}\right)$, then $w\left(B^{\prime}\right)=w\left(B_{k-1}\right)=w(A)$. The first equality yields $m\left(A_{k-1}\right)=\left\|A_{k-1}\right\|$ by [4, Corollary 3.6] and thus $B^{\prime}=B_{k-1}$ while the second equality implies, by Theorem $3.1(\mathrm{~b})$, that A is unitarily similar to $B_{k-1} \oplus C$ for some block shift C with $w(C) \leq w\left(B_{k-1}\right)$. Our assertion follows. The converse is trivial.

Corollary 3.4. Let A be an n-by-n block shift as in (2.1), and let $m=$ $\min _{j} m\left(A_{j}\right)$. Then
(a) $w(A) \geq m \cdot \cos (\pi /(k+1))$, and
(b) $w(A)=m \cdot \cos (\pi /(k+1)$) if and only if A is unitarily similar to $\left(m J_{k}\right) \oplus B$, where B is a block shift with $w(B) \leq m \cdot \cos (\pi /(k+1))$.

This can be proven as Corollary 2.2 by using Corollary 3.3 and [4, Corollary 3.6].

Analogous to the situation in Section 2, the assertions in Corollary 3.3(b) remain true for $n \leq 3$ without the strict positivity assumptions on $m\left(A_{j}\right)$'s or $m\left(A_{j}^{*}\right)^{\prime}$'s. This is no longer the case for $n \geq 4$. A counterexample for $n=4$ is given below.

Example 3.5. Let

$$
A=\left[\begin{array}{cccc}
0 & 1 & 1 & \\
& 0 & 0 & 1 \\
& 0 & 0 & -1 \\
& & & 0
\end{array}\right]
$$

with $A_{1}=\left[\begin{array}{ll}1 & 1\end{array}\right]$ and $A_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. In this case,

$$
B^{\prime}=\left[\begin{array}{ccc}
0 & 0 & \\
& 0 & \sqrt{2} \\
& & 0
\end{array}\right] \text { and } B^{\prime \prime}=\left[\begin{array}{ccc}
0 & \sqrt{2} & \\
& 0 & 0 \\
& & 0
\end{array}\right] .
$$

Since $A^{2}=0$, we have $w(A)=\|A\| / 2=\sqrt{2} / 2$ (cf. [8, Theorem 2.1]). On the other hand, we also have $w\left(B^{\prime}\right)=w\left(B^{\prime \prime}\right)=\sqrt{2} / 2$. But neither B^{\prime} nor $B^{\prime \prime}$ is a direct summand of A. This is because if it is, then A would be unitarily similar to $B^{\prime} \oplus[0]$, which is impossible since $\operatorname{ker} A \cap \operatorname{ker} A^{*}=\{0\}$. However, A has the direct summand $\left[\begin{array}{cc}0 & \sqrt{2} \\ 0 & 0\end{array}\right]$ as dictated by Theorem 3.1(b) (cf. also [8, Theorem 1.1]).

Acknowledgments

The two authors acknowledge supports from the Ministry of Science and Technology of the Republic of China under projects MOST 103-2115-M-008-006 and NSC 102-2115-M-009-007, respectively. They also thank the (anonymous) referee for his incisive comments, which lead to major improvements of the results in Section 3.

References

[1] R. Bouldin, The essential minimum modulus, Indiana Univ. Math. J. 30 (1981), no. 4, 513-517.
[2] P. R. Halmos, A Hilbert Space Problem Book, 2nd Edition, Springer-Verlag, New YorkBerlin, 1982.
[3] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991.
[4] C. K. Li, B. S. Tam and P. Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl. 350 (2002) 1-23.
[5] M. Marcus and B. N. Shure, The numerical range of certain 0, 1-matrices, Linear Multilinear Algebra 7 (1979), no. 2, 111-120.
[6] D. Petz, Application of a lemma of Riesz and Sz.-Nagy, Acta Sci. Math. (Szeged) $\mathbf{5 7}$ (1993), no. 1-4, 215-222.
[7] M. C. Tsai and P. Y. Wu, Numerical ranges of weighted shift matrices, Linear Algebra Appl. 435 (2011), no. 9, 243-254.
[8] S. H. Tso and P. Y. Wu, Matricial ranges of quadratic operators, Rocky Mountain J. Math. 29 (1999), no. 3, 1139-1152.
(Hwa-Long Gau) Department of Mathematics, National Central University, ChunGli 32001, TAIWAN.

E-mail address: hlgau@math.ncu.edu.tw
(Pei Yuan Wu) Department of Applied Mathematics, National Chiao Tung University, Hsinchu 30010, Taiwan.

E-mail address: pywu@math.nctu.edu.tw

[^0]: Article electronically published on December 31, 2015.
 Received: 4 September 2014, Accepted: 2 December 2014.

 * Corresponding author.

