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Abstract. For an n-by-n complex matrix A in a block form with the

(possibly) nonzero blocks only on the diagonal above the main one, we
consider two other matrices whose nonzero entries are along the diagonal
above the main one and consist of the norms or minimum moduli of the
diagonal blocks of A. In this paper, we obtain two inequalities relating

the numeical radii of these matrices and also determine when either of
them becomes an equality.
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1. Introduction

An n-by-n complex matrix A is called a block shift if it is of the form
0 A1

0
. . .

. . . Ak−1

0

 ,

where Aj ’s are in general rectangular matrices. In this paper, we obtain sharp
upper and lower bounds for the numerical radius of such a matrix. Recall that
the numerical radius w(X) of an n-by-n matrix X is the quantity

max{|⟨Xx, x⟩| : x ∈ Cn, ∥x∥ = 1},
where ⟨·, ·⟩ and ∥ · ∥ denote the standard inner product and norm of vectors
in Cn, respectively. Note that w(X) is the radius of the smallest circular disc
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Upper and lower bounds for numerical radii of block shifts 16

centered at the origin which contains the numerical range

W (X) = {⟨Xx, x⟩ : x ∈ Cn, ∥x∥ = 1}

of X. For properties of the numerical range and numerical radius, the reader
is referred to [2, Chapter 22] or [3, Chapter 1].

Note that if A is a block shift of the above form, then it is unitarily similar to
eiθA for all real θ. Hence its numerical range is a closed circular disc centered
at the origin with radius equal to its numerical radius. To estimate the latter,
we consider the scalar matrices

B =


0 ∥A1∥

0
. . .

. . . ∥Ak−1∥
0

 and B′ =


0 m(A1)

0
. . .

0 m(Ak−1)
0

 ,

where m(·) denotes the minimum modulus of a matrix. Recall that the mini-
mum modulus m(X) of an m-by-n matrix X is, by definition, min{∥Xx∥ : x ∈
Cn, ∥x∥ = 1}. In Sections 2 and 3 below, we show that w(B′) ≤ w(A) ≤ w(B)
always hold, and that, under the extra condition that Aj ’s are all nonzero
(resp., m(Aj)’s are nonzero), w(A) = w(B) (resp., w(A) = w(B′)) implies that
B (resp., B′) is a direct summand of A (cf. Theorem 2.1 and Corollary 3.3).
Examples are given showing that the nonzero conditions on Aj ’s are essential.

2. Upper bound

The main result of this section is the following theorem.

Theorem 2.1. Let

(2.1) A =


0 A1

0
. . .

. . . Ak−1

0

 on Cn = Cn1 ⊕ · · · ⊕ Cnk

be an n-by-n block shift, where Aj is an nj-by-nj+1 matrix for 1 ≤ j ≤ k − 1,
and let

B =


0 ∥A1∥

0
. . .

. . . ∥Ak−1∥
0

 on Ck.



17 Gau and Wu

Express A and B as
∑m

j=1 ⊕A′
j and

∑m
j=1 ⊕B′

j, respectively, where A′
j (resp.,

B′
j) is either a zero matrix or of the form


0 As

0
. . .

. . . At

0

 (resp.


0 ∥As∥

0
. . .

. . . ∥At∥
0

)

with 1 ≤ s ≤ t ≤ k − 1 and the Aj’s in such expressions all nonzero. Then

(a) w(A) ≤ w(B),
(b) w(A) = w(B) if and only if A is unitarily similar to B′

j0
⊕C, where j0

(1 ≤ j0 ≤ m) is such that w(A′
j0
) = maxj w(A

′
j) (= w(A)), and C is a

block shift with w(C) ≤ w(B′
j0
), and

(c) under the assumption that Aj ̸= 0 for all j in (2.1), we have w(A) =
w(B) if and only if A is unitarily similar to B⊕C, where C is a block
shift with w(C) ≤ w(B).

Proof. (a) Let x = [x1 . . . xk]
T be a unit vector in Cn such that |⟨Ax, x⟩| =

w(A). Hence

w(A) =

∣∣∣∣∣∣∣∣∣∣
⟨


0 A1

0
. . .

. . . Ak−1

0


 x1

...
xk

 ,

 x1

...
xk

⟩
∣∣∣∣∣∣∣∣∣∣

=
∣∣∣ k−1∑
j=1

⟨Ajxj+1, xj⟩
∣∣∣

≤
k−1∑
j=1

|⟨Ajxj+1, xj⟩|

≤
k−1∑
j=1

∥Aj∥∥xj+1∥∥xj∥(2.2)

=
⟨


0 ∥A1∥

0
. . .

. . . ∥Ak−1∥
0


 ∥x1∥

...
∥xk∥

 ,

 ∥x1∥
...

∥xk∥

⟩

≤w(B),(2.3)

where the last inequality follows from the fact that [∥x1∥ . . . ∥xk∥]T is a unit
vector in Ck.
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(b) Assume that w(A) = w(B). Let A′
j0

(1 ≤ j0 ≤ m) be such that w(A′
j0
) =

maxj w(A
′
j) = w(A). Then

w(A) = w(A′
j0) ≤ w(B′

j0) ≤ w(B) = w(A),

where the first inequality follows from (a). This yields equalities throughout.
Hence considering A′

j0
and B′

j0
instead of A and B, we may assume that Aj ’s

in (2.1) are all nonzero. The assumption w(A) = w(B) also yields equalities
throughout the chain of inequalities in the proof of (a). Since B is an (entry-
wise) nonnegative matrix with irreducible real part, the equality in (2.3) yields,
by [4, Proposition 3.3], that xj ̸= 0 for all j. Let x̂j = [0 . . . 0 xj

jth

0 . . . 0]T

for 1 ≤ j ≤ k, and let K be the subspace of Cn spanned by x̂j ’s. The equality
in (2.2) implies that

(2.4) |⟨Ajxj+1, xj⟩| = ∥Ajxj+1∥∥xj∥ = ∥Aj∥∥xj+1∥∥xj∥.

Hence Ajxj+1 = ajxj for some scalar aj . Therefore, Ax̂1 = 0 and

Ax̂j = [0 . . . 0 Aj−1xj

(j−1)st

0 . . . 0]T = [0 . . . 0 aj−1xj−1

(j−1)st

0 . . . 0]T = aj−1x̂j−1

is in K for all j, 2 ≤ j ≤ k. This shows that AK ⊆ K.
We next prove thatA∗K ⊆ K. Indeed, we have A∗x̂j = [0 . . . 0 A∗

jxj

(j+1)st

0 . . . 0]T

for 1 ≤ j ≤ k − 1. Since

|aj |∥xj∥2 = ∥ajxj∥∥xj∥ = ∥Ajxj+1∥∥xj∥ = ∥Aj∥∥xj+1∥∥xj∥

by (2.4), the nonzeroness of Aj ’s and xj ’s yields the same for aj ’s. Letting
Bj = Aj/∥Aj∥ and yj = (∥Aj∥/aj)xj+1, we have Bjyj = (1/aj)Ajxj+1 = xj

with ∥Bj∥ = 1 and

∥yj∥ =
∥Aj∥
|aj |

∥xj+1∥ =
∥Ajxj+1∥

|aj |
= ∥xj∥

by (2.4). It follows from an extension of a lemma of Riesz and Sz.-Nagy that
B∗

j xj = yj (cf. [6, p. 215]). Therefore, we have A∗
jxj = (∥Aj∥2/aj)xj+1, which

shows that A∗
j x̂j = (∥Aj∥2/aj)x̂j+1 is in K for 1 ≤ j ≤ k − 1. Moreover, we

also have A∗x̂k = 0. Thus A∗K ⊆ K as asserted.
Since {x̂j/∥xj∥}kj=1 is an orthonormal basis of K, A(x̂1/∥x1∥) = 0, and

A(
x̂j

∥xj∥
) =

aj−1∥xj−1∥
∥xj∥

x̂j−1

∥xj−1∥
=

aj−1

|aj−1|
∥aj−1xj−1∥

∥xj∥
x̂j−1

∥xj−1∥

=
aj−1

|aj−1|
∥Aj−1xj∥

∥xj∥
x̂j−1

∥xj−1∥
=

aj−1

|aj−1|
∥Aj−1∥

x̂j−1

∥xj−1∥
for 2 ≤ j ≤ k by (2.4), we derive that the restriction A|K is unitarily similar
to B. Thus A is unitarily similar to B ⊕ (A|K⊥). We now show that A|K⊥ is
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unitarily similar to a block shift. Indeed, let Ĥj = 0⊕· · ·⊕0⊕Cnj

jth

⊕0⊕· · ·⊕0,

Kj = Cnj ⊖
∨
{xj}, and K̂j = 0⊕· · ·⊕ 0⊕Kj

jth

⊕0⊕· · ·⊕0 for 1 ≤ j ≤ k. Then

K⊥ = K1 ⊕ · · · ⊕Kk. Since AĤj+1 ⊆ Ĥj and A∗x̂j ∈
∨
{x̂j+1} from before,

we have AK̂j+1 ⊆ K̂j for 1 ≤ j ≤ k − 1. Moreover, AĤk = {0} implies that

AK̂k = {0}. We conclude that C ≡ A|K⊥ is unitarily similar to a block shift
with w(C) ≤ w(A) = w(B). This proves one direction of (b). The converse is
trivial.

(c) is an easy consequence of (b). □

Corollary 2.2. Let A be an n-by-n block shift as in (2.1). Then

(a) w(A) ≤ ∥A∥ cos(π/(k + 1)), and
(b) w(A) = ∥A∥ cos(π/(k + 1)) if and only if A is unitarily similar to

(∥A∥Jk)⊕C, where C is a block shift with w(C) ≤ ∥A∥ cos(π/(k+1)).

Here Jk denotes the k-by-k Jordan block


0 1

0
. . .

. . . 1
0

 ,

whose numerical range is known to be {z ∈ C : |z| ≤ cos(π/(k + 1))} (cf. [5]).
The assertions in Corollary 2.2 are easy consequences of Theorem 2.1 and [4,

Corollary 3.6].
We remark that the assertion in Theorem 2.1(c) still holds for n ≤ 5 even

without the nonzero assumption on Aj ’s. This can be proven via a case-by-
case verification by invoking, in most cases, the known result on the numerical
ranges of square-zero matrices (cf. [8, Theorem 2.1]), which we omit. This is
no longer the case for n ≥ 6. Here we give a counterexample for n = 6.

Example 2.3. Let

A =


0

√
2
0 0

0 1 0
0 0 0
0 0 1

0


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with A1 = [
√
2], A2 = [0], A3 = [1 0] and A4 =

[
0
1

]
. Then

B =


0

√
2
0 0

0 1
0 1

0

 ,

and thus

A =

[
0

√
2

0 0

]
⊕
[

0 1
0 0

]
⊕
[

0 1
0 0

]
and B =

[
0

√
2

0 0

]
⊕

 0 1
0 1

0

 .

Hence w(A) = w(B) =
√
2/2, but B is not a direct summand of A. To see

the latter, note that kerA ∩ kerA∗ = {0}. Hence A cannot have the 1-by-1
zero matrix [0] as a direct summand, and thus A cannot be unitarily similar
to B ⊕ [0], or B is not a direct summand of A. However, A has the direct

summand
[

0
√
2

0 0

]
as dictated by Theorem 2.1(b).

3. Lower bound

Let A be an n-by-n block shift as in (2.1). For each j, 1 ≤ j ≤ k − 1, let
Bj = [0] if Aj = 0, and, when Aj ̸= 0, let
(3.1)

Bj =



0 m(Asj )

0
. . .

. . . m(Aj−1)
0 ∥Aj∥

0 m(A∗
j+1)

0
. . .

. . . m(A∗
tj
)

0



on Ctj−sj+2,

where sj = min{ℓ : 1 ≤ ℓ ≤ j − 1,m(Aℓ) · · ·m(Aj−1) ̸= 0} and tj = max{ℓ :
j + 1 ≤ ℓ ≤ k − 1,m(A∗

j+1) · · ·m(A∗
ℓ ) ̸= 0}. Note that

Bj=



0 ∥Aj∥
0 m(A∗

j+1)

0
. . .

. . . m(A∗
tj

)

0


(resp.,



0 m(Asj
)

0
. . .

. . . m(Aj−1)
0 ∥Aj∥

0


)

if j = 1 or m(Aj−1) = 0 (resp., j = k − 1 or m(A∗
j+1) = 0).

The following is the main result of this section.
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Theorem 3.1. Let A and Bj, 1 ≤ j ≤ k − 1, be as above. Then

(a) w(A) ≥ maxj w(Bj),
(b) w(A) = w(Bj) for some j if and only if A is unitarily similar to Bj⊕C,

where C is a block shift with w(C) ≤ w(Bj).

The next lemma gives some basic properties of the minimum modulus of a
rectangular matrix. For a square matrix (or, for that matter, an operator on a
possibly infinite-dimensional Hilbert space), these appeared in [1, Theorem 1].

Lemma 3.2. Let A be an m-by-n matrix. Then

(a) m(A) > 0 if and only if A is left invertible,
(b) m(A) equals the minimum singular value of A, and
(c) if m < n, then m(A) = 0.

Proof. (a) Note that m(A) > 0 means that there is a c > 0 such that ∥Ax∥ ≥
c∥x∥ for all x in Cn, which is equivalent to the well-definedness of the linear
transformation Ax 7→ x from the range of A to Cn, or to the left-invertibility
of A.

(b) Consider the polar decomposition of A: A = V (A∗A)1/2, where V is an
m-by-n partial isometry with kerV = kerA (cf. [2, Problem 134]). Then

m(A) = min{∥Ax∥ : x ∈ Cn, ∥x∥ = 1}

= min{∥V (A∗A)1/2x∥ : x ∈ Cn, ∥x∥ = 1}

= min{∥(A∗A)1/2x∥ : x ∈ Cn, ∥x∥ = 1}

=minimum eigenvalue of (A∗A)1/2

=minimum singular value of A.

(c) This is an easy consequence of (a) or (b). □

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. (a) We need to show that w(A) ≥ w(Bj) for all j. If
Aj = 0, then obviously w(A) ≥ 0 = w(Bj). Now we assume that Aj ̸= 0. Let
xj+1 be a unit vector in Cnj+1 such that ∥Ajxj+1∥ = ∥Aj∥. For any i, sj ≤ i ≤
j − 1, we have m(Ai) > 0 and hence kerAi = {0} by Lemma 3.2(a). Thus we
may let xi = Aixi+1/∥Aixi+1∥ for i = j, j − 1, . . . , sj successively. Similarly,
since m(A∗

i ) > 0 for j + 1 ≤ i ≤ tj , we may let xi = A∗
i−1xi−1/∥A∗

i−1xi−1∥
for each i, j + 2 ≤ i ≤ tj + 1. Such xi’s are unit vectors in Cni ’s. On the
other hand, since Bj is an (entrywise) nonnegative matrix with irreducible
real part, there is a unit vector u = [rsj . . . rtj+1]

T in Ctj−sj+2 with rj >
0 for all j such that ⟨Bju, u⟩ = w(Bj) (cf. [4, Proposition 3.3]). Let û =
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[0 . . . 0 rsjxsj . . . rtj+1xtj+1 0 . . . 0]T in Cn. Then û is a unit vector and

⟨Aû, û⟩ =
tj∑

i=sj

⟨Ai(ri+1xi+1), rixi⟩

=

j∑
i=sj

ri+1ri
⟨
Aixi+1,

Aixi+1

∥Aixi+1∥
⟩
+

tj∑
i=j+1

ri+1ri
⟨ A∗

i xi

∥A∗
i xi∥

, A∗
i xi

⟩
=

j∑
i=sj

ri+1ri∥Aixi+1∥+
tj∑

i=j+1

ri+1ri∥A∗
i xi∥

≥
( j−1∑

i=sj

ri+1rim(Ai)
)
+ rj+1rj∥Aj∥+

( tj∑
i=j+1

ri+1rim(A∗
i )
)

(3.2)

= ⟨Bju, u⟩ = w(Bj).

Hence w(A) ≥ ⟨Aû, û⟩ ≥ w(Bj) as asserted.
(b) Assume that w(A) = w(Bj) for some j. From above, we have w(A) =

⟨Aû, û⟩ = w(Bj) and an equality in (3.2). We derive from the latter that
∥Aixi+1∥ = m(Ai) for sj ≤ i ≤ j − 1, and ∥A∗

i xi∥ = m(A∗
i ) for j + 1 ≤

i ≤ tj . We now check that Asj−1xsj = 0 and A∗
tj+1xtj+1 = 0. To prove the

former, assume otherwise that Asj−1xsj ̸= 0 and sj ≥ 2. Then let xsj−1 =
Asj−1xsj/∥Asj−1xsj∥ and

D =

[
0 ∥Asj−1xsj∥ 0 . . . 0

Bj

]

=



0 ∥Asj−1xsj∥
0 m(Asj )

0
. . .

. . . m(Aj−1)
0 ∥Aj∥

0 m(A∗
j+1)

0
. . .

. . . m(A∗
tj )

0



.

Since ∥Asj−1xsj∥,m(Asj ), . . . ,m(Aj−1), ∥Aj∥,m(A∗
j+1), . . . ,m(A∗

tj ) > 0, we

infer from [7, Lemma 5 (3)] that w(D) > w(Bj) and from [4, Proposition 3.3]
that there is a unit vector v = [psj−1 . . . ptj+1]

T in Ctj−sj+3 with pi > 0 for all i

such that ⟨Dv, v⟩ = w(D). Let v̂ = [0 . . . 0 psj−1xsj−1 . . . ptj+1xtj+1 0 . . . 0]T
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in Cn. Then v̂ is a unit vector and

⟨Av̂, v̂⟩ =
tj∑

i=sj−1

⟨Ai(pi+1xi+1), pixi⟩

=

tj∑
i=sj−1

pi+1pi
⟨
Aixi+1, xi

⟩

=

j∑
i=sj−1

pi+1pi∥Aixi+1∥+
tj∑

i=j+1

pi+1pi∥A∗
i xi∥

= psjpsj−1∥Asj−1xsj∥+
( j−1∑

i=sj

pi+1pim(Ai)
)
+ pj+1pj∥Aj∥+

( tj∑
i=j+1

pi+1pim(A∗
i )
)

= ⟨Dv, v⟩ = w(D) > w(Bj).

This yields w(A) ≥ ⟨Av̂, v̂⟩ > w(Bj), which contradicts our assumption. Thus
we must have Asj−1xsj = 0.

The proof for A∗
tj+1xtj+1 = 0 is analogous to the above. Indeed, assume

that A∗
tj+1xtj+1 ̸= 0 and tj ≤ k − 2. Let xtj+2 = A∗

tj+1xtj+1/∥A∗
tj+1xtj+1∥ and

D =


Bj

0
.
.
.
0

∥A∗
tj+1xtj+1∥

0

 =



0 m(Asj )

0
. . .

. . . m(Aj−1)

0 ∥Aj∥
0 m(A∗

j+1)

0
. . .

. . . m(A∗
tj
)

0 ∥A∗
tj+1xtj+1∥

0



.

As before, we have w(D) > w(Bj) and there is a unit vector w = [qsj . . . qtj+2]
T

in Ctj−sj+3 with qi > 0 for all i such that ⟨Dw,w⟩ = w(D). Let ŵ =
[0 . . . 0 qsjxsj . . . qtj+2xtj+2 0 . . . 0]T in Cn. Then ŵ is a unit vector
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and

⟨Aŵ, ŵ⟩ =
tj+1∑
i=sj

⟨Ai(qi+1xi+1), qixi⟩

=

tj+1∑
i=sj

qi+1qi
⟨
Aixi+1, xi

⟩

=
( j∑

i=sj

qi+1qi∥Aixi+1∥
)
+

( tj+1∑
i=j+1

qi+1qi⟨xi+1, A
∗
i xi⟩

)

=
( j−1∑

i=sj

qi+1qim(Ai)
)
+ qj+1qj∥Aj∥+

( tj∑
i=j+1

qi+1qim(A∗
i )
)
+qtj+2qtj+1∥A∗

tj+1xtj+1∥

=⟨Dw,w⟩ = w(D) > w(Bj).

We thus obtain w(A) ≥ ⟨Aŵ, ŵ⟩ > w(Bj), a contradiction. HenceA∗
tj+1xtj+1 =

0 holds.
Let x̂i = [0 . . . 0 xi 0 . . . 0]T for sj ≤ i ≤ tj +1, and let K be the subspace

of Cn spanned by the x̂i’s. Since Asj−1xsj = 0 as proven above, we have
Ax̂sj = 0. Since Ai−1xi = ∥Ai−1xi∥xi−1 for sj + 1 ≤ i ≤ j + 1, we also have

Ax̂i = [0 . . . 0 Ai−1xi 0 . . . 0]T = ∥Ai−1xi∥x̂i−1

for such i’s. We now check that Ax̂i = m(A∗
i−1)x̂i−1 for j + 2 ≤ i ≤ tj + 1.

Indeed, since ∥A∗
i−1xi−1∥ = m(A∗

i−1) from before, we have⟨(
Ai−1A

∗
i−1 −m(A∗

i−1)
2Ini−1

)
xi−1, xi−1

⟩
= ∥A∗

i−1xi−1∥2 −m(A∗
i−1)

2 = 0.

The positive semidefiniteness of Ai−1A
∗
i−1 −m(A∗

i−1)
2Ini−1 yields that

Ai−1A
∗
i−1xi−1 = m(A∗

i−1)
2xi−1. Hence

Ai−1xi = Ai−1

A∗
i−1xi−1

∥A∗
i−1xi−1∥

=
m(A∗

i−1)
2xi−1

m(A∗
i−1)

= m(A∗
i−1)xi−1,

and therefore Ax̂i = m(A∗
i−1)x̂i−1 as asserted. These show that AK ⊆ K.

We next show that A∗K ⊆ K. Indeed, for sj ≤ i ≤ j−1, we have ∥Aixi+1∥ =
m(Ai). Hence⟨(

A∗
iAi −m(Ai)

2Ini+1

)
xi+1, xi+1

⟩
= ∥Aixi+1∥2 −m(Ai)

2 = 0.

Since A∗
iAi ≥ m(Ai)

2Ini+1 , we infer that A∗
iAixi+1 = m(Ai)

2xi+1 and hence

A∗
i xi =

(
m(Ai)

2/∥Aixi+1∥
)
xi+1 = m(Ai)xi+1. It follows that A

∗x̂i = m(Ai)x̂i+1

is in K for sj ≤ i ≤ j − 1. For i = j, we have

∥A∗
jxj∥ ≤ ∥A∗

j∥ = ∥Aj∥ = ∥Ajxj+1∥ = ⟨Ajxj+1, xj⟩ = ⟨xj+1, A
∗
jxj⟩ ≤ ∥A∗

jxj∥.

Thus the equalities hold throughout. In particular, this implies that A∗
jxj

is a multiple of xj+1. Again, A∗x̂j is in K. For j + 1 ≤ i ≤ tj , we have
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A∗
i xi = ∥A∗

i xi∥xi+1, which implies that A∗x̂i = ∥A∗
i xi∥x̂i+1 is in K. Finally,

for i = tj + 1, since A∗
tj+1xtj+1 = 0, we have A∗x̂tj+1 = 0. Thus A∗K ⊆ K as

asserted.
From above, we conclude that A is unitarily similar to (A|K)⊕(A|K⊥). Since

{x̂sj , . . . , x̂tj+1} is an orthonormal basis of K and

Ax̂i =


0 if i = sj ,
m(Ai−1)x̂i−1 if sj + 1 ≤ i ≤ j,
∥Aj∥x̂j if i = j + 1,
m(A∗

i−1)x̂i−1 if j + 2 ≤ i ≤ tj + 1,

we infer that A|K is unitarily similar to Bj . The unitary similarity of A|K⊥

to a block shift follows as in the last part of the proof of Theorem 2.1(b). This
proves one direction of (b). The converse is trivial. □

Corollary 3.3. Let A be an n-by-n block shift as in (2.1), and let

B′ =


0 m(A1)

0
. . .

. . . m(Ak−1)
0


and

B′′ =


0 m(A∗

1)

0
. . .

. . . m(A∗
k−1)
0

 on Ck.

Then

(a) w(A) ≥ w(B′), w(B′′), and
(b) under the assumption of m(Aj) > 0 for all j (resp. m(A∗

j ) > 0 for
all j), we have w(A) = w(B′) (resp. w(A) = w(B′′)) if and only
if A is unitarily similar to B′ ⊕ C (resp. B′′ ⊕ C), where C is a
block shift with w(C) ≤ w(B′) (resp. w(C) ≤ w(B′′)). In this case,
m(Ak−1) = ∥Ak−1∥ (resp. m(A∗

1) = ∥A1∥).

Proof. We only prove for B′. The case involving B′′ can be dealt with analo-
gously.

(a) Note that B′ is unitarily similar to a matrix of the form (
∑r

i=1 ⊕B′
i)⊕0m,

where, for each i,

B′
i =


0 m(Api)

0
. . .

. . . m(Aqi)
0


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with m(Aℓ) > 0 for pi ≤ ℓ ≤ qi, 1 ≤ pi ≤ qi < pi+1 ≤ qi+1 ≤ k − 1, and
0m denotes the m-by-m zero matrix. Since m(Aj) ≤ ∥Aj∥ for all j, we have
w(B′

i) ≤ w(Ci), where

Ci =



0 m(Api)

0
. . .

. . . m(Aqi−1)
0 ∥Aqi∥

0


by [4, Corollary 3.6]. But, obviously, w(Ci) ≤ w(Bqi), where Bqi is given by
(3.1). Thus we obtain

w(B′) = max
1≤i≤r

w(B′
i) ≤ max

1≤i≤r
w(Ci) ≤ max

1≤i≤r
w(Bqi) ≤ max

1≤j≤k−1
w(Bj) ≤ w(A)

by Theorem 3.1(a).
(b) If m(Aj) > 0 for all j, then r = 1, B′ = B′

1 and C1 = Bk−1 in (a).
Hence if w(A) = w(B′), then w(B′) = w(Bk−1) = w(A). The first equality
yields m(Ak−1) = ∥Ak−1∥ by [4, Corollary 3.6] and thus B′ = Bk−1 while
the second equality implies, by Theorem 3.1(b), that A is unitarily similar to
Bk−1⊕C for some block shift C with w(C) ≤ w(Bk−1). Our assertion follows.
The converse is trivial. □

Corollary 3.4. Let A be an n-by-n block shift as in (2.1), and let m =
minj m(Aj). Then

(a) w(A) ≥ m · cos(π/(k + 1)), and
(b) w(A) = m · cos(π/(k + 1)) if and only if A is unitarily similar to

(mJk)⊕B, where B is a block shift with w(B) ≤ m · cos(π/(k + 1)).

This can be proven as Corollary 2.2 by using Corollary 3.3 and [4, Corollary
3.6].

Analogous to the situation in Section 2, the assertions in Corollary 3.3(b)
remain true for n ≤ 3 without the strict positivity assumptions on m(Aj)’s or
m(A∗

j )’s. This is no longer the case for n ≥ 4. A counterexample for n = 4 is
given below.

Example 3.5. Let

A =


0 1 1

0 0 1
0 0 −1

0


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with A1 = [1 1] and A2 =

[
1
−1

]
. In this case,

B′ =

 0 0

0
√
2
0

 and B′′ =

 0
√
2
0 0

0

 .

Since A2 = 0, we have w(A) = ∥A∥/2 =
√
2/2 (cf. [8, Theorem 2.1]). On the

other hand, we also have w(B′) = w(B′′) =
√
2/2. But neither B′ nor B′′ is a

direct summand of A. This is because if it is, then A would be unitarily similar
to B′ ⊕ [0], which is impossible since kerA∩ kerA∗ = {0}. However, A has the

direct summand
[

0
√
2

0 0

]
as dictated by Theorem 3.1(b) (cf. also [8, Theorem

1.1]).
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