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Abstract. Let P (λ) be an n-square complex matrix polynomial, and
1 ≤ k ≤ n be a positive integer. In this paper, some algebraic and geo-

metrical properties of the k-numerical range of P (λ) are investigated. In
particular, the relationship between the k-numerical range of P (λ) and
the k-numerical range of its companion linearization is stated. Moreover,
the k-numerical range of the basic A-factor block circulant matrix, which

is the block companion matrix of the matrix polynomial P (λ) = λmIn−A,
is studied.
Keywords: k-Numerical range, matrix polynomial, companion lineariza-
tion, basic A-factor block circulant matrix.
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1. Introduction and preliminaries

Let Mn×m be the vector space of all n × m complex matrices. For the
case n = m, Mn×n is denoted by Mn; namely, the algebra of all n× n complex
matrices. Throughout the paper, k,m and n are considered as positive integers,
and k ≤ n. Moreover, Ik denotes the k×k identity matrix. The set of all n×k
isometry matrices is denoted by Xn×k,; i.e., Xn×k = {X ∈ Mn×k : X∗X = Ik}.
Also, the group of n×n unitary matrices is denoted by Un; namely, Un = {U ∈
Mn : U∗U = In} = Xn×n. The notion of the k-numerical range of A ∈ Mn,
which was first introduced by P. R. Halmos [10], is defined and denoted by

Wk(A) = {1
k
tr (X∗AX) : X ∈ Xn×k},
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where tr(.) denotes the trace. The sets Wk(A), where k ∈ {1, 2, . . . , n}, are
generally called higher numerical ranges of A. When k = 1, we have the clas-
sical numerical range W1(A) = W (A) := {x∗Ax : x ∈ Cn, x∗x = 1}, which
has been studied extensively; see for example [9] and [12, Chapter 1]. Motiva-
tion of our study comes from finite-dimensional quantum systems. In quantum
physics, e.g., see [8], quantum states are represented by density matrices, i.e.,
positive semidefinite matrices with trace one. If a quantum state D ∈ Mn has
rank one, i.e., D = xx∗ for some x ∈ Cn with x∗x = 1, then D is called a pure
quantum state; otherwise, D is said to be a mixed quantum state, which can
be written as a convex combination of pure quantum states. So, for A ∈ Mn,
we have W (A) = {tr(AD) : D ∈ Mn is a pure quantum state}. Also, by the
fact that the convex hull of the set { 1

kP : P ∈ Mn, P 2 = P = P ∗, tr(P ) = k}
equals to the set Sk of density matrices D ∈ Mn satisfying 1

k In −D is positive
semidefinite, we have

Wk(A) = {1
k
tr(AP) : P ∈ Mn, P2 = P = P∗, tr(P) = k}

= {tr(AD) : D ∈ Sk}.
Let A ∈ Mn have eigenvalues λ1, λ2, . . . , λn counting multiplicities. The set of
all k-averages of eigenvalues of A is denoted by σ(k)(A); namely,

σ(k)(A) = {1
k
(λi1 + λi2 + · · ·+ λik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}.

Notice that if k = 1, then σ(1)(A) = σ(A), i.e., the spectrum of A. Next, we
list some properties of the k-numerical range of matrices which will be useful
in our discussion. For more details, see [6, 10, 14,15,18].

Proposition 1.1. Let A ∈ Mn. Then the following assertions are true:
(i) Wk(A) is a compact and convex set in C;
(ii) conv

(
σ(k)(A)

)
⊆ Wk(A), where conv(S) denotes the convex hull of a set

S ⊆ C. The equality holds if A is normal;
(iii) { 1

n tr(A)} = Wn(A) ⊆ Wn−1(A) ⊆ · · · ⊆ W2(A) ⊆ W1(A) = W(A);
(iv) If V ∈ Xn×s, where k ≤ s ≤ n, then Wk (V

∗AV ) ⊆ Wk(A). The equality
holds if s = n, i.e., Wk (U

∗AU) = Wk(A), where U ∈ Un;
(v) For any α, β ∈ C, Wk(αA+ βIn) = αWk(A) + β, and for the case k < n,
Wk(A) = {α} if and only if A = αIn;

(vi) Wk(A
∗) = Wk(A);

(vii) For the case k < n, Wk(A) ⊆ R if and only if A is Hermitian.

At the end of this section, we give some information about matrix polyno-
mials. Notice that matrix polynomials arise in many applications and their
spectral analysis is very important when studying linear systems of ordinary
differential equations with constant coefficients; e.g., see [7]. Suppose that

(1.1) P (λ) = Amλm +Am−1λ
m−1 + · · ·+A1λ+A0
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is a matrix polynomial, where Ai ∈ Mn (i = 0, 1, . . . ,m), Am ̸= 0 and λ is a
complex variable. The numbers m and n are referred as the degree and the
order of P (λ), respectively. The matrix polynomial P (λ), as in (1.1), is called
a monic matrix polynomial if Am = In. It is said to be a selfadjoint matrix
polynomial if all the coefficients Ai are Hermitian matrices. A scalar λ0 ∈ C is
an eigenvalue of P (λ) if the system P (λ0)x = 0 has a nonzero solution x0 ∈ Cn.
This solution x0 is known as an eigenvector of P (λ) corresponding to λ0, and
the set of all eigenvalues of P (λ) is said to be the spectrum of P (λ); namely,

σ[P (λ)] = {µ ∈ C : det(P (µ)) = 0}.
The (classical) numerical range of P (λ) is defined and denoted by

W [P (λ)] := {µ ∈ C : x∗P (µ)x = 0 for some nonzerox ∈ Cn},
which is closed and contains σ[P (λ)]. The numerical range of matrix polyno-
mials plays an important role in the study of overdamped vibration systems
with finite number of degrees of freedom, and it is also related to the stability
theory; e.g., see [13] and its references. Notice that the notion of W [P (λ)] is
a generalization of the classical numerical range of a matrix A ∈ Mn; namely,
W [λIn −A] = W (A).
Let C ∈ Mn and P (λ) be a matrix polynomial as in (1.1). The C-numerical
range and the C-spectrum of P (λ) are, respectively, defined and denoted, see [1],
by

(1.2) WC [P (λ)] = {µ ∈ C : tr(CU∗P(µ)U) = 0 for some U ∈ Un} ,
and

(1.3)
σC [P (λ)] = {µ ∈ C :

n∑
j=1

γjα
(µ)
ij

= 0 for some permutation

(i1, . . . , in) of {1, 2, . . . , n}},

where γ1, . . . , γn are the eigenvalues of C, and for µ ∈ C, α
(µ)
1 , . . . , α

(µ)
n are

the eigenvalues of the matrix P (µ) ∈ Mn. Denote by Eij ∈ Mn, where i, j ∈
{1, 2, . . . , n}, the matrix whose (i, j)-entry is equal to one and all the others are
equal to zero. For the case C = E11 ∈ Mn, we have WE11

[P (λ)] = W [P (λ)] and
σE11 [P (λ)] = σ[P (λ)]. So, WC [P (λ)] is a generalization of the numerical range
of P (λ). In the last few years, the generalization of the numerical range of
matrix polynomials has attracted much attention and many interesting results
have been obtained; e.g., see [1–3, 19] and [20]. In this paper, we continue
the study of the C-numerical range of matrix polynomials for the case C =
1
kE11 + 1

kE22 + · · · + 1
kEkk ∈ Mn. For this, in Section 2, we introduce the

notion of the k-numerical range of matrix polynomials as a spacial case of the
C-numerical range of matrix polynomials, and we state all results from [1]
which hold for this set. In Section 3, we study the relationship between the
k-numerical range of a matrix polynomial and the k-numerical range of its
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companion linearization. In this section, the emphasis is on the study algebraic
and geometrical properties of the k-numerical range of the basic A-factor block
circulant matrix, which is the block companion matrix of the matrix polynomial
P (λ) = λmIn−A. In Section 4, we study the number of connected components,
the isolated points and the boundedness of the k-numerical range of matrix
polynomials.

2. k-numerical range of matrix polynomials

The our aim of this section is to introduce the notion of k-numerical range
of matrix polynomials and also is to state all results from [1] which are hold
for this notion. For this, let P (λ) = Amλm+Am−1λ

m−1+ · · ·+A1λ+A0 be a
matrix polynomial as in (1.1). By setting C = 1

k (E11+E22+· · ·+Ekk) ∈ Mn in
(1.2), we denote WC [P (λ)] by Wk[P (λ)], and we call this set as the k-numerical
range of P (λ); namely,

(2.1) Wk[P (λ)] = {µ ∈ C : tr(X∗P(µ)X) = 0 for some X ∈ Xn×k} .
Also, in this case, we denote the C-spectrum of P (λ), σC [P (λ)] as in (1.3), by
σ(k)[P (λ)]; namely,

(2.2) σ(k)[P (λ)] =
{
µ ∈ C : 0 ∈ σ(k)(P (µ))

}
.

We also define the joint k-numerical range of P (λ) as the joint k-numerical
range of its coefficients, i.e.,

JWk[P (λ)] = Wk(A0, A1, . . . , Am)

:=

{(
1

k
tr(X∗A0X), . . . ,

1

k
tr(X∗AmX)

)
: X ∈ Xn×k

}
.

It is clear that:

Wk[P (λ)] = {µ ∈ C : 0 ∈ Wk(P (µ))}
= {µ ∈ C : amµm + · · ·+ a1µ+ a0 = 0,

(a0, a1, . . . , am) ∈ Wk(A0, A1, . . . , Am)} .

Moreover, if P (λ) = λIn − A, where A ∈ Mn, then Wk[P (λ)] = Wk(A) and
σ(k)[P (λ)] = σ(k)(A). The sets Wk[P (λ)], where k ∈ {1, 2, . . . , n}, are generally
called the higher numerical ranges of P (λ). Now we are ready to state all
results from [1] which hold for the k-numerical range of matrix polynomials.
Recall that these results follow from this fact that the matrix C in [1] equals
to 1

k (E11 + E22 + · · ·+ Ekk) ∈ Mn.
In the following theorem, we state some basic properties.

Theorem 2.1. [1, Theorem 2.3] Let P (λ) be a matrix polynomial as in (1.1).
Then the following assertions are true:
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(i) Wk[P (λ)] is a closed set in C which contains σ(k)[P (λ)];
(ii) Wk[P (λ+ α)] = Wk[P (λ)]− α, where α ∈ C;
(iii) Wk[αP (λ)] = Wk[P (λ)], where α ∈ C is nonzero;
(iv) If Q(λ) = λmP (λ−1) := A0λ

m +A1λ
m−1 + · · ·+Am−1λ+Am, then

Wk[Q(λ)] \ {0} = { 1
µ

: µ ∈ Wk[P (λ)], µ ̸= 0};

(v) If all the powers of λ in P (λ) are even (or all of them are odd), then
Wk[P (λ)] is symmetric with respect to the origin;
(vi) If P (λ) is a selfadjoint matrix polynomial, or if all A0, A1, . . . , Am are
real matrices, then Wk[P (λ)] is symmetric with respect to the real axis.

In the following theorem, some geometrical properties are stated.

Theorem 2.2. Let P (λ) be a matrix polynomial as in (1.1). Then the following
assertions are true:
(i) [1, Theorem 2.4] If 0 /∈ Wk(Am), then Wk[P (λ)] is bounded;
(ii) [1, Theorem 2.7] If µ ∈ ∂Wk[P (λ)], then 0 ∈ ∂Wk(P (µ));
(iii) [1, Theorem 3.3]

Wk[P (λ)] = {µ ∈ C : amµm + · · ·+ a1µ+ a0 = 0,

(a0, a1, . . . , am) ∈ conv (Wk(A0, A1, . . . , Am))}

(iv) [1, Theorem 3.1(ii)] Wk[P (λ)] =
∪

Wk[D(λ)], where the union is taken
over all diagonal matrix polynomials D(λ) of degree m and order n such
that JWk[D(λ)] ⊆ JWk[P (λ)];
(v) [1, Corollary 3.2] If (0, 0, . . . , 0) ∈ JWk[P (λ)], then Wk[P (λ)] = C;
(vi) [1, Theorem 3.4] If amµm + · · · + a1µ + a0 = 0, where µ ∈ C and
(a0, a1, . . . , am) ∈ Int(JWk[P (λ)]), then µ ∈ Int(Wk[P (λ)]). Here, Int(S) de-
notes the set of all interior points of S ⊆ C.

For the final result from [1], we recall that the k-numerical radius of A ∈ Mn

is

rk(A) = max
z∈Wk(A)

|z|.

Theorem 2.3. Let P (λ) = Amλm +Am−1λ
m−1 + · · ·+A1λ+A0, as in (1.1),

be a monic matrix polynomial (i.e., Am = In). Then:
(i) [1, Theorem 2.9] Wk[P (λ)] ⊆ {z ∈ C : p ≤ |z| ≤ 1 + q}, where

p =
dist (0,Wk(A0))

dist (0,Wk(A0)) + maxj=1,2,...,m rk(Aj)
and q = max

j=0,1,...,m−1
rk(Aj);

(ii) [1, Theorem 2.10] If µ /∈ Wk[P (λ)], then

Wk[P (λ)]
∩

{z ∈ C : | z − µ |< ρµ} = ∅,
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where ρµ = dist(0,Wk(P(µ)))

dist(0,Wk(P(µ)))+ 1
k maxj=1,2,...,m

∑k
i=1 si(

1
j!P

(j)(µ))
,

in which, for a matrix X ∈ Mn, s1(X) ≥ s2(X) ≥ · · · ≥ sn(X) are the sigular
values of X.

3. k-Numerical range of basic A-factor block circulant matrices

Consider a matrix polynomial P (λ) = Amλm+Am−1λ
m−1+ · · ·+A1λ+A0

as in (1.1), in which m ≥ 2. The companion linearization of P (λ) is defined,
e.g., see [7], as the following linear pencil L(λ) of order mn:

(3.1)

L(λ) =


In 0 0 · · · 0
0 In 0 · · · 0
... · · ·

. . . · · ·
...

0 · · · 0 In 0
0 0 · · · 0 Am

 λ

−



0 In 0 0 · · · 0
0 0 In 0 · · · 0
...

...
. . .

. . .
. . .

...
0 0 · · · 0 In 0
0 0 0 · · · 0 In

−A0 −A1 · · · · · · · · · −Am−1


.

By [7, page 186], there are unimodular matrix polynomials E(λ) and F (λ) of

order mn such that E(λ)L(λ)F (λ) =

(
P (λ) 0
0 In(m−1)

)
. So, every eigenvalue

of P (λ) is an eigenvalue of L(λ) with the same multiplicity, and vice versa.
Hence, for any positive integer 1 ≤ k ≤ mn,

σ(k)[P (λ)] = σ(k)[L(λ)].

Proposition 3.1. Let P (λ), as in (1.1), be a matrix polynomial such that all
the powers of λ are even (or all of them are odd). Moreover, let L(λ), as in
(3.1), be the companion linearization of P (λ), and 1 ≤ k ≤ mn be a positive
integer. Then Wk[L(λ)] is symmetric with respect to the origin.

Proof. Without loss of generality, we assume that all the powers of λ are even.
Now, let µ ∈ Wk[L(λ)] be given. Then there exists a

X =


x11 x12 · · · x1k

x21 x22 · · · x2k

...
... · · ·

...
xm1 xm2 · · · xmk

 ∈ Xmn×k,
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where xij ∈ Cn, such that tr(X∗L(µ)X) = 0. By setting

Y =


y11 y12 · · · y1k
y21 y22 · · · y2k
...

... · · ·
...

ym1 ym2 · · · ymk

 ∈ Mmn×k,

where yij =

{
xij for i odd

−xij for i even
we have Y ∗Y = X∗X = Ik and

tr (Y∗L(−µ)Y) = −tr (X∗L(µ)X) = 0.

So, −µ ∈ Wk[L(λ)], and hence the proof is complete. □

In the following theorem, which is a generalization of [17, Proposition 2.4],
we state the relationship between the k-numerical range of P (λ) and the k-
numerical range of its companion linearization L(λ).

Theorem 3.2. Let 1 ≤ k ≤ n be a positive integer, and P (λ), as in (1.1), be
a matrix polynomial with the companion linearization L(λ) as in (3.1). Then

Wk[P (λ)] ∪ {0} ⊆ Wk[L(λ)].

Proof. For any µ ∈ C and X ∈ Xn×k, we consider the following matrix:

Y =
1√

1 + |µ|2 + |µ|4 + · · ·+ |µ|2m−2


In
µIn
...

µm−1In

X ∈ Mmn×k.

Then we have Y ∗Y = X∗X = Ik, and

Y ∗L(µ)Y =
µm−1

1+ | µ |2 + · · ·+ | µ |2m−2
X∗P (µ)X. (∗)

Now, let µ ∈ Wk[P (λ)] ∪ {0} be given. We will show that µ ∈ Wk[L(λ)]. If
µ = 0, then by selecting any X ∈ Xn×k, the relation (∗) shows that Y ∈ Xmn×k

and tr (Y∗L(0)Y) = 0. So, 0 ∈ Wk[L(λ)].
If µ ∈ Wk[P (λ)], then by (2.1), there exists aX ∈ Xn×k such that tr (X∗P(µ)X)

= 0. Therefore, the relation (∗) shows that Y ∈ Xmn×k and tr (Y∗L(µ)Y) = 0.
Hence, µ ∈ Wk[L(λ)]. □

Corollary 3.3. If Wk[L(λ)] is bounded, then Wk[P (λ)] is also bounded.

The converse statement in Corollary 3.3 is not true, as is illustrated in the
following example.
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Example 3.4. Let P (λ) = I2λ
2−I2λ. So, by (2.1), we haveW2[P (λ)] = {0, 1},

which is bounded. The companion linearization of P (λ) is L(λ) = S1λ − S0,

where S1 =

(
I2 0
0 −I2

)
∈ M4 and S0 =

(
0 I2
I2 0

)
∈ M4. By setting X =(

e1 e3
)
∈ M4×2, where ei ∈ C4 is the ith standard vector, we have X ∈ X4×2

and tr(X∗S1X) = 0 = tr(X∗S0X). So, (0, 0) ∈ JW2[L(λ)], and hence, by
Theorem 2.2(v), W2[L(λ)] = C, which is unbounded.

For the remainder of this section, we study some algebraic and geometrical
properties of the k-numerical range of the companion linearization of the matrix
polynomial P (λ) = λmIn − A, where m ≥ 2 and A ∈ Mn. By (3.1), the
companion linearization of P (λ) is L(λ) = λImn −ΠA, where

(3.2) ΠA =


0 In 0 · · · 0
0 0 In · · · 0
...

...
. . .

. . .
...

0 0 · · · 0 In
A 0 · · · 0 0

 ∈ Mmn.

The matrix ΠA, as in (3.2), is called the basic A-factor block circulant ma-
trix. These matrices have important applications in vibration analysis and
differential equations. For more information, see [4, 5] and their references.

The following theorem shows thatWk(ΠA) is invariant under some rotations.

Theorem 3.5. Let A ∈ Mn, 1 ≤ k ≤ mn be a positive integer, and ω be an
mth root of unity (i.e., ωm = 1). Then

ωWk(ΠA) = Wk(ΠA).

Consequently, if m is even, then Wk(ΠA) is symmetric with respect to the
origin.

Proof. Since ωm = 1, there exists a θ ∈ R such that ω = eiθ. Let µ ∈ Wk(ΠA)
be arbitrary. Then, there exists a X ∈ Xmn×k such that µ = 1

k tr (X
∗ΠAX).

Consider Y = UθX, where

Uθ = diag
(
1, ei(m−1)θ, . . . , eiθ

)
⊗ In.

So, we have Y ∗Y = X∗X = Ik, and Y ∗ΠAY = e−iθX∗ΠAX. Therefore,
e−iθµ = e−iθ 1

k tr (X
∗ΠAX) =

1
k tr (Y

∗ΠAY) ∈ Wk(ΠA), and hence, Wk(ΠA) ⊆
eiθWk(ΠA). By changing θ by −θ, we see that eiθWk(ΠA) ⊆ Wk(ΠA). So, the
set equality holds.

If m is even, then by setting ω = −1 in the first case, we have that µ ∈
Wk(ΠA) if and only if −µ ∈ Wk(ΠA). So, the second assertion also holds, and
hence, the proof is complete. □
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Using Theorem 3.2, we state the following result. Recall that for any set
S ⊆ C, m

√
S := {µ ∈ C : µm ∈ S}.

Theorem 3.6. Let 1 ≤ k ≤ n be a positive integer, A ∈ Mn and ΠA be the
basic A-factor block circulant matrix as in (3.2). Then

conv
(

m
√

Wk(A)
)
= conv

(
m
√

Wk(A) ∪ {0}
)
⊆ Wk(ΠA).

Proof. Consider the matrix polynomial P (λ) = λmIn − A. The companion
linearization of P (λ) is L(λ) = λImn −ΠA. So, by Theorem 3.2, we have:

m
√
Wk(A) ∪ {0} = Wk[P (λ)] ∪ {0}

⊆ Wk[L(λ)]

= Wk(ΠA).

Now, since m ≥ 2, conv
(

m
√
Wk(A) ∪ {0}

)
= conv

(
m
√

Wk(A)
)
, and hence,

the result follows from the above inclusion and the fact that Wk(ΠA) is convex
(Proposition 1.1(i)). □

The set equality in Theorem 3.6 does not hold in general, which is illustrated
in the following example. We use a Matlab program from Li, which is available
at http : //people.wm.edu/ ∼ cklixx/mathlib.html, for plotting all shapes in
this section.

Example 3.7. Let A =

(
−1 0
0 1

)
∈ M2, k = 2 and m = 3. We have W2(A) =

{ 1
2 tr(A)} = {0} and so, conv

(
3
√
W2(A)

)
= {0}. Since A is unitary, by [2, The-

orem 3.3], ΠA is also a unitary matrix. Hence by Proposition 1.1(ii), we have
W2(ΠA) = conv

(
σ(2)(ΠA)

)
. By setting P (λ) = λ3I2 − A, the companion lin-

earization of P (λ) is L(λ) = λI6 −ΠA, and hence, we have σ(ΠA) = σ[L(λ)] =

σ[P (λ)] = 3
√
σ(A) = {1, ei 2π

3 , ei
4π
3 ,−1, ei

π
3 , ei

5π
3 }. So, σ(2)(ΠA) = {0,±1

2 (1 +

ei
π
3 ),± 1

2 (1 + ei
2π
3 ),±1

2 (e
iπ
3 + ei

2π
3 ),± 1

2 (e
iπ
3 + ei

5π
3 ),± 1

2 (−1 + ei
π
3 ),±1

2 (−1 +

ei
2π
3 )}. Hence,

W2(ΠA) = conv
(
σ(2)(A)

)
= conv

({
±1

2
(1 + ei

π
3 ),±1

2
(ei

π
3 + ei

2π
3 ),±1

2
(−1 + ei

2π
3 )

})
̸= {0},

which is shown in Figure 1.

In the following example, we characterize the k-numerical range of ΠA, for
the case A = In.
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Figure 1. W2(ΠA)

Example 3.8. Let m ≥ 2 be a positive integer, and ΠIn ∈ Mmn be the matrix
as in (3.2). It is clear that the eigenvalues of ΠIn , counting multiplicities, are

1, . . . , 1︸ ︷︷ ︸
n−times

, ω, . . . , ω︸ ︷︷ ︸
n−times

, ω2, . . . , ω2︸ ︷︷ ︸
n−times

, . . . , ωm−1, . . . , ωm−1︸ ︷︷ ︸
n−times

,

where ω = ei
2π
m . So, σ(k)(ΠIn) equals to all points of the following form:

(3.3)
1

k
(r0 + r1ω + r2ω

2 + · · ·+ rm−1ωm−1),

where 0 ≤ r0, r1, . . . , rm−1 ≤ k are positive integers and r0+r1+· · ·+rm−1 = k.
Since ΠIn is unitary, by Proposition 1.1(ii), we have

Wk(ΠIn) = conv(σ(k)(ΠIn)).

Now, we consider the following cases:
case 1: If 1 ≤ k ≤ n, then {1, ω, ω2, . . . , ωm−1} ⊆ σ(k)(ΠIn) and so,

Wk(ΠIn) = conv(σ(k)(ΠIn)) = conv({1, ω, . . . , ωm−1}).

case 2: If k = tn+ l, where 1 ≤ t ≤ m and 0 ≤ l ≤ n− 1 are integer numbers,
then by considering all the points of the form

pα =
1

k
(nωα1 + nωα2 + · · ·+ nωαt + lωαt+1) ,

where α = (α1, α2, . . . , αt+1) is a (t+1)-permutation of {0, 1, . . . , n−1}, we have

conv
(
σ(k)(ΠI)

)
= conv ({ pα : α = (α1, α2, . . . , αt+1) is a

(t+ 1)− permutation of {0, 1, . . . , n− 1}}) .
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For example, if m = 4 and n = 2, we see, as in Figure 2, that

W1(ΠI2) = W2(ΠI2) = conv({1, i,−1,−i}),

W3(ΠI2) = conv

({
2 + i

3
,
2i+ 1

3
,
2i− 1

3
,
i− 2

3
,
−2i− 1

3
,
−i− 2

3
,
2− i

3
,

1− 2i

3

})
,

W4(ΠI2) = conv

({
1 + i

2
,
i1
2
,
−1− i

2
,
1− i

2

})
,

W5(ΠI2) = conv

({
1 + 2i

5
,
2 + i

5
,
i

5
,
−i

5
=

2− i

5
,
1− 2i

5
,
−1 + 2i

5
,

−2 + i

5
,
−1− 2i

5
,
−2− i

5

})
= conv

({
1 + 2i

5
,
2 + i

5
,
2− i

5
,
1− 2i

5
,
−1 + 2i

5
,
−2 + i

5
,

−1− 2i

5
,
−2− i

5

})
,

W6(ΠI2) = conv

({
i

3
,
1

3
,
−i

3
,
−1

3

})
,

W7(ΠI2) = conv

({
i

7
,
1

7
,
−i

7
,
−1

7

})
,

and

W8(ΠI2) = {1
8
tr(ΠI2)} = {0}.

At the end of this section, we find a circular disk which contains Wk(ΠA).
Then, using this disk, we obtain an upper bound for rk(ΠA) and we show that
this bound is sharp.

Theorem 3.9. Let 1 ≤ k ≤ mn be a positive integer, A ∈ Mn and ΠA be the
basic A-factor block circulant matrix as in (3.2). Then

Wk(ΠA) ⊆ {µ ∈ C : |µ| ≤ 1 + ∥A− In∥},
where ∥.∥ is the spectral matrix norm (i.e., the matrix norm subordinate to the
Euclidian vector norm).

Proof. Let µ ∈ Wk(ΠA) be given. Then there exists a X ∈ Xmn×k such that
µ = 1

k tr (X
∗ΠAX). By setting

X =


x11 x12 · · · x1k

x21 x22 · · · x2k

...
... · · ·

...
xm1 xm2 · · · xmk

 ∈ Xmn×k,
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Figure 2. Wk(ΠI2), for k = 1, 2, 3, 4, 5, 6, 7

where xij ∈ Cn, we have:

µ =
1

k
tr (X∗ΠAX) =

1

k

(
k∑

j=1

m−1∑
i=1

x∗
ijx(i+1)j +

k∑
j=1

x∗
mjAx1j

)

=
1

k

(
k∑

j=1

m∑
i=1

x∗
ijx(i+1)j +

k∑
j=1

x∗
mj(A− In)x1j

)
,

where x(m+1)j := x1j for all 1 ≤ j ≤ k. Since X∗X = Ik,

| µ | ⩽ 1

k

(
k∑

j=1

m∑
i=1

∥ x∗
ij ∥∥ x(i+1)j ∥ +

k∑
j=1

∥ x∗
mj ∥∥ A− In ∥∥ x1j ∥

)
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⩽ 1

k

(
k∑

j=1

m∑
i=1

1

2
(∥xij∥2 + ∥x(i+1)j∥2) + k ∥ A− In ∥

)
= 1+ ∥ A− In ∥,

and hence the result holds. □

Corollary 3.10. Let 1 ≤ k ≤ mn be a positive integer, A ∈ Mn and ΠA be
the basic A-factor block circulant matrix as in (3.2). Then

rk(ΠA) ≤ 1+ ∥ A− In ∥ .

Moreover, for the case 1 ≤ k ≤ n, the estimate is sharp.

Proof. The first assertion follows directly from Theorem 3.9.
To show, for the case 1 ≤ k ≤ n, that the estimate is sharp, we consider A = In.
Then, by Example 3.8, we have:

Wk(ΠA) = conv
(

m
√

Wk(In)
)
= conv

(
{1, ω, ω2, . . . , ωm−1}

)
,

where ω = e
2π
m i. So, rk(ΠA) = 1 = 1+ ∥ A − In ∥, and hence, the proof is

complete. □

4. Additional results

In this section, we are going to continue the study of the k-numerical range
of matrix polynomials. By (2.1) and Proposition 1.1((iii) and (iv)), we have
the following result.

Proposition 4.1. Let P (λ) be a matrix polynomial as in (1.1). Then:
(i) {µ ∈ C : tr(Am)µ

m + · · ·+ tr(A1)µ+ tr(A0) = 0} = Wn[P (λ)]

⊆ Wn−1[P (λ)]

⊆ · · ·
⊆ W1[P (λ)]

= W [P (λ)];

(ii) If V ∈ Xn×s, where k ≤ s ≤ n, then Wk[V
∗P (λ)V ] ⊆ Wk[P (λ)]. The

equality holds if s = n, i.e., Wk[U
∗P (λ)U ] = Wk[P (λ)], where U ∈ Un.

It is known, e.g., see [13, Example 1], that W1[P (λ)] is not necessarily con-
nected. Now, we are going to study the number of connected components of
Wk[P (λ)]. For this, we need the following lemma.

Lemma 4.2. The set Xn×k is a path-connected set in Mn×k.

Proof. Let X,Y ∈ Xn×k be given. Then there exists a unitary matrix U ∈ Un

such that Y = UX. Since Un is path-connected [11, Lemma in p. 266], there
exists a continuous curve f : [0, 1] −→ Un such that f(0) = In and f(1) = U .
We know that the function g : Un −→ Xn×k with g(V ) = V X is continuous,
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and so, the function φ := g ◦f : [0, 1] −→ Xn×k is a continuous curve such that
φ(0) = X and φ(1) = Y . Hence, the result holds. □

Theorem 4.3. Let P (λ) be a matrix polynomial as in (1.1). If 0 /∈ Wk(Am),
then Wk[P (λ)] has no more than m connected components.

Proof. Let l be the minimum of the number of distinct roots of equations
tr(X∗P(λ)X) = 0 over all X ∈ Xn×k. Since 0 /∈ Wk(Am), the integer number
l belongs to {1, 2, . . . ,m}. Moreover, there exists a X0 ∈ Xn×k such that the
equation tr(x∗0P(λ)X0) = 0 has solution λ1, λ2, . . . , λm, in which exactly l roots
are distinct. Now, let X ∈ Xn×k be arbitrary. By Lemma 4.2, there exists
a continuous curve s : [0, 1] −→ Xn×k such that s(0) = X0 and s(1) = X.
Since 0 /∈ Wk(Am), tr(s(t)∗Ams(t)) ̸= 0 for all t ∈ [0, 1]. So, the solutions
λ1(t), λ2(t), . . . , λm(t) of the equation tr(s(t)∗P(λ)s(t)) = 0 are continuous
function of t. Thus the zeros of equation tr(X∗P(λ)X) = tr(s(1)∗P(λ)s(1)) = 0,
are connected to those of the equation tr(X∗

0P(λ)X0) = tr(s(0)∗P(λ)s(0)) =
0 by continuous curves in Wk[P (λ)], and hence, the zeros of the equation
tr(X∗P(λ)X) = 0 must lie in the connected components containing the zeros of
the equation tr(X∗

0P(λ)X0) = 0. So, Wk[P (λ)] has no more than l connected
components. Hence, the result holds. □

In the following theorem, which is a direct extension of [16, Theorem 2.1 and
its Corollary], we study the isolated points of the k-numerical range of matrix
polynomials.

Theorem 4.4. Let k < n and P (λ), as in (1.1), be a matrix polynomial such
that 0 /∈ Wk(Am). If λ1, λ2, . . . , λs are isolated points of Wk[P (λ)], then
(i) P (λj) = 0 for j = 1, 2, . . . , s;
(ii) P (λ) = (λ− λ1)

t1(λ− λ2)
t2 · · · (λ− λs)

tsP0(λ), where

Wk[P0(λ)] = Wk[P (λ)] \ {λ1, λ2, . . . , λs}.

Conversely, by the factorization in (ii) for P (λ), the scalars λ1, . . . , λs are
isolated points of Wk[P (λ)].

Proof. Without lost of generality, we assume that s = 1. We know that λ1 ∈
Wk[P (λ)]. Hence there exists a X ∈ Xn×k such that tr(X∗P(λ1)X)
= 0. Since 0 /∈ Wk(Am), in the same manner as in the proof of Theorem 4.3, for
every Y ∈ Xn×k, the roots of the equation tr(Y∗P(λ)Y) = 0 are connected to
those of the equation tr(X∗P(λ)X) = 0 by continuous curves inWk[P (λ)]. Now,
by the fact that λ1 is an isolated point of Wk[P (λ)], we have tr(Y∗P(λ1)Y) = 0.
Since Y ∈ Xn×k is arbitrary, Proposition 1.1(v) shows that P (λ1) = 0. So, we
have P (λ) = (λ − λ1)P1(λ), where P1(λ) is an n × n matrix polynomial of
degree m−1. If λ1 ∈ Wk[P1(λ)], then λ1 is an isolated point of Wk[P1(λ)], and
hence by the first case, there exists a matrix polynomial P2(λ) of degree m− 2
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such that P1(λ) = (λ− λ1)P2(λ). In this way, we can find a positive integer t1
such that

(4.1) P (λ) = (λ− λ1)
t1P0(λ),

where P0(λ) is an n×n matrix polynomial of degree m−t1 and λ1 /∈ Wk[P0(λ)].
Hence, the result in (ii) also holds. Conversely, if the factorization in (4.1)
holds and λ1 /∈ Wk[P0(λ)], then P (λ1) = 0 and λ1 is an isolated point of
Wk[P (λ)] = Wk[P0(λ)] ∪ {λ1}. So, the proof is complete. □

The result in Theorem 4.4 dose not hold for the case k = n, as is illustrated
in the following example.

Example 4.5. Consider the following quadratic matrix polynomial:

P (λ) =

(
1 0
0 0

)
λ2 +

(
0 1
1 0

)
λ+

(
1 1
0 −1

)
.

Then, by Theorem 4.1(i), W2[P (λ)] = {0}. So, 0 is an isolated point of

W2[P (λ)]. But P (0) =

(
1 1
0 −1

)
̸= 0.

At the end of this section, we study the boundedness of the k-numerical range
of matrix polynomials. We recall, e.g., see Theorem 2.2(i), that if 0 /∈ Wk(Am),
thenWk[P (λ)] is bounded. For the converse, we state the following proposition.

Proposition 4.6. Let P (λ), as in (1.1), be a matrix polynomial with the
reversal Q(λ) := λmP (λ−1). Then Wk[P (λ)] is unbounded if and only if
0 ∈ Wk(Am) and 0 is not an isolated point of Wk[Q(λ)].

Proof. For the implication (⇐), since 0 ∈ Wk(Am), Relation (2.1) implies
that 0 ∈ Wk[Q(λ)]. Moreover, since 0 is not an isolated point of Wk[Q(λ)],
there exists a sequence {µt}∞t=1 ⊆ Wk[Q(λ)] \ {0} such that converges to 0.
So, by Theorem 2.1(iv), the sequence { 1

µt
}∞t=1, which is unbounded, lies in

Wk[P (λ)], and hence, Wk[P (λ)] is unbounded. Using Theorem 2.2(i) and the
same manner as in the proof of (⇐), the proof of (⇒) is easy to verify. So, the
proof is complete. □

In Proposition 4.6, we proved that if 0 ∈ Wk(Am) and 0 is not an isolated
point of Wk[λ

mP (λ−1)], then Wk[P (λ)] is unbounded. But, we think that
the condition “0 is not an isolated point of Wk[λ

mP (λ−1)]” can be removed.
Hence, we state the following conjecture.

Conjecture 4.7. Let k < n, and P (λ) be a matrix polynomial as in (1.1). If
0 ∈ Wk(Am), then Wk[P (λ)] is unbounded.

The following example shows that the result in Conjecture 4.7 does not hold
for the case k = n.
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Example 4.8. Let P (λ) = Amλm + · · · + A1λ + A0, as in (1.1), be a matrix
polynomial such that tr(Am) = 0 and tr(Ai) ̸= 0 for some i ∈ {0, 1, . . . ,m−1}.
Thus, 0 ∈ {0} = Wn(Am). Moreover, by Proposition 4.1(i), we have

Wn[P (λ)] =
{
µ ∈ C : tr(Am−1)µ

m−1 + · · ·+ tr(A1)µ+ tr(A0) = 0
}
,

which has at most m − 1 elements, and hence is bounded. So, the result in
Conjecture 4.7 does not hold for the case k = n.
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