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SELF-COMMUTATORS OF COMPOSITION OPERATORS

WITH MONOMIAL SYMBOLS ON THE BERGMAN SPACE

A. ABDOLLAHI∗, S. MEHRANGIZ AND T. ROIENTAN

(Communicated by Bamdad Yahaghi)

Abstract. Let φ(z) = zm, z ∈ U, for some positive integer m, and Cφ

be the composition operator on the Bergman space A2 induced by φ.
In this article, we completely determine the point spectrum, spectrum,

essential spectrum, and essential norm of the operators C∗
φCφ, CφC∗

φ as
well as self-commutator and anti-self-commutators of Cφ. We also find
the eigenfunctions of these operators.
Keywords: Bergman space, composition operator, essential spectrum,

essential norm, self-commutator.
MSC(2010): Primary 47B33; Secondary 47A10, 47B47.

1. Introduction

Let φ be a holomorphic self-map of the unit disk U := {z ∈ C : |z| < 1}.
The function φ induces the composition operator Cφ, defined on the space of
holomorphic functions on U by Cφf = f ◦ φ. The restriction of Cφ to various
Banach spaces of holomorphic functions on U has been an active subject of
research for more than three decades and it will continue to be for decades to
come (see [11], [12] and [6]).

Let φ(z) = zm, z ∈ U, for some positive integer m, and Cφ : A2 −→ A2 be
the composition operator on the Bergman space A2 induced by φ. The main
aim here is to find the spectrum, point spectrum, essential spectrum and essen-
tial norm of C∗

φCφ, CφC
∗
φ as well as self-commutator [C∗

φ, Cφ] = C∗
φCφ−CφC∗

φ

and anti-self-commutator {C∗
φ, Cφ} = C∗

φCφ + CφC
∗
φ, for composition opera-

tors Cφ on the Bergman space.

In [3], by using Cowen’s formula for the adjoint of Cφ on H2(U), Bour-
don and MacCluer completely determined the spectrum, essential spectrum
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and point spectrum for self-commutators of automorphic composition opera-
tors acting on the Hardy space of unit disk. In [1], the first author extended
these results from the Hardy space to the Dirichlet space. In [2], the authors
obtained similar results for composition operators with monomial symbols on
the Dirichlet space.

The other problem which is important to the study of composition opera-
tors is finding the relationships between the properties of the symbol φ and
essential normality of the composition operator Cφ. Recall that an operator
T on a Hilbert space H is called essentially normal if its image in the Calkin
algebra is normal or equivalently if the self-commutator [T ∗, T ] = T ∗T − TT ∗

is compact on H.

In [8], MacCluer and Pons determined which composition operators with au-
tomorphism symbol are essentially normal on A2(BN ) and H2(BN ) for N ≥ 1.
They showed that the only essential normal automorphic composition opera-
tors are actually normal. This fact was first shown in the setting H2(U) by
N. Zorboska in [13]. Related results and some historical remarks can be found
in [3, 9, 13] and [8].

In [4], G. A. Chacón and G. R. Chacón considered composition operators
Cφ acting on the Dirichlet space D, where φ is a linear-fractional self-map of
the unit disk U. By using the E. Gallardo and A. Montes’ adjoint formula
given in [7], they showed that the essentially normal linear fractional com-
position operators on D are precisely those whose symbol is not a hyperbolic
non-automorphism with a boundary fixed point. They also obtained conditions
for the linear fractional symbols φ and ψ of the unit disk for which C∗

ψCφ or
CφC

∗
ψ is compact.

In the next section, after giving some background material, we present a
formula for the adjoint of Cφ on A2, when φ is an arbitrary monomial sym-
bol φ(z) = zm. In Section 3, we completely determine the point spectrum,
spectrum, and essential spectrum of C∗

φCφ and CφC
∗
φ. Finally, in Section 4 we

determine the same for [C∗
φ, Cφ] and {C∗

φ, Cφ}.

2. Preliminaries

Throughout this paper, B(H) denotes the set of all bounded operators on a
Hilbert space H, and B0(H) denotes the closed ideal of all compact operators
in B(H). The quotient Banach algebra B(H)/B0(H) is known as the Calkin
algebra. For an operator T ∈ B(H), the essential norm of T is defined by

∥T∥e := inf {∥T +K∥ : K ∈ B0(H)} ,
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and the essential spectrum σe(T ) is defined as the spectrum of the image

T̃ = T + B0(H) of T in the Calkin algebra B(H)/B0(H). It is well known
that the essential spectrum of a normal operator consists of all points in the
spectrum of the operator except the isolated eigenvalues of finite multiplicity
(see [5]).

The Bergman space A2 is the set of all analytic functions in the disk that are
square integrable with respect to dA(z) = π−1rdrdθ, the normalized Lebesgue

area measure on U. Equivalently an analytic function f is inA2 if
∑∞
n=0

|f̂(n)|2
n+1 <

∞, where f̂(n) denotes the nth Taylor coefficients of f . The inner product in
this space is given by

⟨f, g⟩A2 =

∫
U
f(z)g(z)dA(z).

The inner product of two functionsf(z)=
∑∞
n=0 f̂(n)z

n and g(z)=
∑∞
n=0 ĝ(n)z

n

in A2 may also be computed by

⟨f, g⟩A2 =
∞∑
n=0

f̂(n)ĝ(n)

n+ 1
.

The reproducing kernel in A2 for the point w in the disk is given by

Kw(z) =
1

(1− wz)2
, z ∈ U.

M. J. Mart́ın and D. Vukotić in [10] expressed and proved some formulas for
the adjoint of Cφ on the Hardy space, when φ is finite Blaschke product that
is also a rational self-map of the unit disk U. By using the same arguments
as in [10] for the Hardy space, one can prove the following theorem for the
Bergman space case.

Theorem 2.1. Let φ(z) = zm. For an arbitrary point w = reiθ in U, the
adjoint of Cφ (viewed as an operator on the Bergman space A2) is given by the
formula

(2.1) C∗
φf(w) =

∞∑
n=0

(n+ 1)
f (mn)(0)

(mn+ 1)!
wn.

For the case m = 1, we have Cφ = C∗
φ = I. Hence any results relating to

[C∗
φ, Cφ] and {C∗

φ, Cφ} in this case would be trivial. So we assume throughout
the paper that m ≥ 2.

3. Spectrum of C∗
φCφ and CφC

∗
φ

Let φ(z) = zm. In this section we are going to find the point spectrum,
spectrum, essential spectrum, and the eigenfunctions of the operators C∗

φCφ
and CφC

∗
φ.
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Theorem 3.1. Let φ(z) = zm. If m ≥ 2, then

σp(CφC
∗
φ) = {0, 1}

∪{
n+ 1

mn+ 1
|n ∈ N

}
,

σ(CφC
∗
φ) = σp(CφC

∗
φ)

∪{
1

m

}
,

σe(CφC
∗
φ) =

{
0,

1

m

}
,

σp(C
∗
φCφ) = σp(CφC

∗
φ)\ {0} ,

σ(C∗
φCφ) = σ(CφC

∗
φ)\ {0} ,

and

σe(C
∗
φCφ) =

{
1

m

}
.

Proof. Since any points in the spectrum of a normal operator which is not in the
essential spectrum is an isolated eigenvalue of finite multiplicity, we first find the
eigenvalues of the operator CφC

∗
φ. Let λ ∈ C be an eigenvalue of the operator

CφC
∗
φ with a corresponding eigenfunction f ∈ A2. Then CφC

∗
φf = λf . By

using formula (2.1) for CφC
∗
φ, we have

(3.1)
∞∑
n=0

(n+ 1)

mn+ 1

f (mn)(0)

(mn)!
wmn = λ

∞∑
k=0

f (k)(0)

k!
wk, w ∈ U.

By putting w = 0, it follows that f(0) = λf(0). If f(0) ̸= 0, then λ = 1. Thus
for the case λ = 1, the function f ≡ f(0) is a nonzero function in A2 that
satisfies the equation and hence λ = 1 is an eigenvalue of the operator CφC

∗
φ.

If f(0) = 0, we have
∞∑
n=1

(n+ 1)

mn+ 1

f (mn)(0)

(mn)!
wmn = λ

∞∑
k=1

f (k)(0)

k!
wk, w ∈ U.

So we conclude that

λ
f (k)(0)

k!
= 0 , k ̸= mn , n ∈ N,

and (
λ− n+ 1

mn+ 1

)
f (mn)(0)

(mn)!
= 0 , n ∈ N.

If λ /∈ {0}
∪{

n+1
mn+1 |n ∈ N

}
, then the above equations imply f = 0. For a

given natural number n and λ = n+1
mn+1 , the function fn(z) = zmn is a non-

zero function in A2 that satisfies equation (3.1), and hence λ = n+1
mn+1 is an

eigenvalue of the operator CφC
∗
φ. If λ = 0, for each natural number k which is

not a multiplie of m, the function f(z) = zk is a non-zero function in A2 that
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satisfies equation (3.1). Hence λ = 0 is an eigenvalue of the operator CφC
∗
φ

with infinite multiplicity. So 0 ∈ σe(CφC
∗
φ), and

σp(CφC
∗
φ) = {0, 1}

∪{
n+ 1

mn+ 1
|n ∈ N

}
.

Now we show that

σ(CφC
∗
φ) = σp(CφC

∗
φ)

∪{
1

m

}
.

Since CφC
∗
φ is a self-adjoint operator, we conclude that σ(CφC

∗
φ) ⊆ R. First

assume that 1
m ̸= λ ∈ R and λ is not in σp(CφC

∗
φ). So we have two cases:

Case 1: λ < 1
m or λ > 2

m+1 ; in the case λ < 1
m , we show that ran(CφC

∗
φ−λ) =

A2. Let g(w) =
∑∞
n=0 anw

n be a function in A2. By a simple computation,
we conclude that the function f defined by f(w) =

∑∞
n=0 cnw

n, where

ck =

{
−amn

λ− n+1
mn+1

, k = mn for n ∈ N ∪ {0}
−ak
λ , k ∈ N\ {mn|n ∈ N}

is convergent in the unit disk U. Furthermore, since
∞∑
k=0

|ck|2

1 + k
=

|a0|2

|1− λ|2
+

∑
k∈N\{mn|n∈N}

|−akλ |2

1 + k
+

∞∑
n=1

|amn|2

mn+ 1

1

| n+1
mn+1 − λ|2

,

from ∑
k∈N\{mn|n∈N}

|−akλ |2

1 + k
≤ 1

|λ|2
∞∑
k=0

|ak|2

1 + k
<∞

and
∞∑
n=1

|amn|2

mn+ 1

1

| n+1
mn+1 − λ|2

≤ 1

( 1
m − λ)2

∞∑
k=1

|ak|2

1 + k
<∞,

it follows that f ∈ A2. Also for each w ∈ U, (CφC∗
φ − λ)f(w) = g(w). So

ran(CφC
∗
φ − λ) = A2. For the case λ > 2

m+1 , by a similar proof as above we

conclude that ran(CφC
∗
φ − λ) = A2.

Case 2: λ is between two consecutive terms of the sequence
{

n+1
mn+1

}
; let

(n0 + 1) + 1

m(n0 + 1) + 1
< λ <

n0 + 1

mn0 + 1
,

for some n0. In the case n ≥ n0 + 1, we have λ > n+1
mn+1 and by putting

B0 = max

{
1

| 2
m+1 − λ|2

, . . . ,
1

|λ− n0+2
m(n0+1)+1 |2

,
1

|λ− n0+1
mn0+1 |2

}
,
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for each n ∈ N we have
1

| n+1
mn+1 − λ|2

≤ B0.

By using this inequality and a similar proof as in Case 1 above, we conclude
that ran(CφC

∗
φ − λ) = A2.

Now let λ = 1
m , and define g ∈ A2 by

g(w) =
∞∑
n=1

1√
mn+ 1

wmn.

Suppose that there exists f(w) =
∑∞
k=0 ckw

k such that (CφC
∗
φ − 1

m )f = g.
The last equality implies

ck =

{
m
m−1

√
mk + 1 k = mn for n ∈ N,

0 k ∈ N\ {mn|n ∈ N} ∪ {0}.

Since
∑∞
k=0

|ck|2
k+1 = ∞, we conclude that f is not in A2. So we have

σ(CφC
∗
φ) =

{
1

m

}
∪ σp(CφC∗

φ).

Since the essential spectrum of a normal operator consists of all accumulation
points of the spectrum plus all isolated eigenvalues of infinite multiplicity, we
conclude that

σe(CφC
∗
φ) =

{
0,

1

m

}
.

Now we do the same for the operator C∗
φCφ. In this case, we have

(C∗
φCφf)(w) = f(0) +

∞∑
n=1

n+ 1

mn+ 1

(f ◦ φ)(mn)(0)
(mn)!

wn, w ∈ U.

If λ = 0, and (C∗
φCφ)f(w) = λf(w), then

f(0) +
∞∑
n=1

n+ 1

mn+ 1

f (n)(0)

n!
wn = 0,

and so f = 0. Therefore 0 is not an eigenvalue of C∗
φCφ, and so

σp(C
∗
φCφ) = {1}

∪{
n+ 1

mn+ 1
|n ∈ N

}
.

Now we show that ran(C∗
φCφ − 0) = A2. For given g(z) =

∑∞
n=0 anz

n in A2,

we define f(w) =
∑∞
n=0 bnw

n, where b0 = a0 and for each natural number n,
bn = an

mn+1
n+1 . Hence f ∈ A2, and (C∗

φCφf)(w) = g(w), for each w ∈ U . So 0
is not in the spectrum of C∗

φCφ, and from

σ(CφC
∗
φ) ∪ {0} = σ(C∗

φCφ) ∪ {0}
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we conclude that

σ(C∗
φCφ) = σ(CφC

∗
φ)\ {0} .

For the essential spectrum of C∗
φCφ, since

σ(CφC
∗
φ + B0(A2)) ∪ {0} = σ(C∗

φCφ + B0(A2)) ∪ {0} ,

it follows that

σe(C
∗
φCφ) =

{
1

m

}
.

□

4. The spectrum of [C∗
φ, Cφ] and

{
C∗
φ, Cφ

}
In this section, we shall find the point spectrum, spectrum, essential spec-

trum, and eigenfunctions of the operators [C∗
φ, Cφ] = C∗

φCφ − CφC
∗
φ and{

C∗
φ, Cφ

}
= C∗

φCφ + CφC
∗
φ.

Theorem 4.1. Let φ(z) = zm. Then for m ≥ 2

σp([C
∗
φ, Cφ]) =

{
mn+ 1

m2n+ 1
− n+ 1

mn+ 1
|n ∈ N

}
∪{

−(n+ 1)

mn+ 1
|n ∈ N\ {mk|k ∈ N}

}
∪ {0} ,

σ([C∗
φ, Cφ]) = σp([C

∗
φ, Cφ])

∪{
− 1

m

}
and

σe([C
∗
φ, Cφ]) =

{
0,− 1

m

}
.

Proof. Let T = C∗
φCφ − CφC

∗
φ. Then for each f ∈ A2 and w ∈ U,

(Tf)(w) =

∞∑
n=1

(
mn+ 1

m2n+ 1
− n+ 1

mn+ 1

)
f (mn)(0)

(mn)!
wmn(4.1)

+
∑

n∈N\{mk|k∈N}

−(n+ 1)

mn+ 1

f (n)(0)

n!
wn.

Since all points in the spectrum of a normal operator which are not in the
essential spectrum are isolated eigenvalues of finite multiplicity, we first find
the eigenvalues.

Now let λ ∈ C be an eigenvalue of the operator T with a corresponding
eigenfunction f ∈ A2. Then Tf = λf and for each w ∈ U,
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λ
∞∑
k=0

f (k)(0)

k!
wk =

∞∑
n=1

(
mn+ 1

m2n+ 1
− n+ 1

mn+ 1

)
f (mn)(0)

(mn)!
wmn(4.2)

+
∑

n∈N\{mk|k∈N}

−(n+ 1)

mn+ 1

f (n)(0)

n!
wn.

So λf(0) = 0. If f(0) ̸= 0 we conclude that λ = 0. For the case λ = 0, the
function f ≡ f(0) is a non-zero function in A2 that satisfies equation (4.2), and
hence λ = 0 is an eigenvalue of the operator T . If f(0) = 0, we have(

mn+ 1

m2n+ 1
− n+ 1

mn+ 1
− λ

)
f (mn)(0)

(mn)!
= 0 , n ∈ N,

and (
−(n+ 1)

mn+ 1
− λ

)
f (n)(0)

n!
= 0 , n ∈ N\ {mk|k ∈ N} .

For each natural number n, we put λn = mn+1
m2n+1 − n+1

mn+1 . For the case λn =
mn+1
m2n+1 − n+1

mn+1 , the function zmn is a non-zero function in A2 that satisfies

equation (4.2), and hence λn = mn+1
m2n+1 −

n+1
mn+1 is an eigenvalue of the operator

T . For the case λ′n = − n+1
mn+1 , when n ∈ N\ {mk|k ∈ N} the function zn is a

non-zero function in A2 that satisfies equation (4.2), and hence λ′n = − n+1
mn+1

is an eigenvalue of the operator T . Now if λ ̸= 0, and for each natural number
n, λ ̸= λn, and for each n ∈ N\ {mk|k ∈ N}, λ ̸= λ′n, and if ([C∗

φ, Cφ]f)(w) =
λf(w), we conclude that f ≡ 0. Hence

σp([C
∗
φ, Cφ] =

{
mn+ 1

m2n+ 1
− n+ 1

mn+ 1
|n ∈ N

}
∪{

−(n+ 1)

mn+ 1
|n ∈ N\ {mk|k ∈ N}

}∪
{0} .

Now we show that

σ([C∗
φ, Cφ]) = σp([C

∗
φ, Cφ])

∪{
− 1

m

}
.

Since [C∗
φ, Cφ] is a self-adjoint operator, we conclude that σ([C∗

φ, Cφ]) ⊆ R. For
this case we assume that λ ∈ R, λ ̸= −1

m , and λ /∈ σp([C
∗
φ, Cφ]), and we show

that ran([C∗
φ,Cφ] − λ) = A2. For a given function g(w) =

∑∞
n=0 bnw

n in A2,

we define f ∈ A2 by f(w) =
∑∞
n=0 anw

n such that

bk =


−ak

k+1
mk+1+λ

k ∈ N\ {mn|n ∈ N} ,
−amn

n(m−1)2

(m2n+1)(mn+1)
+λ

k = mn for n ∈ N ∪ {0}.
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By a simple computation we conclude that f ∈ A2 and (([C∗
φ, Cφ]−λ)f)(w) =

g(w). Now we assume that λ = − 1
m . We define g(w) =

∑∞
n=0 anw

n on U such
that

ak =

{ 1√
mk+1

k ∈ N\ {mn|n ∈ N} ,
0 k = mn for n ∈ N ∪ {0}.

Since limn−→∞ n

√
1√

mn+1
= 1, we have lim supn−→∞

n
√

|an| = 1. So
∑∞
n=0 anw

n

is convergent on unit disk. Since
∞∑
n=0

|an|2

n+ 1
=

∑
n∈N\{mk|k∈ N}

1

(
√
mn+ 1)2

1

n+ 1
≤

∞∑
n=1

1

n2
,

we conclude that
∑∞
n=0

|an|2
n+1 < ∞, and hence g ∈ A2. Now we suppose that

there exists f ∈ A2 such that, for each w ∈ U ,

(([C∗
φ, Cφ] +

1

m
)f)(w) = g(w).

If f(w) =
∑∞
n=0 bnw

n, then

bk =

{ −m
m−1

mk+1√
mk+1

k ∈ N\ {mn|n ∈ N} ,
0 k = mn for n ∈ N ∪ {0}.

So we conclude that f is not in A2, and hence

σ([C∗
φ, Cφ]) = σp([C

∗
φ, Cφ])

∪{
− 1

m

}
.

Since all points in the spectrum of a normal operator which are not in the
essential spectrum are isolated eigenvalues of finite multiplicity, we conclude
that

σe([C
∗
φ, Cφ]) =

{
0,− 1

m

}
.

□

In the next theorem, we do the same for the operator
{
C∗
φ, Cφ

}
.

Theorem 4.2. Let φ(z) = zm, and for each n ∈ N, λn = mn+1
m2n+1 +

n+1
mn+1 , and

for each n ∈ N\ {mk|k ∈ N}, λ′n = n+1
mn+1 . Then for m ≥ 2,

σp(
{
C∗
φ, Cφ

}
) = {2} ∪ {λn|n ∈ N} ∪ {λ′n|n ∈ N\ {mk|k ∈ N}} ,

σ(
{
C∗
φ, Cφ

}
) = σp(

{
C∗
φ, Cφ

}
)
∪{

1

m
,
2

m

}
,

and

σe(
{
C∗
φ, Cφ

}
) =

{
1

m
,
2

m

}
.
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Proof. Let S = C∗
φCφ + CφC

∗
φ. Then for each f ∈ A2 and w ∈ U,

(Sf)(w) = 2f(0) +
∞∑
n=1

(
mn+ 1

m2n+ 1
+

n+ 1

mn+ 1

)
f (mn)(0)

(mn)!
wmn

+
∑

n∈N\{mk|k∈N}

n+ 1

mn+ 1

f (n)(0)

n!
wn.

Let λ ∈ C be an eigenvalue of the operator S with a corresponding eigenfunction
f ∈ A2. Then Sf = λf. So we have

(Sf)(w) = λf(0) +
∞∑
n=1

λ
f (n)(0)

n!
wn, w ∈ U.(4.3)

Now we define:{
λn = mn+1

m2n+1 + n+1
mn+1 , n ∈ N,

λ′n = n+1
mn+1 , n ∈ N\ {mk|k ∈ N} .

By using formula (4.3), if f(0) ̸= 0, for the case λ = 2 the function f ≡ f(0),
is a non-zero function in A2 that satisfies equation (4.3), and hence λ = 2 is
an eigenvalue of the operator S. If f(0) = 0, we have{

(λn − λ) f
(mn)(0)
(mn)! = 0 , n ∈ N,

(λ′n − λ) f
(n)(0)
n! = 0 , n ∈ N\ {mk|k ∈ N} .

For each natural number n, λn is an eigenvalue of the operator S with corre-
sponding eigenfunction znm ∈ A2, and for each n ∈ N\ {mk|k ∈ N}, λ′n is an
eigenvalue of the operator S with corresponding eigenfunction zn ∈ A2. So we
conclude that

σp(
{
C∗
φ, Cφ

}
) = {2} ∪ {λn|n ∈ N} ∪ {λ′n|n ∈ N\ {mk|k ∈ N}} .

Assume that, λ ∈ R, λ /∈ σp(S), λ ̸= 1
m and λ ̸= 2

m . Then we obtain that

ran(S − λ) = A2. Now we show that 1
m ∈ σ(S). For this case we define

g(w) =
∑∞
n=0 anw

n with

ak =

{ 1√
mk+1

k ∈ N\ {mn|n ∈ N} ,
0 k = mn for n ∈ N ∪ {0}.

Then we conclude that
∑∞
n=0 anw

n is convergent on U . So the function g
defined by g(w) =

∑∞
n=0 anw

n is in A2. If we assume that there exists an
f ∈ A2, such that (S − 1

m )f = g, then we conclude that f(w) =
∑∞
n=0 bnw

n

with

bk =

{
m
m−1

√
mk + 1 k ∈ N\ {mn|n ∈ N} ,

0 k = mn for n ∈ N ∪ {0}.
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Since
∑∞
n=0

|bn|2
n+1 = ∞, we conclude that ran(S− 1

m ) ̸= A2, and hence 1
m ∈ σ(S).

Now we define G(w) =
∑∞
n=0 cnw

n with

ck =

{ √
λk − 2

m k = mn for n ∈ N,
0 k ∈ N ∪ {0}\ {mn|n ∈ N} .

By a similar proof as above, we conclude that there does not exist F ∈ A2 such
that (S − 2

m )F = G. So 2
m ∈ σ(S). Then if m ≥ 2, we have

σ(
{
C∗
φ, Cφ

}
) = σp(

{
C∗
φ, Cφ

}
)
∪{

1

m
,
2

m

}
.

Since the essential spectrum of a normal operator consists of all points in the
spectrum of the operator except the isolated eigenvalues of finite multiplicity,
we conclude that

σe(
{
C∗
φ, Cφ

}
) =

{
1

m
,
2

m

}
.

□
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