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Abstract. For A,B ∈ Mnm, we say that A is left matrix majorized
(resp. left matrix submajorized) by B and write A ≺ℓ B (resp. A ≺ℓs B),

if A = RB for some n×n row stochastic (resp. row substochastic) matrix
R. Moreover, we define the relation ∼ℓs on Mnm as follows: A ∼ℓs B
if A ≺ℓs B ≺ℓs A. This paper characterizes all linear preservers and all

linear strong preservers of ≺ℓs and ∼ℓs from Mnm to Mnm.
Keywords: Linear preserver, row substochastic matrix, matrix ma-
jorization.
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1. Introduction

Throughout the paper, the notation Mnm is used for the space of all n×m
real matrices. We also write Mnn = Mn and Mn1 = Rn. In is the n×n identity
matrix and P(n) will denote all n×n permutation matrices. An n×m matrix
R = [rij ] is called row stochastic (resp. row substochastic) if for all i, j, rij ≥ 0
and Σm

k=1rik is equal (resp. at most equal) to 1. For A,B ∈ Mnm, we say that
A is left matrix majorized (resp. left matrix submajorized) by B and write
A ≺ℓ B (resp. A ≺ℓs B) if A = RB for some n × n row stochastic (resp. row
substochastic) matrix R. For a given relation ≺, we write A ∼ B if A ≺ B ≺ A.
A linear operator T : Mnm → Mnm is said to be a linear preserver of ≺ if A ≺ B
implies that T (A) ≺ T (B) for all A, B ∈ Mnm. It is a strong preserver of ≺
when A ≺ B if and only if T (A) ≺ T (B).

A.M. Hasani and M. Radjabalipour [7] characterized the structure of all
linear operators T : Mnm → Mnm preserving ≺ℓ . In particular, they proved
that if T : Mn → Mn strongly preserves ≺ℓ, then there exists a permutation
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matrix P ∈ P(n) and an invertible matrix L ∈ Mn such that T (X) = PXL
for all X ∈ Mn.

A. Armandnejad and A. Salemi [2] characterized the structure of all linear
preservers of ≺ℓ on complex matrices. Also, M. Radjabalipour and P. Torabian
[14] characterized all preservers of ≺ℓ on Rn which are not necessarily linear.

For more information about left matrix majorization and the previous work
on this subject we also refer to [3, 5, 8, 9, 10] and [13]. The structure of linear
operators that preserve other types of majorization have been derived by Ando
[1], Beasley, Lee and Y.H. Lee [4], Dahl [6], and Li and E. Poon [11]. Marshall
and Olkin’s text [12] is a standard general reference for majorization.

The present paper is organized as follows. In Section 2 we derive necessary
and sufficient conditions for a linear operator T from Rn to Rn to preserve
≺ℓs . In particular, we prove that the structure of linear preservers of ≺ℓ, ≺ℓs

and ∼ℓs are the same for n ≥ 3. In Section 3 we characterize a general linear
preserver T from Mnm to Mnm. In particular, we give necessary and sufficient
conditions for a linear operator T : Mnm → Mnm to strongly preserve ≺ℓs.

We note that necessary and sufficient conditions for T : Rn → Rn to be a
linear preserver of ≺ℓ have been derived before and the following theorems are
known.

Theorem 1.1. [7, Theorem 2.3] Let n ≥ 3. Then T : Rn → Rn is a linear
preserver of ≺ℓ if and only if T has the form T (X) = aPX, for all X ∈ Rn,
for some some a ∈ R and some P ∈ P(n).

Theorem 1.2. [7, Theorem 2.3] Let T : R2 → R2 be a linear operator. Then,
T is a linear preserver of ≺ℓ if and only if T has the form T (X) = (aI+ bP )X
for all X ∈ R2, where P is a 2×2 permutation matrix not equal I2, and ab ≤ 0.

The following theorem states necessary and sufficient conditions for a linear
operator T : Mnm → Mnm to be a linear preserver of ≺ℓ .

Theorem 1.3. [7, Theorem 3.1] Let T : Mnm → Mnm be a linear operator.
Then T preserves ≺ℓ if and only if T (X) = (aI + bP )XL for all X ∈ Mnm,
where L ∈ Mm, P is an n × n permutation matrix, P ̸= I, a and b are real
numbers such that ab ≤ 0, and, if n ̸= 2, ab = 0. Moreover, if n ̸= 2, then
aI + bP = cQ for some c ∈ R and, hence, T (X) = QXK for some K ∈ Mm.

2. Linear preservers of ≺ℓs on Rn

In what follows, [T ] = [tij ] will denote the matrix representation of an
operator T : Rn → Rn with respect to the standard basis {e1, e2, . . . , en} of Rn.
Also, e = Σn

j=1ej ∈ Rn and

a : = max{tij | 1 ≤ i, j ≤ n},
b : = min{tij | 1 ≤ i, j ≤ n}.(2.1)
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By Theorem 1.2, the matrix representation of a linear preserver of ≺ℓ with
respect to the standard basis of R2 is as follows:[

a b
b a

]
for some real numbers a, b satisfying ab ≤ 0.

All linear operators T : R → R are preservers of ≺ℓs (T (rx) ≺ℓs T (x) for all
x ∈ R and for all r ∈ [0, 1]). Also, T = 0 is a linear preserver of ≺ℓs . Hence,
throughout the paper, for a linear operator T : Rn → Rn we shall assume that
T ̸= 0 and n ≥ 2.

T : Mnm → Mnm is a linear preserver of ≺ℓs if and only if αT is a linear
preserver of ≺ℓs for all nonzero real numbers α. Hence without loss of generality
we shall assume that a > 0 and | b |≤ a, where a and b are as in (2.1).

Throughout the paper, for a given vector x ∈ Rn, maxx and minx denote
the maximum and minimum values of components of x, respectively. Also, we
write xM = maxx and xm = minx.

The following important lemmas are easy consequences of the definitions of
≺ℓs and ∼ℓs .

Lemma 2.1. Let x, y ∈ Rn. If x ≺ℓs y then the following assertions are true.
(a) xi ∈ Conv({y1, . . . , yn} ∪ {0}), for all i (1 ≤ i ≤ n).
(b) If ym ≥ 0, then xm ≥ 0.
(c) If yM ≤ 0, then xM ≤ 0.
(d) If ym ≤ 0 and yM ≥ 0, then ym ≤ xm ≤ xM ≤ yM .

Lemma 2.2. Let x, y be nonzero vectors in Rn. If x ∼ℓs y, then exactly one
of the following occurs:
(a) x, y are entrywise nonnegative and xM = yM .
(b) x, y are entrywise nonpositive and xm = ym.
(c) xm = ym ≤ 0 and xM = yM ≥ 0.
Furthermore, if x, y ∈ Rn and at least one of the conditions (a), (b) and (c)
holds, then x ∼ℓs y.

Theorem 2.3 presents some necessary conditions for a nonzero operator
T : Rn → Rn, n ≥ 2, to be a linear preserver of ∼ℓs .

Theorem 2.3. Let T : Rn → Rn be a nonzero linear preserver of ∼ℓs, and
assume that n ≥ 2, and a and b are as in (2.1). Then the following assertions
are true

(a) For each j ∈ {1, 2, . . . , n}, maxT (ej) = a. In particular, every column
of [T ] contains at least one entry equal to a.

(b) maxT (e) = a; moreover, if a row of [T ] contains an entry equal to a,
then all other nonnegative entries of that row are zero.

(c) b = 0.
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Proof. (a). Without loss of generality, we can assume that t11 = a and
a > 0. t11 = a implies that maxT (e1) = a. Let j ∈ {1, 2, . . . , n} be fixed.
Since ej ∼ℓs e1 and T preserves ∼ℓs, hence T (ej) ∼ℓs T (e1). By Lemma 2.2,
maxT (ej) = maxT (e1) = a. Since j ∈ {1, 2, . . . , n} is arbitrary, maxT (ej) = a,
for all j (1 ≤ j ≤ n), therefore, every column of [T ] has at least one entry equal
to a.
(b). By Lemma 2.2, Σj∈Jej ∼ℓs e1, for all J ⊆ {1, . . . , n} and hence Σj∈JT (ej)
∼ℓs T (e1). Lemma 2.2 implies that maxΣj∈JT (ej) = a, for all J ⊆ {1, 2, . . . , n}.
Therefore, for all J ⊆ {1, . . . , n}, maxΣj∈J tij = a where the maximum is taken
over i (1 ≤ i ≤ n). Thus, if a row of [T ] contains an entry equal to a, then all
nonnegative entries of that row are zero. In particular, maxT (e) = a.
(c). From (a), it follows that every column of [T ] has at least one entry equal
to a. Also, (b) implies that every row of [T ] has at most one entry equal
to a. Since [T ] is n × n, every row of [T ] has exactly one entry equal to a.
Hence by (b), all other nonnegative entries of rows of [T ] must be zero. There-
fore b ≤ 0. If b < 0, without loss of generality, we may write t11 = b. So,
maxT (e1) = a > 0 and minT (e1) = b < 0. Let k ∈ {1, . . . , n} be fixed, since
e1 ∼ℓs ek and T preserves ∼ℓs, then T (e1) ∼ℓs T (ek). Hence by Lemma 2.2,
maxT (ek) = maxT (e1) = a and minT (ek) = minT (e1) = b. Since k is arbi-
trary, each column of [T ] has at least one entry equal to b. Let J ⊆ {1, . . . , n}.
Since Σj∈Jej ∼ℓs e1, Σj∈JT (ej) ∼ℓs T (e1), by Lemma 2.2, minΣj∈JT (ej) = b,
for all J ⊆ {1, . . . , n}. Thus, if a row of [T ] has one entry equal to b, then all
its other nonpositive entries of it must be zero. Thus, at most one entry of
each row of [T ] equals to b. Since [T ] is n × n, each row of [T ] has one entry
equal to b and other nonpositive entries are zero. But one entry of each row
of [T ] is equal to a, which is a contradiction, hence b = 0. □

Theorem 2.4. If T is such that T (x) = aPx, for all x ∈ Rn, for a real number
a and a permutation matrix P ∈ P(n), the operator T : Rn → Rn, n ≥ 2 is a
linear preserver of ≺ℓs .

Proof. Let x ∈ Rn andR be a row substochastic matrix inMn. Since PR = R′P
for some row substochastic matrix R′, T (Rx) = aPRx = R′aPx = R′(T (x)).
Therefore, T is a linear preserver of ≺ℓs . □

The following theorem follows from Theorem 2.2 and Theorem 2.4.

Theorem 2.5. Let n ≥ 2 and T : Rn → Rn be a linear operator. Then the
following assertions are equivalent:

(a) T preserves ≺ℓs,
(b) T preserves ∼ℓs,
(c) T (x) = aPx, for all x ∈ Rn and a ∈ R.

Theorem 1.1 and Theorem 2.2 imply the following corollary.
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Corollary 2.6. Let n ≥ 3. Then T : Rn → Rn is a linear preserver of ≺ℓ if
and only if T is a linear preserver of ≺ℓs .

The following example shows that, the Corollary 2.6 is not true for n = 2.

Example 2.7. The linear operator whose matrix representation is

[T ] =

[
2 −1
−1 2

]
,

is a linear preserver of ≺ℓ but not a linear preserver of ≺ℓs .

3. Linear Preservers of ≺ℓs on Mnm

For each i (1 ≤ i ≤ m), define the linear operators Ei : Rn → Mnm by
Ei(x) = xeti for all x ∈ Rn and Ei : Mnm → Rn by Ei(X) = Xei for all
X ∈ Mnm, where {e1, . . . , em} denotes the standard basis for Rm [7].

Lemma 3.1. Let T : Mnm → Mnm be a linear preserver of ≺ℓs . Then the
linear operators Tij = Ej ◦ T ◦ Ei preserve ≺ℓs for all i, j = 1, 2, . . . ,m.

Proof. Let x ∈ Rn and R be a row substochastic matrix in Mn. Rx ≺ℓs x
implies that Ei(Rx) ≺ℓs Ei(x). Since T is a linear preserver of ≺ℓs, for ev-
ery i (1 ≤ i ≤ m), T (Ei(Rx)) ≺ℓs T (Ei(x)). Therefore Ej(T (Ei(Rx))) ≺ℓs

Ej(T (Ei(x))), for all i, j = 1, 2, . . . ,m. □

Theorem 3.2. Let T : Mnm → Mnm be a linear operator. If T preserves ∼ℓs,
then T (X) = PXA, for all X ∈ Mnm, for some A ∈ Mn and some n × n
permutation matrix P.

Proof. For each X = [x1, x2, . . . , xm] ∈ Mnm, it is easily seen that

T (X) = T ([x1, x2, . . . , xm]) = [Σm
i=1Ti1(xi), . . . ,Σ

m
i=1Tim(xi)].

It follows from Lemma 3.1 that every Tij is a linear preserver of ∼ℓs . Hence,
by Theorem 2.4, Tij(x) = aijPijx for some permutation matrices Pij and some
real numbers aij , where i, j = 1, 2, . . . ,m. Since T ̸= 0, aij ̸= 0, for some
i, j (1 ≤ i, j ≤ m). Without loss of generality, let i = j = 1 and P = P11.

We claim that Pij = P, for all i, j = 1, 2, . . . ,m. Let r, s ∈ {1, . . . ,m},
α, β be scalars and (X)i denote the ith column of the matrix X ∈ Mnm. Fix
k ∈ {1, . . . , n} and define X,Y ∈ Mnm by (X)r = αe, (Y )r = αek, (X)s = βe,
(Y )s = βek and (X)i = (Y )i = 0, if i ̸= r, i ̸= s. X ∼ℓs Y implies that
T (X) ∼ℓs T (Y ), and hence,

[(T (X))r, (T (X))s] ∼ℓs [(T (Y ))r, (T (Y ))s].

Therefore,

[αarre+ βasre, αarse+ βasse] ∼ℓs [αarrPrrek + βasrPsrek, αarsPrsek + βassPssek].
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If arrars ̸= 0, we prove that Prr = Prs. Let α = 1 and β = 0. We have
e = RPrrek = RPrsek, for some row substochastic matrix R. Since R has at
most one column equal to e and k is arbitrary, Prr = Prs.

Now, suppose arrasr ̸= 0. We prove that Prr = Psr. Let α, β be such that
(αarr)(βasr) > 0. We know that

αarre+ βasre ∼ℓs αarrPrrek + βasrPsrek

If Prr ̸= Psr, then αarr + βasr ∈ Conv({αarr, βasr} ∪ {0}), which is a contra-
diction. Therefore, Prr = Psr.

Now suppose that arrass ̸= 0, but ars = asr = 0. Thus,

[αarre, βasse] ∼ℓs [αarrPrrek, βassPssek].

Let α = β = 1. Then e = RPrrek = RPssek. Since k is arbitrary and R has at
most one column equal to e, we get Prr = Pss.

We conclude that Pij = P for all i, j ∈ {1, . . . ,m}. Therefore,

T (X) = [Σm
i=1ai1Pi1Xi, . . . ,Σ

m
i=1aimPimXi]

= P [Σm
i=1ai1Xi, . . . ,Σ

m
i=1aimXi]

= PXA,

where A = [aij ].
□

Theorem 3.3. Let T : Mnm → Mnm be a linear operator. Then the following
assertions are equivalent:

(a) T preserves ≺ℓs,
(b) T preserves ∼ℓs,
(c) T (X) = PXA, for all X ∈ Mnm, some A ∈ Mm, and some n × n

permutation matrix P.

Proof. By Theorem 3.2, it is sufficient to prove that (c) implies (a). Let T (X) =
PXA and R be a row substochastic matrix. Since PR = R′P for some row
substochastic matrix R′, T (RX) = PRXA = R′PXA = R′(T (X)). Hence
T (RX) ≺ℓs T (X). □

Corollary 3.4. A linear operator T : Mnm → Mnm strongly preserves the
majorization relation ≺ℓs if and only if there exists P ∈ P(n) and an invertible
matrix L in Mm such that T (X) = PXL for all X ∈ Mnm.

Proof. By Theorem 3.2, there exists P ∈ P(n), L ∈ Mm and a nonzero real
number a such that T (X) = aPXL for all X ∈ Mnm. Choose X ∈ Mnm such
that XL = 0. Thus, T (X) = aPXL = 0 ≺ℓs 0 = T (0) and therefore, X ≺ℓs 0.
Hence, X = 0 which implies that L is invertible. Replacing L by a−1L yields
T (X) = PXL for all X ∈ Mnm, for some P ∈ P(n) and an invertible matrix
L ∈ Mm.
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Let T (X) ≺ℓs T (Y ) for X,Y ∈ Mnm. Then PXL = RPY L for some row
substochastic matrix R. Since L is invertible PX = RPY, then X = RY and
hence X ≺ℓs Y. □
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