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“Heydar Baba may the sun warm your back,
Make your smiles and your springs shed tears,

Your children collect a bunch of flowers,
Send it with the coming wind towards us,

Perhaps my sleeping furtune would awaken!
...

Heydar Baba may you be fortunate!
Be surrounded with springs and orchards!

May you live long after us!”
-Shahriar

With kind regards, dedicated to Heydar Radjavi on the occasion of his eightieth birthday

Abstract. Let m,n ∈ N, D be a division ring, and Mm×n(D) denote

the bimodule of all m× n matrices with entries from D. First, we char-
acterize one-sided submodules of Mm×n(D) in terms of left row reduced
echelon or right column reduced echelon matrices with entries from D.
Next, we introduce the notion of a nest module of matrices with entries

from D. We then characterize submodules of nest modules of matrices
over D in terms of certain finite sequences of left row reduced echelon
or right column reduced echelon matrices with entries from D. We use

this result to characterize principal submodules of nest modules. We also
describe subbimodules of nest modules of matrices. As a consequence, we
characterize (one-sided) ideals of nest algebras of matrices over division
rings.
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“Heydar Baba” is the name of a mountain overlooking the village Khoshgenab near Tabriz, where
the well-known Iranian poet M.H. Shahriar was born and grew up. “Heydar Baba Salam” is the
title of one of the most famous poems by Shahriar in Azeri Turkish in which he remembers his
childhood and his memories from the mountain Heydar Baba and the village Khoshgenab. The
translation is taken from the website of the Department of Near Eastern Studies of University
of Michigan, Ann Arbor. In Persian “Baba” means father. “Baba” is also an honorific term to
address and refer to Sufi saints and mystics, e.g., Baba Taher.
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1. One-sided submodules of Mm×n(D)

In this paper, we consider one-sided submodules of Mm×n(D), where D is a
division ring. First, we present a characterization of one-sided submodules of
Mm×n(D) via left row reduced or right column reduced echelon matrices with
entries from D (Theorem 1.2). Then we introduce nest modules of matrices
and provide a characterization of their one-sided and two-sided submodules
(Theorems 2.2 and 3.3). As a consequence of our results, we characterize
principal one-sided submodules of nest modules of matrices and in particular
principal one-sided ideals of nest algebras of matrices (Theorem 2.7). It turns
out that sub-bimodules of nest modules of matrices and in particular two-
sided ideals of nest algebras of matrices are principal (Theorem 3.3). We have
made a reasonably thorough search of the existing results, but to the best of
our knowledge our results are new. For related results, see [6], [10], and [5].
Through our results, one sees that the set of all left row reduced (resp. right
column reduced) echelon matrices over a division ring forms a modular lattice
via the operations join and meet which are defined in view of Theorem 1.1
below. It seems that the lattice structure of the set of all left row reduced
(resp. right column reduced) echelon matrices had not been noticed before.

Let us set the stage by establishing some notation and definitions. Through-
out this note, unless otherwise stated, D denotes a division ring, F = Z(D)
stands for the center of D, m,n ∈ N, 1 ≤ i ≤ m, 1 ≤ j ≤ n, Mm×n(D), or
simply Mm×n, denotes the set of all m× n matrices with entries from D, and
Mn(D) := Mn×n(D). If there is no fear of confusion, we omit D in our no-
tations for the sake of simplicity. We view Mm×n as an (Mm,Mn)-bimodule
via the matrix multiplication. In particular, Mn is an (Mn,Mn)-bimodule,
or simply an Mn-bimodule via the matrix multiplication. Also, in particular,
Dn := Mn×1(D) and Dn := M1×n(D) are, respectively, viewed as right and
left D-modules, in other words right and left vector spaces over D. As is usual,
Eij ∈ Mm×n denotes the matrix with 1 in the (i, j) place and zero elsewhere.
We use 0m×n or 0mn to denote the zero matrix in Mm×n. We use Im×n or Imn

to denote the m×n matrix with 1 in its (i, i) place for each 1 ≤ i ≤ min(m,n)
and zero elsewhere. By convention, 0n := 0n×n and In := In×n, which is
the identity matrix in Mn. We call Eij a standard matrix. Also, by writing
Eij ∈ Mn we clearly assume that 1 ≤ i, j ≤ n. If A ∈ Mm×n, we use rowi(A)
and colj(A) to, respectively, denote the ith row and the jth column of A. For
F ⊆ Mm×n, by definition

rowi(F) :=
{
rowi(A) : A ∈ F

}
, colj(F) :=

{
colj(A) : A ∈ F

}
.

It is easily verified that for A ∈ Mm×n and Eij ∈ Mn (resp. Eij ∈ Mm),
AEij (resp. EijA) is the matrix whose jth column (resp. ith row) is the ith
column (resp. jth row) of A and every other column (resp. row) of it is zero,
i.e., the operation A → AEij (resp. A → EijA) takes the ith column (resp. jth
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row) of A to the jth column (resp. ith row) of A and takes every other column
(resp. row) of A to zero. Before stating our main result in this section, we
make an easy observation. Let A and A′ be subsets of Mm×n that are closed
with respect to the addition of matrices and that absorb the multiplication by
Ejj ’s (resp. Eii’s) from the right (resp. from the left), i.e., AEjj ⊆ A and
A′Ejj ⊆ A′ (resp. EiiA ⊆ A and EiiA′ ⊆ A′) for each 1 ≤ j ≤ n (resp.
1 ≤ i ≤ m). Then A = A′ if and only if colj(A) = colj(A′) for each 1 ≤ j ≤ n,
or rowi(A) = rowi(A′) for each 1 ≤ i ≤ m.

We use the symbols Rm×n(D) or simply Rm×n (resp. Cm×n(D) or simply
Cm×n) to denote the set of all m × n left row reduced (resp. right column
reduced) echelon matrices with entries from D. Also, we write Rn := Rn×n

and Cn := Cn×n. For A ∈ Mm×n, we use LRS(A) and RCS(A) to, respectively,
denote the left row space and the right column space of A, i.e., the space
spanned by the rows (resp. columns) of A. The matrices A,B ∈ Mm×n are
said to be left row (resp. right column) equivalent, and we write A =lr B
(resp. A =rc B), if LRS(A) = LRS(B) (resp. RCS(A) = RCS(B)). For
A,B ∈ Mm×n, we write A ≤lr B if the left row space of A is contained in the
left row space of B. One can define A ≤rc B in a similar fashion. Clearly,
A =lr B (resp. A =rc B) if and only if A ≤lr B and B ≤lr A (resp. A ≤rc B
and B ≤rc A).

Let A ∈ Mm×n and B ∈ Mp×n. We leave it as an exercise to the interested
reader to show that LRS(A) ⊆ LRS(B) if and only if A = CB for some
C ∈ Mm×p. Also if A ∈ Mm×n and B ∈ Mm×p, then RCS(A) ⊆ RCS(B) if
and only if A = BC for some C ∈ Mp×n. For slight generalizations of infinite-
dimensional counterparts of these facts in the setting of linear transformations
see [9, Corollary 1.4]. In particular, if A,B ∈ Mm×n, then A ≤lr B (resp.
A ≤rc B) if and only if A = CB (resp. A = BC) for some C ∈ Mm (resp.
C ∈ Mn).

We need the following well-known theorem for our main result in this sec-
tion. We present a proof for reader’s convenience. For the counterpart of the
theorem below over general fields see [1, Theorem 2.5.11]. The first proof of
the uniqueness in the following theorem is essentially taken from [7].
Theorem 1.1. (i) Let W be a left subspace of Dn with dimW ≤ m. Then
there exists a unique left row reduced echelon matrix R ∈ Mm×n(D) such that
LRS(R) = W .

(ii) Let W be a right subspace of Dm with dimW ≤ n. Then there exists a
unique right column reduced echelon matrix R ∈ Mm×n(D) such that RCS(R) =
W .

First proof. We prove part (i). Part (ii) can be proved similarly. Existence is
easy. As dimW ≤ m, we may choose m vectors α1, . . . , αm ∈ Dn, some of
which might be zero, that span W . Set A ∈ Mm×n to be the matrix whose
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ith row is αi for each 1 ≤ i ≤ m, and hence LRS(A) = W . One can easily
see that, say by induction on m, there exists a left row reduced echelon matrix
R ∈ Mm×n such that R =lr A, which means LRS(R) = LRS(A) = W , as
desired. Now we prove the uniqueness by induction on n. Let R,R′ ∈ Mm×n

be left row reduced echelon matrices with LRS(R) = LRS(R′) = W . We need
to show that R = R′. If n = 1, the assertion is easily verified. Suppose
the assertion holds for n − 1. We prove the assertion for n. To this end,
discard the nth column of R and R′ to obtain row reduced echelon matrices
R1, R

′
1 ∈ Mm×(n−1). Clearly, LRS(R1) = LRS(R′

1). So by the inductive
hypothesis R1 = R′

1. Suppose by contradiction that R ̸= R′. As R1 = R′
1, we

must have coln(R) ̸= coln(R
′). Now, let X = (x1, . . . , xn) ∈ Dn be such that

RX = 0. This implies that R′X = 0 as well, and hence (R −R′)X = 0. Since
R1 = R′

1 but coln(R) ̸= coln(R
′), we see that xn = 0. Consequently, there

are rows of R and R′ whose nonzero leading entries, which is one, occur in the
nth column of R and R′. Clearly, these rows must be the last nonzero rows
of R and R′ because these leading one entries occur in the nth column of R
and R′. Thus these rows occur in the rth row of R and R′, where r = dimW .
From this, as R and R′ are left row reduced echelon matrices, we see that
coln(R) = coln(R

′) = er, where er is the column vector with 1 in the rth place
and zero elsewhere. This contradicts the hypothesis that coln(R) ̸= coln(R

′).
Therefore R = R′, which is what we want. □

Second proof. We present a second proof for uniqueness. Let R,R′ ∈ Mm×n

be left row reduced echelon matrices with LRS(R) = LRS(R′) = W . We
need to show that R = R′. Let ki and k′i (1 ≤ i ≤ r := dimW ) be the
column indices of the leading entires of row i of R and R′, respectively. Recall
that (ki)

r
i=1 and (k′i)

r
i=1 are strictly increasing sequences in {1, . . . , n} and that

X = (x1, . . . , xn) ∈ LRS(R) = LRS(R′) = W if and only if

X =

r∑
i=1

xkirowi(R) =

r∑
i=1

xk′
i
rowi(R

′).

Thus, it suffices to show that ki = k′i for each 1 ≤ i ≤ r. We prove this
by induction on i ≤ r. Note that k1 = k′1 simply because if, for instance,
k1 < k′1, then row1(R) cannot be a linear combination of the rows of R′, which
is impossible. Thus k1 = k′1. So the assertion holds for i = 1. Suppose ki = k′i
for each i < i0 ≤ r. We need to show that ki0 = k′i0 . Again assume, for
instance, ki0 < k′i0 . Then again, rowi0(R) cannot be a linear combination of
the rows of R′, which is impossible. Therefore, ki = k′i for each 1 ≤ i ≤ r. This
completes the proof. □

In view of the preceding theorem, one can define the operations join and meet
onRm×n as follows. Let R1, R2 ∈ Rm×n. By R1∨R2 and R1∧R2, we mean the
unique matrices in Rm×n with the property that LRS(R1 ∨R2) = LRS(R1) +
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LRS(R2) and LRS(R1 ∧ R2) = LRS(R1) ∩ LRS(R2). For C1, C2 ∈ Cm×n, one
can define C1 ∨C2 and C1 ∧C2 in a similar fashion. It is quite straightforward
to check that (Rm×n,∨,∧) and (Cm×n,∨,∧) are modular lattices. Recall that
a lattice is a triple (L,∨,∧), where L is a nonempty set and ∨ and ∧ are two
algebraic operations on L that are commutative, associative, and that they
satisfy the absorption laws. Every lattice is a partially ordered set via ≤, which
is naturally defined as follows: a ≤ b if a ∧ b = a, or equivalently a ∨ b = b.
Consequently, any isomorphism of lattices preserves the order structures of
them as well. A modular lattice is a lattice that satisfies the modular law,
namely, a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) provided that b ≤ a or c ≤ a. It follows
from the theorem that (Rm×n,≤lr) and (Cm×n,≤rc) are partially ordered sets.
Note that the partial orders that are induced by the lattice structures of Rm×n

and Cm×n coincide with ≤lr and ≤rc, respectively.
The set of all left and right submodules of Mm×n(D) are, respectively, de-

noted by LSm×n(D) and RSm×n(D), or simply by LSm×n and RSm×n. By
definition, LSn(D) := LSn×n(D) and RSn(D) := RSn×n(D). Note that LSn

and RSn are in fact the sets of all left and right ideals of Mn, respectively.
It is well-known that

(
LSm×n(D),+,∩

)
and

(
RSm×n(D),+,∩

)
are modular

lattices. It is also well-known that
(
LSn(D),+, .

)
and

(
RSn(D),+, .

)
, where

. denotes the multiplication of one-sided ideals, are hemirings with left and
right identity elements, namely Mn, respectively. Recall that a hemiring is a
triple (R,+, .), where R is a nonempty set, (R,+) is a commutative monoid
with identity element 0, (R, .) is a semigroup, multiplication distributes over
addition from both left and right, and finally r0 = 0r = 0 for all r ∈ R. An
element 1l (resp. 1r) in a hemiring R is said to be a left (resp. right) identity
element if 1lr = r (resp. r1r = r) for all r ∈ R.

Let r, s ∈ N, mi, nj ∈ N,
∑r

i=1 mi = m,
∑s

j=1 nj = n, M = (m1, . . . ,mr),

and N = (n1, . . . , ns). The nest module determined by M and N , denoted by
T(M,N)(D) or simply T(M,N), is defined as follows

T(M,N)(D) :=
{
(Aij) : 1 ≤ i ≤ r, 1 ≤ j ≤ s,Aij ∈ Mmi×nj (D), Aij = 0 ∀ i > j

}
.

Naturally, we define TM (D) := T(M,M)(D). Again, for the sake of simplicity,
we use TM to mean TM (D). It is readily checked that T(M,N) is a (TM , TN )-
bimodule via the matrix multiplication. If M = N , then TM is in fact a
(TM , TM )-bimodule, or simply a TM -bimodule, and in particular an F -algebra,
which we call the nest algebra determined by M . We use LS(T(M,N)(D)), or
simply LS(T(M,N)), and RS(T(M,N)(D)), or simply RS(T(M,N)), to denote the
sets of all left and right submodules of T(M,N)(D), respectively. Again, note
that LS(TN ) and RS(TN ) are in fact the sets of all left and right ideals of TN ,
respectively. If M = (1, . . . , 1) ∈ Nm and N = (1, . . . , 1) ∈ Nn, we set Tm×n :=
T(M,N)(D), which is the set of all upper triangular m× n matrices. Naturally,
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we define Tn := Tn×n, which is the set of all upper triangular matrices of size
n.

If A = (Aij), with Aij ∈ Mmi×nj for each 1 ≤ i ≤ r, 1 ≤ j ≤ s, is a block
matrix, then we use Rowi(A) and Colj(A) to, respectively, denote the ith block
row and the jth block column of A. If A is a block matrix with r block rows
and s block columns, we use Aij to denote the (i, j) block entry of A. For a
collection F of block matrices, one can naturally define Rowi(F), Colj(F), and

Fij . Also for X ∈ Mmi×nj we use X̂ij to denote the block matrix with X in

its (i, j) place and zero elsewhere. Now for A ⊆ Mmi×nj , one can define Âij in
a natural way. A useful observation is in order. Let I ∈ LS(T(M,N)). Then

I =

 Row1(I)
...

Rowr(I)

 :=


 X1

...
Xr

 : Xi ∈ Rowi(I), 1 ≤ i ≤ r

 .

To see this, just note that



0m1×n

...
0mi−1×n

Rowi(I)
0mi+1×n

...
0mr×n


= EiiI ⊆ I for each 1 ≤ i ≤ r, where

Eii ∈ TM denotes the block matrix with Imi , the identity matrix of size mi, in

the (i, i) place and zero elsewhere. This clearly implies

 Row1(I)
...

Rowr(I)

 ⊆ I, for

I is additive. The reverse inclusion is trivial. This proves the desired identity.
Likewise, if J ∈ RS(T(M,N)), then

J =
(
Col1(J) · · · Cols(J)

)
=

{(
Y1 · · · Yn

)
: Yj ∈ Colj(J), 1 ≤ j ≤ s

}
.

A similar argument establishes the counterparts of the above identities for all
I ∈ LSm×n and J ∈ RSm×n in which r, s, Rowi, and Colj should be replaced
with m, n, rowi, and colj , respectively.

Our first result characterizes one-sided submodules of Mm×n in terms of
left row reduced echelon or right column reduced echelon matrices with entries
from D.

Theorem 1.2. (i) There exists an isomorphism of lattices

ϕ : LSm×n −→ Rn

with the property that I = Mm×nϕ(I) for all I ∈ LSm×n. In particular,
LSm×n’s are all isomorphic to Rn as lattices for all m ∈ N.
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(ii) There exists an isomorphism of lattices

ϕ : RSm×n −→ Cm

with the property that I = ϕ(I)Mm×n for all I ∈ RSm×n. In particular,
RSm×n’s are all isomorphic to Cm as lattices for all n ∈ N.

Proof. We prove part (i). Part (ii) can be proved similarly. To this end, let I ∈
LSm×n be given. For each 1 ≤ i ≤ m, rowi(I) ≤ Dn, and hence by Theorem
1.1, there exists a unique Ri ∈ Rn such that rowi(I) = LRS(Ri) = DnRi.
First, by showing that rowi(I) = row1(I), we see that Ri = R1 := R for each
1 ≤ i ≤ m. As I is a left submodule and the mapping A 7→ Ei1A takes the
1st row of A to the ith row of it, we have row1(I) ⊆ rowi(Ei1I) ⊆ rowi(I),
which obtains row1(I) ⊆ rowi(I). Changing the role of i and 1, we obtain
rowi(I) ⊆ row1(I), and hence rowi(I) = row1(I) for each 1 ≤ i ≤ m. Thus
rowi(I) = DnR for each 1 ≤ i ≤ m. So we see from the observation we made
preceding the theorem that

I =

 DnR
...

DnR

 =


 X1R

...
XmR

 : Xi ∈ Dn, 1 ≤ i ≤ m

 = Mm×n(D)R.

Now for I ∈ LSm×n, define ϕ(I) = R. We just showed that I = Mm×nR.
Now, let I1, I2 ∈ LSm×n with ϕ(I1) = R1 and ϕ(I2) = R2 be given. Clearly,
I1 + I2, I1 ∩ I2 ∈ LSm×n. On the other hand,

row1(I1 + I2) = row1(I1) + row1(I2), row1(I1 ∩ I2) = row1(I1) ∩ row1(I2).

The left equality is easy. We prove the right equality. It is plain that row1(I1∩
I2) ⊆ row1(I1)∩row1(I2). For the reverse inclusion, letX ∈ row1(I1)∩row1(I2)
be arbitrary. It follows that X = row1(A1) = row1(A2) for some A1 ∈ I1 and
A2 ∈ I2. Then again by the useful observation we made preceding the theorem,

we have A :=


X

01×n

...
01×n

 ∈ I1∩I2. Consequently, X = row1(A) ∈ row1(I1∩I2),

proving the reverse inclusion, and hence the right equality. Now, from the above
equalities, we conclude that ϕ(I1+I2) = R1∨R2 and ϕ(I1∩I2) = R1∧R2. That
is, ϕ is a homomorphism of lattices. It remains to show that ϕ is one-to-one and
onto. The homomorphism ϕ is one-to-one simply because I = Mm×n(D)ϕ(I)
for all I ∈ LSm×n(D). To see that ϕ is onto, let R ∈ Rn be arbitrary. It is
quite straightforward to see that ϕ(I) = R, where I = Mm×nR. This completes
the proof. □
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Remark 1.3. (i) If I ∈ LSm×n (resp. I ∈ RSm×n), there exists a unique
R ∈ Rn (resp. C ∈ Cm) such that

I = Mm×nR =


 X1R

...
XmR

 : Xi ∈ Dn, 1 ≤ i ≤ m


(resp.

I = CMm×n =
{(

CY1 · · · CYn

)
: Yj ∈ Dm, 1 ≤ j ≤ n

}
).

(ii) The matrix R ∈ Rn (resp. C ∈ Cm) may not be a generator of I, for R
(resp. C) is a square matrix whereas I may consists of rectangular matrices.
However, if m ≥ n (resp. m ≤ n), then I is principal and in fact I = MmR′

(resp. I = C ′Mn), where R′ =

(
R

0(m−n)×n

)
(resp. C ′ =

(
C 0m×(n−m)

)
.

Note that if m = n, then R′ = R (resp. C ′ = C).
(iii) If I ∈ LSm×n (resp. I ∈ RSm×n), then dim I = mrank(R) (resp.

dim I = rank(C)n, where I is viewed as a left (resp. right) vector space over
D.

(iv) In view of the theorem, if m = n, the mapping ϕ gives rise to a new
operation on Rn (resp. Cn) as follows. Let R1, R2 ∈ Rn (resp. C1, C2 ∈ Cn).
By definition, R1 ∗ R2 = ϕ(MnR1.MnR2) (resp. C1 ∗ C2 = ϕ(C1Mn.C2Mn)),
where . stands for the product of left (resp. right) ideals. It is now clear that
(Rn,∨, ∗) (resp. (Cn,∨, ∗)) forms a hemiring with a left (resp. right) identity
element and that the mapping ϕ is an isomorphism of hemirings for each n ∈ N.

Motivated by [3, Exercise VIII.3.3], we state the following.

Corollary 1.4. (i) Let I ∈ LSn with ϕ(I) = R, where ϕ is as in Theorem
1.2. If rank(R) = r, then there exists an invertible matrix P ∈ Mn such that

ϕ(P−1IP ) = R′, where R′ =

(
Ir 0
0 0

)
.

(ii) Let I ∈ RSn with ϕ(I) = C, where ϕ is as in Theorem 1.2. If rank(C) =
r, then there exists an invertible matrix P ∈ Mn such that ϕ(P−1IP ) = C ′,

where C ′ =

(
Ir 0
0 0

)
.

Proof. We prove (i). Part (ii) can be proved analogously. We have I = MnR.
There exists an invertible matrix P , which is a product of elementary matrices,

such that R′ := RP ∈ Rn ∩ Cn. This clearly implies R′ =

(
Ir 0
0 0

)
, where

r = rank(R). We can write

P−1IP = P−1MnRP = MnR
′,

which implies ϕ(P−1IP ) = R′, as desired. □
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2. Submodules of nest modules

In this section we characterize submodules of T(M,N) in terms of certain
finite sequences of left row reduced echelon or right column reduced echelon
matrices with entries from D. First we need the following useful lemma.

Lemma 2.1. (i) If J ∈ LS
(
T(M,N)

)
, then Rowi(J) ∈ LSmi×n for all 1 ≤ i ≤

r.
(ii) If J ∈ RS

(
T(M,N)

)
, then Colj(J) ∈ RSm×nj for all 1 ≤ j ≤ s.

Proof. It suffices to prove (i). Part (ii) can be proved analogously. Let J ∈
LS

(
T(M,N)

)
and 1 ≤ i ≤ r be given. Clearly, Rowi(J) is additive. So it

remains to show that BRowi(J) ⊆ Rowi(J) for all B ∈ Mmi . To see this,
given B ∈ Mmi , we can write

BRowi(J) = Rowi(BiiJ) ⊆ Rowi(J),

whereBii ∈ TM is the block matrix with B in the (i, i) place and zero elsewhere.
This completes the proof. □

Let N = (n1, . . . , ns), where ni ∈ N and n1+ · · ·+ns = n. Define RN (r;D)
or simply RN (r) as follows

RN (r;D) = RN (r)

:=
{
(R1, . . . , Rr) ∈ Rr

n : R1 ≥ · · · ≥ Rr,Colj(Ri) = 0 ∀j < i, 1 ≤ i ≤ r, 1 ≤ j ≤ s
}
.

Define ∨ and ∧ on RN (r) componentwise, e.g., for R = (R1, . . . , Rr) and
R′ = (R′

1, . . . , R
′
r) in RN (r;D), we write R ∨ R′ := (R1 ∨ R′

1, . . . , Rr ∨ R′
r).

Also when M = N , define ∗ on RM (r) componentwise via the mapping ϕ. Note
that the operations ∨ and ∧, we just defined on RN (r), and the operation ∗
defined on RM (r), are well-defined in the sense that R ∨ R′, R ∧ R′ ∈ RN (r)
whenever R,R′ ∈ RN (r), and that R ∗ R′ ∈ RM (r) whenever R,R′ ∈ RM (r).
Likewise, for M = (m1, . . . ,mr) with mi ∈ N and m1+ · · ·+mr = m, we define

CM (s;D) = CM (s)

:=
{
(C1, . . . , Cs) ∈ Cs

m : C1 ≤ · · · ≤ Cs,Rowi(Cj) = 0 ∀j < i, 1 ≤ i ≤ r, 1 ≤ j ≤ s
}
.

Again define ∨, ∧ on CM (s) and, when M = N , define the operation ∗ on
CM (r) componentwise via ϕ in a similar fashion. It is easily checked that
(RN (r),∨,∧) and (CM (s),∨,∧) are modular lattices, and that if M = N ,
then (RM (r),∨, ∗) and (CM (r),∨, ∗) are hemirings. Also, it is readily verified
that

(
LS(T(M,N)),+,∩

)
and

(
RS(T(M,N)),+,∩

)
are modular lattices and that(

LS(TN ),+, .
)
and

(
RS(TN ),+, .

)
are hemirings. Our next result shows that

these modular lattices are pairwise isomorphic via a natural map exhibited in
the theorem below.
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Theorem 2.2. (i) There exists an isomorphism of lattices

Φ : LS
(
T(M,N)

)
−→ RN (r)

with the property that

I =


Mm1×nR1

Mm2×nR2

...
Mmr×nRr

 ,

where Φ(I) = R = (R1, . . . , Rr) and Ri = ϕ
(
Rowi(I)

)
for all I ∈ LS

(
T(M,N)

)
and 1 ≤ i ≤ r.

(ii) There exists an isomorphism of lattices

Φ : RS
(
T(M,N)

)
−→ CM (s)

with the property that

I =
(
C1Mm×n1

C2Mm×n2
· · · CsMm×ns

)
,

where Φ(I) = C = (C1, . . . , Cs) with Cj = ϕ
(
Colj(I)

)
for all I ∈ RS

(
T(M,N)

)
and 1 ≤ j ≤ s.

Proof. We prove (i). Part (ii) can be proved analogously. Let I ∈ LS
(
T(M,N)

)
be given. In view of Lemma 2.1 and the useful observation we made prior to
Theorem 1.2, we see that, for each 1 ≤ i ≤ r, there exists a unique Ri ∈ Mn

such that Rowi(I) = Mmi×nRi, i.e., ϕ
(
Rowi(I)

)
= Ri, and moreover

I =


Mm1×nR1

Mm2×nR2

...
Mmr×nRr

 .

It remains to show that (R1, . . . , Rr) ∈ RN (r), and hence Φ(I) = R =
(R1, . . . , Rr) is well-defined and that Φ is an isomorphism of modular lattices.
First, we show that Rq ≤ Rp whenever 1 ≤ p, q ≤ r and p < q. Recall that
Rowq(I) = Mmq×nRq. In particular, for a given and arbitrary 1 ≤ i ≤ n, we
have E1iRq ∈ Mmq×nRq = Rowq(I), where E1i ∈ Mmq×n is a standard ma-
trix. Thus, there exists an Ai ∈ I such that E1iRq = Rowq(Ai). Consequently,
the ith row of Rq, which is the first row of E1iRq, occurs as the iqth row of
Ai, where iq = m1 + · · · + mq−1 + 1. Let ip = m1 + · · · + mp−1 + 1 if p > 1
and ip = 1 if p = 1. Clearly, ip < iq. Now note that Eipiq ∈ TM because
p < q, and that EipiqAi takes the iqth row of Ai, which is in fact the ith row

of Rq, to the ipth row of Ai. This means rowi(Rq) = row1

(
Rowp(EipiqAi)

)
∈

row1

(
Rowp(I)

)
, for Eipiq ∈ TM . That is, rowi(Rq) ∈ row1

(
Mmp×nRp

)
, which

easily implies rowi(Rq) ∈ LRS(Rp). But 1 ≤ i ≤ n was arbitrary. Therefore
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LRS(Rq) ≤ LRS(Rp), which means Rq ≤ Rp. Next, we need to show that
Colj(Ri) = 0 for all j < i with 1 ≤ i ≤ r and 1 ≤ j ≤ s. But this is obvious
because for each 1 ≤ i ≤ r, every row of Ri occurs as a row of Rowi(A) for some
A ∈ I ⊆ T(M,N). In view of the useful observation made regarding the block
rows of the left submodules of T(M,N) prior to Theorem 1.2, a proof almost
identical to that presented in Theorem 1.2 shows that

Rowi(I1 + I2) = Rowi(I1) + Rowi(I2),Rowi(I1 ∩ I2) = Rowi(I1) ∩ Rowi(I2),

for all I1, I2 ∈ LS
(
T(M,N)

)
and 1 ≤ i ≤ r. This clearly implies that the

mapping Φ is a homomorphism of lattices. That Φ is one-to-one follows from
the fact that the ϕ’s are all one-to-one by Theorem 1.2 and that I1 = I2 if and
only if Rowi(I1) = Rowi(I2) for each 1 ≤ i ≤ r. To see that Φ is onto, for a
given R = (R1, . . . , Rr) ∈ RN (r), it is readily checked that Φ(I) = R, where

I =


Mm1×nR1

Mm2×nR2

...
Mmr×nRr

 .

This completes the proof. □

Remark 2.3. (i) In the special case when m = r, s = n, mi = 1, nj = 1 for
all 1 ≤ i ≤ m and 1 ≤ j ≤ n, the theorem characterizes one-sided submodules
of upper triangular rectangular matrices in terms of the elements of Ren(m)
or Cem(n), where en ∈ Nn and em ∈ Nm are the elements whose components
are all 1. In the more special case when m = r = s = n and mi = nj = 1 for
all 1 ≤ i, j ≤ n, the theorem characterizes all one-sided ideals of the ring of all
upper triangular square matrices with entries from D in terms of the elements
of Ren(n) or Cen(n).

(ii) It is clear that the mapping Φ is an isomorphism of hemirings whenever
M = N and

(
LS(TN ),+, .

)
,
(
RS(TN ),+, .

)
, (RN (r),∨, ∗), and (CN (r),∨, ∗)

are viewed as hemirings.

Lemma 2.4. (i) Let I ∈ LSm×n with ϕ(I) = R. Then I = MmA for some
A ∈ Mm×n if and only if LRS(R) = LRS(A).

(ii) Let I ∈ RSm×n with ϕ(I) = C. Then I = AMn for some A ∈ Mm×n if
and only if RCS(C) = RCS(A).

Proof. We prove (i). Part (ii) can be proved in a similar fashion. First let
I ∈ LSm×n with ϕ(I) = R ∈ Rn and I = MmA for some A ∈ Mm×n. We
need to show that LRS(R) = LRS(A). By Theorem 1.2, I = Mm×nR. Thus
I = MmA = Mm×nR. As A = ImA ∈ I, we have A = XR for some X ∈
Mm×n. So by the exercise we pointed out preceding Theorem 1.1, we have
LRS(A) ⊆ LRS(R). To see the reverse inclusion, let 1 ≤ i ≤ n be given. It
follows that E1iR ∈ I = Mm(D)A, where E1i ∈ Mm×n is a standard matrix.
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Thus LRS(E1iR) ⊆ LRS(A). Consequently, rowi(R) ∈ LRS(A). This yields
LRS(R) ⊆ LRS(A), for 1 ≤ i ≤ n is arbitrary. Therefore, LRS(A) = LRS(R).
Next suppose LRS(A) = LRS(R). We need to show that I = MmA. Note
that A ∈ I because I = Mm×nR and A = XR for some X ∈ Mm×n, for
LRS(A) ⊆ LRS(R). This yields MmA ⊆ I. For the reverse inclusion, again
since LRS(R) ⊆ LRS(A), we obtain R = PA for some P ∈ Mn×m. But

I = Mm×nR = Mm×nPA ⊆ MmA.

This completes the proof. □

We need the following proposition to characterize principal submodules of
T(M,N).

Proposition 2.5. (i) Let 0 ̸= J ∈ LS
(
T(M,N)

)
with Φ(J)=(R1, . . . , Rk, 0n, . . . , 0n),

where 1 ≤ k ≤ r is the largest index for which Rk ̸= 0, and A ∈ T(M,N). Then
J = TMA if and only if

Rowi(J) = Mmi×miRowi(A) + · · ·+Mmi×mk
Rowk(A)

for all 1 ≤ i ≤ k if and only if

LRS(Ri) = LRS
(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
,

for all 1 ≤ i ≤ k.
(ii) Let 0 ̸= J ∈ RS

(
T(M,N)

)
with Φ(J) = (0m, . . . , 0m, Ck, . . . , Cs), where

1 ≤ k ≤ s is the smallest index for which Ck ̸= 0, and A ∈ T(M,N). Then
J = ATN if and only if

Colj(J) = Colk(A)Mnk×nj + · · ·+Colj(A)Mnj×nj

for all k ≤ j ≤ s if and only if

RCS(Cj) = RCS
(
Colk(A)

)
+ · · ·+RCS

(
Colj(A)

)
for all k ≤ j ≤ s.

Proof. The assertion easily follows from the useful observations we have already
made, namely J = TMA if and only if Mmi×nRi = Rowi(J) = Rowi(TMA)
for all 1 ≤ i ≤ r, and that J = ATN if and only if CjMm×nj = Colj(J) =
Colj(ATN ) for all 1 ≤ j ≤ s. □

Corollary 2.6. Let A ∈ Tm×n. Then
(i) given J ∈ LS(Tm×n), J = TmA if and only if rowi(J) = ⟨{rowk(A) : i ≤
k ≤ m}⟩ for each 1 ≤ i ≤ m.
(ii) given J ∈ RS(Tm×n), J = ATn if and only if colj(J) = ⟨{colk(A) : 1 ≤
k ≤ j}⟩ for each 1 ≤ j ≤ n.

Proof. This corollary is a special case of the preceding proposition. □

The following characterizes the principal submodules of T(M,N).
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Theorem 2.7. (i) Let 0 ̸= J ∈ LS(T(M,N)) with Φ(J) = (R1, . . . , Rk, 0n, . . . , 0n),

where 1 ≤ k ≤ r is the largest index for which Rk ̸= 0n. Then J is principal
if and only if rank(Ri)− rank(Ri+1) ≤ mi for each 1 ≤ i ≤ k. By convention,
Rr+1 := 0n.

(ii) Let 0 ̸= J ∈ RS(T(M,N)) with Φ(J) = (0m, . . . , 0m, Ck, . . . , Cs), where
1 ≤ k ≤ s is the smallest index for which Ck ̸= 0m. Then J is principal if
and only if rank(Cj) − rank(Cj−1) ≤ nj for each k ≤ j ≤ s. By convention,
C0 := 0m.

Proof. We prove (i). Part (ii) can be proved analogously. First, let J = TMA
for some A ∈ T(M,N). It follows from Proposition 2.5 that

LRS(Ri) = LRS
(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
.

It is plain that

rank(Ri) = dimLRS(Ri)

≤ dimLRS
(
Rowi(A)

)
+ dim

(
LRS

(
Rowi+1(A)

)
+ · · ·+ LRS

(
Rowk(A)

))
≤ mi + dimLRS(Ri+1),

and hence rank(Ri) − rank(Ri+1) ≤ mi for each 1 ≤ i ≤ k, as desired. Next,
let rank(Ri)− rank(Ri+1) ≤ mi for each 1 ≤ i ≤ k. In view of Proposition 2.5,
it suffices to find an A ∈ T(M,N) such that

LRS(Ri) = LRS
(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
,

for all 1 ≤ i ≤ k. We find A by finding its block rows, i.e., Rowi(A)’s where
1 ≤ i ≤ r. To this end, set Rowi(A) = 0mi×n for each k < i ≤ r. By
hypothesis rank(Rk) ≤ mk. Thus there exists an Ak ∈ Mmk×n, whose rows
are chosen from those of LRS(Rk) or are zero, such that LRS(Ak) = LRS(Rk).
Set Rowk(A) = Ak. Now as rank(Rk−1) − rank(Rk) ≤ mk−1 and LRS(Rk) ⊆
LRS(Rk−1), we can find Ak−1 ∈ Mmk−1×n, whose rows are chosen from those
of LRS(Rk−1) or are zero, such that rank(Ak−1) = rank(Rk−1) − rank(Rk) ≤
mk−1. Continuing in this way, we obtain an A ∈ T(M,N) such that

rank(Rowi(A)) = rank(Ai) = rank(Ri−1)− rank(Ri) ≤ mi

for all 1 ≤ i ≤ k. It remains to show that

LRS(Ri) = LRS
(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
,

for all 1 ≤ i ≤ k. Fix 1 ≤ i ≤ k and let α be an arbitrary nonzero row of Ri. As
Ri ≥ · · · ≥ Rk there exists a largest i ≤ i′ ≤ k such that α is in LRS(Ri′), and
hence not in LRS(Ri′+1). But this means α is in LRS(Ai′) = LRS

(
Rowi′(A)

)
.

Consequently,

α ∈ LRS
(
Rowi′(A)

)
⊆ LRS

(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
.

This implies

LRS(Ri) ⊆ LRS
(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
,
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for α was an arbitrary nonzero row of Ri. The reverse inclusion is trivial
because by the way we constructed Ai’s, we have

LRS
(
Rowp(A)

)
⊆ LRS(Rp) ⊆ LRS(Ri)

for each i ≤ p ≤ k. This yields

LRS
(
Rowi(A)

)
+ · · ·+ LRS

(
Rowk(A)

)
⊆ LRS(Ri),

which is what we want. This completes the proof. □

Corollary 2.8. (i) Let 0 ̸= J ∈ LS(Tm×n) with Φ(J) = (R1, . . . , Rk, 0n . . . , 0n),
where 1 ≤ k ≤ m is the largest index for which Rk ̸= 0n. Then J is principal if
and only if rank(Ri)− rank(Ri+1) ∈ {0, 1} for each 1 ≤ i ≤ k. By convention,
Rr+1 := 0n.

(ii) Let 0 ̸= J ∈ RS(Tm×n) with Φ(J) = (0m, . . . , 0m, Ck, . . . , Cn), where
1 ≤ k ≤ n is the smallest index for which Ck ̸= 0m. Then J is principal if and
only if rank(Cj) − rank(Cj−1) ∈ {0, 1} for each k ≤ j ≤ n. By convention,
C0 := 0m.

Proof. This is a quick consequence of the preceding theorem. □

3. Subbimodules of nest modules

We now intend to characterize subbimodules of nest modules. As it turns
out the only subbimodules of Mm×n are 0 and Mm×n itself. A proof can be
given based on [9, Corollary 1.10]. Here, we present a proof based on one of
the facts we left as an exercise preceding Theorem 1.1.

Lemma 3.1. The only subbimodules of Mm×n are the trivial ones, namely 0
and Mm×n.

Proof. Let I be a nonzero subbimodule of Mm×n. We show that I = Mm×n.
As I ̸= 0, there is a nonzero element A = (aij) ∈ I. Thus there are 1 ≤ i0 ≤ m
and 1 ≤ j0 ≤ n such that ai0j0 ̸= 0. Let B = (bij) ∈ Mm×n be arbitrary. Set
K := {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, bij ̸= 0}. We can write B =

∑
(i,j)∈K Bij ,

where Bij = EiiBEjj , which is the matrix whose entries are all zero except
for its (i, j) entry which is the same as that of B. Note that Eii ∈ Mm and
Ejj ∈ Mn are standard matrices. Clearly,

LRS(Bij) ≤ ⟨ej⟩ = LRS(Eii0AEjj0),

where ej ∈ Dn is the row vector whose components are all zero except for its
ith component which is 1. Again Eii0 ∈ Mm and Ejj0 ∈ Mn are standard
matrices. Thus there is a Cij ∈ Mm such that Bij = CijEii0AEjj0 , implying
that Bij ∈ I for each (i, j) ∈ K. This yields B ∈ I. Therefore, I = Mm×n, as
desired. □
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Remark 3.2. It is possible to use Theorem 1.2, to present a short proof of
this lemma. To this end, viewing the given nonzero subbimodule I as a left
submodule, it suffices to show that rank(R) = n, where R = ϕ(I). As I is a
nonzero subbimodule of Mm×n, we have IP = I for any invertible P ∈ Mn. So

we must have R ∈ Rn∩Cn, implying that R =

(
Ir 0
0 0

)
, where r = rank(R).

But r = n, for otherwise multiplying I from the right by the permutation matrix
P obtained by exchanging the rth column and the nth column of the identity
matrix, we see that ϕ(I) could be both R,RP ∈ Rn, which is impossible as
R ̸= RP .

The following characterizes all subbimodules of nest modules of matrices.

Theorem 3.3. Let J be a nonzero subbimodule of T(M,N). Then there ex-
ists a unique 1 ≤ i ≤ min(r, s), which depends on J , a unique increasing
sequence (j1, . . . , ji) such that k ≤ jk ≤ s and jk < jk+1 if jk = k < i
for all 1 ≤ k ≤ i, and a unique sequence (R1, . . . , Ri) with R1 = In if

j1 = 1, R1 =

(
0r1×(n−r1) Ir1
0n−r1 0(n−r1)×r1

)
∈ Mn if j1 > 1, and Rk =(

0rk×(n−rk) Irk
0n−rk 0(n−rk)×rk

)
∈ Mn if k ≥ 2, where rk =

∑s
l=jk

nl provided

jk > 1, such that

J =



Mm1×nR1

...
Mmi×nRi

0mi+1×n

...
0mr×n


.

Moreover, every subbimodule of T(M,N) is principal.

Proof. Let J be a nonzero subbimodule of T(M,N) and 1 ≤ i ≤ r be the largest
integer for which Rowi(J) ̸= 0. If r ≤ s, then i ≤ r = min(r, s). If r > s,
then Rowk(J) = 0 for each k > r because I ⊆ T(M,N). Thus i ≤ s = min(r, s).
Now we show that Jkl is a subbimodule of Mmk×nl

for each 1 ≤ k ≤ r and
1 ≤ l ≤ s. Let X ∈ Jkl and B ∈ Mmk

and C ∈ Mnl
be arbitrary. It follows

that X = Akl for some A ∈ J . We can write B̂kkAĈll = B̂XCkl. But A ∈ J
and J is a subbimodule. Thus BXC ∈ Jkl, and hence Jkl is a subbimodule
of Mmk×nl

. It follows from the preceding lemma that Jkl = 0mk×nl
or Jkl =

Mmk×nl
. For 1 ≤ k ≤ i, let k ≤ jk ≤ s be the smallest integer for which

Jkjk ̸= 0mk×njk
, or equivalently, Jkjk = Mmk×njk

. So there exists an A ∈ J

such that Akjk = E11 ∈ Mmk×njk
. For 1 ≤ u ≤ i, let pu = 1 +

∑u−1
t=1 mt.

Clearly, Epkpl
∈ Mm×n ∩ TM for each 1 ≤ k < l < i. Thus Epkpl

A ∈ J . On
the other hand, the pkth row of Epkpl

A ∈ J is the same as its plth row, and
hence Akjl ̸= 0. Therefore, Jkjl ̸= 0mk×njl

. This yields jk ≤ jl. That is, the
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sequence (j1, . . . , ji) is increasing. Note that if jk = k < i, then jk < jk+1, for
J ⊆ T(M,N). To prove the equality, note first that

J =



Row1(J)
...

Rowi(J)
0mi+1×n

...
0mr×n


,

for Rowk(J) = 0mk×n for each k > i. But Rowk(J) =
(
0mk×xk

Mmk×yk

)
=

Mm1×n(D)Rk, where xk =
∑jk−1

j=1 nj and yk =
∑s

j=jk
nj . Note that if jk = 1,

then k = 1, x1 = 0, y1 = n, and R1 = In, and hence Row1(J) = Mm1×n =
Mm1×n(D)R1. Conversely, with an 1 ≤ i ≤ min(r, s), an increasing sequence
(j1, . . . , ji) with k ≤ jk ≤ s and jk < jk+1 if jk = k < i for all 1 ≤ k ≤ i, and a
sequence (R1, . . . , Ri) as in the statement of the theorem, a simple calculation
with block matrices shows that

Mm1×nR1

...
Mmi×nRi

0mi+1×n

...
0mr×n


is in fact a subbimodule of T(M,N). Clearly the subbimodule {0m×n} is prin-
cipal. So let

J =



Mm1×nR1

...
Mmi×nRi

0mi+1×n

...
0mr×n


be a nonzero subbimodule of T(M,N). Then J is generated by any matrix
A ∈ J for which Akjk ̸= 0 for all 1 ≤ k ≤ i, e.g., for

A =



A1

...
Ai

0mi+1×n

...
0mr×n


,
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where Ak =
(
0mk×xk

Emk1

)
∈ Mm1×nRk, where Emk1 ∈ Mmk×yk

for
each 1 ≤ k ≤ i. Clearly, the subbimodule generated by A shares the same
1 ≤ i ≤ min(r, s) and jk’s (1 ≤ k ≤ i) as J . This implies that J is generated
by A. So the proof is complete. □
Remark 3.4. (i) In the special case M = N , the theorem characterizes two-
sided ideals of the nest algebra TM . Moreover any two-sided ideal of TM is
principal.

(ii) In the special case when m = r, s = n, mi = 1, nj = 1 for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n, the theorem characterizes subbimodules of upper triangular
rectangular matrices and in the more special case when m = r = s = n and
mi = nj = 1 for all 1 ≤ i, j ≤ n, the theorem characterizes all two-sided ideals
of the ring of all upper triangular square matrices with entries from D.
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