Title:
Linear maps preserving or strongly preserving majorization on matrices

Author(s):
F. Khalooei
LINEAR MAPS PRESERVING OR STRONGLY PRESERVING MAJORIZATION ON MATRICES

F. KHALOOEI

(Communicated by Bamdad Yahaghi)

Dedicated to Professor Heydar Radjavi on his 80th birthday

Abstract. For $A, B \in M_{nm}$, we say that A is left matrix majorized (resp. left matrix submajorized) by B and write $A \preceq \ell B$ (resp. $A \preceq \ell s B$), if $A = RB$ for some $n \times n$ row stochastic (resp. row substochastic) matrix R. Moreover, we define the relation $\sim_{\ell s}$ on M_{nm} as follows: $A \sim_{\ell s} B$ if $A \preceq_{\ell s} B \preceq_{\ell s} A$. This paper characterizes all linear preservers and all linear strong preservers of $\preceq_{\ell s}$ and $\sim_{\ell s}$ from M_{nm} to M_{nm}.

Keywords: Linear preserver, row substochastic matrix, matrix majorization.

1. Introduction

Throughout the paper, the notation M_{nm} is used for the space of all $n \times m$ real matrices. We also write $M_{nn} = M_n$ and $M_{n1} = R^n$. I_n is the $n \times n$ identity matrix and $P(n)$ will denote all $n \times n$ permutation matrices. An $n \times m$ matrix $R = [r_{ij}]$ is called row stochastic (resp. row substochastic) if for all $i, j, r_{ij} \geq 0$ and $\sum_{k=1}^{n} r_{ik}$ is equal (resp. at most equal) to 1. For $A, B \in M_{nm}$, we say that A is left matrix majorized (resp. left matrix submajorized) by B and write $A \preceq \ell B$ (resp. $A \preceq \ell s B$) if $A = RB$ for some $n \times n$ row stochastic (resp. row substochastic) matrix R. For a given relation \preceq, we write $A \sim B$ if $A \preceq B \preceq A$.

A linear operator $T : M_{nm} \to M_{nm}$ is said to be a linear preserver of \preceq if $A \preceq B$ implies that $T(A) \preceq T(B)$ for all $A, B \in M_{nm}$. It is a strong preserver of \preceq when $A \sim B$ if and only if $T(A) \sim T(B)$.

A.M. Hasani and M. Radjabalipour [7] characterized the structure of all linear operators $T : M_{nm} \to M_{nm}$ preserving \sim_{ℓ}. In particular, they proved that if $T : M_n \to M_n$ strongly preserves \sim_{ℓ}, then there exists a permutation...
matrix \(P \in \mathcal{P}(n) \) and an invertible matrix \(L \in M_n \) such that \(T(X) = PXL \) for all \(X \in M_n \).

A. Armandnejad and A. Salemi [2] characterized the structure of all linear preservers of \(\prec_\ell \) on complex matrices. Also, M. Radjabalipour and P. Torabian [14] characterized all preservers of \(\prec_\ell \) on \(\mathbb{R}^n \) which are not necessarily linear.

For more information about left matrix majorization and the previous work on this subject we also refer to [3, 5, 8, 9, 10] and [13]. The structure of linear operators that preserve other types of majorization have been derived by Ando [1], Beasley, Lee and Y.H. Lee [4], Dahl [6], and Li and E. Poon [11]. Marshall and Olkin’s text [12] is a standard general reference for majorization.

The present paper is organized as follows. In Section 2 we derive necessary and sufficient conditions for a linear operator \(T \) from \(\mathbb{R}^n \) to \(\mathbb{R}^n \) to preserve \(\prec_{\ell_2} \). In particular, we prove that the structure of linear preservers of \(\prec_\ell \), \(\prec_{\ell_2} \) and \(\prec_{\ell_\infty} \) are the same for \(n \geq 3 \). In Section 3 we characterize a general linear preserver \(T \) from \(M_{nm} \) to \(M_{nm} \). In particular, we give necessary and sufficient conditions for a linear operator \(T : M_{nm} \to M_{nm} \) to strongly preserve \(\prec_{\ell_\infty} \).

We note that necessary and sufficient conditions for \(T : \mathbb{R}^n \to \mathbb{R}^n \) to be a linear preserver of \(\prec_\ell \) have been derived before and the following theorems are known.

Theorem 1.1. [7, Theorem 2.3] Let \(n \geq 3 \). Then \(T : \mathbb{R}^n \to \mathbb{R}^n \) is a linear preserver of \(\prec_\ell \) if and only if \(T \) has the form \(T(X) = aPX \), for all \(X \in \mathbb{R}^n \), for some some \(a \in \mathbb{R} \) and some \(P \in \mathcal{P}(n) \).

Theorem 1.2. [7, Theorem 2.3] Let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear operator. Then, \(T \) is a linear preserver of \(\prec_\ell \) if and only if \(T \) has the form \(T(X) = (aI + bP)X \) for all \(X \in \mathbb{R}^2 \), where \(P \) is a \(2 \times 2 \) permutation matrix not equal \(I_2 \), and \(ab \leq 0 \).

The following theorem states necessary and sufficient conditions for a linear operator \(T : M_{nm} \to M_{nm} \) to be a linear preserver of \(\prec_\ell \).

Theorem 1.3. [7, Theorem 3.1] Let \(T : M_{nm} \to M_{nm} \) be a linear operator. Then \(T \) preserves \(\prec_\ell \) if and only if \(T(X) = (aI + bP)XL \) for all \(X \in M_{nm} \), where \(L \in M_n \), \(P \) is an \(n \times n \) permutation matrix, \(P \neq I \), \(a \) and \(b \) are real numbers such that \(ab \leq 0 \), and, if \(n \neq 2 \), \(ab = 0 \). Moreover, if \(n \neq 2 \), then \(aI + bP = cQ \) for some \(c \in \mathbb{R} \) and, hence, \(T(X) = QXK \) for some \(K \in M_n \).

2. Linear preservers of \(\prec_{\ell_\infty} \) on \(\mathbb{R}^n \)

In what follows, \([T] = [t_{ij}] \) will denote the matrix representation of an operator \(T : \mathbb{R}^n \to \mathbb{R}^n \) with respect to the standard basis \(\{e_1, e_2, \ldots, e_n\} \) of \(\mathbb{R}^n \). Also, \(e = \sum_{j=1}^n e_j \in \mathbb{R}^n \) and

\[
\begin{align*}
a & : = \max\{t_{ij} \mid 1 \leq i, j \leq n\}, \\
b & : = \min\{t_{ij} \mid 1 \leq i, j \leq n\}.
\end{align*}
\]
By Theorem 1.2, the matrix representation of a linear preserver of \prec_{ℓ^s} with respect to the standard basis of \mathbb{R}^2 is as follows:

$$\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$

for some real numbers a, b satisfying $ab \leq 0$.

All linear operators $T: \mathbb{R} \rightarrow \mathbb{R}$ are preservers of \prec_{ℓ^s} (for all $x \in \mathbb{R}$ and for all $r \in [0, 1]$). Also, $T = 0$ is a linear preserver of \prec_{ℓ^s}. Hence, throughout the paper, for a linear operator $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ we shall assume that $T \neq 0$ and $n \geq 2$.

$T: M_{nm} \rightarrow M_{nm}$ is a linear preserver of \prec_{ℓ^s} if and only if T is a linear preserver of \prec_{ℓ^s} for all nonzero real numbers a. Hence without loss of generality we shall assume that $a > 0$ and $|b| \leq a$, where a and b are as in (2.1).

Throughout the paper, for a given vector $x \in \mathbb{R}^n$, $\max x$ and $\min x$ denote the maximum and minimum values of components of x, respectively. Also, we write $x_M = \max x$ and $x_m = \min x$.

The following important lemmas are easy consequences of the definitions of \prec_{ℓ^s} and \prec_{ℓ^s}.

Lemma 2.1. Let $x, y \in \mathbb{R}^n$. If $x \prec_{\ell^s} y$ then the following assertions are true.

(a) $x_i \in \text{Conv}(\{y_1, \ldots, y_n\} \cup \{0\})$, for all i ($1 \leq i \leq n$).

(b) If $y_m \geq 0$, then $x_m \geq 0$.

(c) If $y_M \leq 0$, then $x_M \leq 0$.

(d) If $y_m \leq 0$ and $y_M \geq 0$, then $y_m \leq x_m \leq x_M \leq y_M$.

Lemma 2.2. Let x, y be nonzero vectors in \mathbb{R}^n. If $x \sim_{\ell^s} y$, then exactly one of the following occurs:

(a) x, y are entrywise nonnegative and $x_M = y_M$.

(b) x, y are entrywise nonpositive and $x_m = y_m$.

(c) $x_m = y_m \leq 0$ and $x_M = y_M \geq 0$.

Furthermore, if $x, y \in \mathbb{R}^n$ and at least one of the conditions (a), (b) and (c) holds, then $x \sim_{\ell^s} y$.

Theorem 2.3 presents some necessary conditions for a nonzero operator $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$, $n \geq 2$, to be a linear preserver of \sim_{ℓ^s}.

Theorem 2.3. Let $T: \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a nonzero linear preserver of \sim_{ℓ^s}, and assume that $n \geq 2$, and a and b are as in (2.1). Then the following assertions are true:

(a) For each $j \in \{1, 2, \ldots, n\}$, $\max T(e_j) = a$. In particular, every column of $[T]$ contains at least one entry equal to a.

(b) $\max T(e) = a$; moreover, if a row of $[T]$ contains an entry equal to a, then all other nonnegative entries of that row are zero.

(c) $b = 0$.
Proof. (a). Without loss of generality, we can assume that \(t_{11} = a \) and \(a > 0 \). \(t_{11} = a \) implies that \(\max T(e_1) = a \). Let \(j \in \{1, 2, \ldots, n\} \) be fixed. Since \(e_j \sim_{\ell_s} e_1 \) and \(T \) preserves \(\sim_{\ell_s} \), hence \(T(e_j) \sim_{\ell_s} T(e_1) \). By Lemma 2.2, \(\max T(e_j) = \max T(e_1) = a \). Since \(j \in \{1, 2, \ldots, n\} \) is arbitrary, \(\max T(e_j) = a \), for all \(j (1 \leq j \leq n) \), therefore, every column of \([T] \) has at least one entry equal to \(a \).

(b). By Lemma 2.2, \(\Sigma_{j \in J} e_j \sim_{\ell_s} e_1 \), for all \(J \subseteq \{1, \ldots, n\} \) and hence \(\Sigma_{j \in J} T(e_j) \sim_{\ell_s} T(e_1) \). Lemma 2.2 implies that \(\max \Sigma_{j \in J} T(e_j) = a \), for all \(J \subseteq \{1, 2, \ldots, n\} \). Therefore, for all \(J \subseteq \{1, \ldots, n\} \), \(\max \Sigma_{j \in J} t_{ij} = a \) where the maximum is taken over \(i (1 \leq i \leq n) \). Thus, if a row of \([T]\) contains an entry equal to \(a \), then all nonnegative entries of that row are zero. In particular, \(\max T(e) = a \).

(c). From (a), it follows that every column of \([T]\) has at least one entry equal to \(a \). Also, (b) implies that every row of \([T]\) has at most one entry equal to \(a \). Since \([T]\) is \(n \times n \), every row of \([T]\) has exactly one entry equal to \(a \). Hence by (b), all other nonnegative entries of rows of \([T]\) must be zero. Therefore \(b \leq 0 \). If \(b < 0 \), without loss of generality, we may write \(t_{11} = b \). So, \(\max T(e_1) = a > 0 \) and \(\min T(e_1) = b < 0 \). Let \(k \in \{1, \ldots, n\} \) be fixed, since \(e_1 \sim_{\ell_s} e_k \) and \(T \) preserves \(\sim_{\ell_s} \), then \(T(e_1) \sim_{\ell_s} T(e_k) \). Hence by Lemma 2.2, \(\max T(e_k) = \max T(e_1) = a \) and \(\min T(e_k) = \min T(e_1) = b \). Since \(k \) is arbitrary, each column of \([T]\) has at least one entry equal to \(b \). Let \(J \subseteq \{1, \ldots, n\} \).

Since \(\Sigma_{j \in J} e_j \sim_{\ell_s} e_1 \), \(\Sigma_{j \in J} T(e_j) \sim_{\ell_s} T(e_1) \), by Lemma 2.2, \(\min \Sigma_{j \in J} T(e_j) = b \), for all \(J \subseteq \{1, \ldots, n\} \). Thus, if a row of \([T]\) has one entry equal to \(b \), then all its other nonpositive entries of it must be zero. Thus, at most one entry of each row of \([T]\) equals to \(b \). Since \([T]\) is \(n \times n \), each row of \([T]\) has one entry equal to \(b \) and other nonpositive entries are zero. But one entry of each row of \([T]\) is equal to \(a \), which is a contradiction, hence \(b = 0 \).

Theorem 2.4. If \(T \) is such that \(T(x) = aPx \), for all \(x \in \mathbb{R}^n \), for a real number \(a \) and a permutation matrix \(P \in \mathcal{P}(n) \), the operator \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \), \(n \geq 2 \) is a linear preserver of \(\prec_{\ell_s} \).

Proof. Let \(x \in \mathbb{R}^n \) and \(R \) be a row substochastic matrix in \(M_n \). Since \(PR = R'P \) for some row substochastic matrix \(R' \), \(T(Rx) = aPRx = aRx = R'(T(x)) \). Therefore, \(T \) is a linear preserver of \(\prec_{\ell_s} \).

The following theorem follows from Theorem 2.2 and Theorem 2.4.

Theorem 2.5. Let \(n \geq 2 \) and \(T : \mathbb{R}^n \rightarrow \mathbb{R}^n \) be a linear operator. Then the following assertions are equivalent:

(a) \(T \) preserves \(\prec_{\ell_s} \),

(b) \(T \) preserves \(\sim_{\ell_s} \),

(c) \(T(x) = aPx \), for all \(x \in \mathbb{R}^n \) and \(a \in \mathbb{R} \).

Theorem 1.1 and Theorem 2.2 imply the following corollary.
Let is not true for every. The linear operator whose matrix representation is

$$[T] = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix},$$

is a linear preserver of \prec but not a linear preserver of \prec_{ℓ_2}.

3. Linear Preservers of \prec_{ℓ_2} on M_{nm}

For each i ($1 \leq i \leq m$), define the linear operators $E_i: \mathbb{R}^n \to M_{nm}$ by $E_i(x) = x e_i^T$ for all $x \in \mathbb{R}^n$ and $E_i: M_{nm} \to \mathbb{R}^n$ by $E_i(X) = X e_i$ for all $X \in M_{nm}$, where $\{e_1, \ldots, e_m\}$ denotes the standard basis for \mathbb{R}^m.

Lemma 3.1. Let $T: M_{nm} \to M_{nm}$ be a linear preserver of \prec_{ℓ_2}. Then the linear operators $T_{ij} = E_j \circ T \circ E_i$ preserve \prec_{ℓ_2} for all $i, j = 1, 2, \ldots, m$.

Proof. Let $x \in \mathbb{R}^n$ and R be a row substochastic matrix in M_n. $Rx \prec_{\ell_2} x$ implies that $E_i(Rx) \prec_{\ell_2} E_i(x)$. Since T is a linear preserver of \prec_{ℓ_2}, for every i ($1 \leq i \leq m$), $T(E_i(Rx)) \prec_{\ell_2} T(E_i(x))$. Therefore $E_j(T(E_i(Rx))) \prec_{\ell_2} E_j(T(E_i(x)))$, for all $i, j = 1, 2, \ldots, m$.

Theorem 3.2. Let $T: M_{nm} \to M_{nm}$ be a linear operator. If T preserves \sim_{ℓ_2}, then $T(X) = PAX$, for all $X \in M_{nm}$, for some $A \in M_n$ and some $n \times n$ permutation matrix P.

Proof. For each $X = [x_1, x_2, \ldots, x_m] \in M_{nm}$, it is easily seen that

$$T(X) = T([x_1, x_2, \ldots, x_m]) = [\Sigma_{i=1}^m T_{i1}(x_i), \ldots, \Sigma_{i=1}^m T_{im}(x_i)].$$

It follows from Lemma 3.1 that every T_{ij} is a linear preserver of \sim_{ℓ_2}. Hence, by Theorem 2.4, $T_{ij}(x) = a_{ij} P_{ij} x$ for some permutation matrices P_{ij} and some real numbers a_{ij}, where $i, j = 1, 2, \ldots, m$. Since $T \neq 0$, $a_{ij} \neq 0$, for some i, j ($1 \leq i, j \leq m$). Without loss of generality, let $i = j = 1$ and $P = P_{11}$.

We claim that $P_{ij} = P$, for all $i, j = 1, 2, \ldots, m$. Let $r, s \in \{1, \ldots, m\}$, α, β be scalars and (X), denote the ith column of the matrix $X \in M_{nm}$. Fix $k \in \{1, \ldots, n\}$ and define $X, Y \in M_{nm}$ by $(X)_r = \alpha e, (Y)_r = \alpha e_k, (X)_s = \beta e, (Y)_s = \beta e_k$ and $(X)_i = (Y)_i = 0$, if $i \neq r, i \neq s$. $X \sim_{\ell_2} Y$ implies that $T(X) \sim_{\ell_2} T(Y)$, and hence,

$$[(T(X))_r, (T(X))_s] \sim_{\ell_2} [(T(Y))_r, (T(Y))_s].$$

Therefore,

$$[\alpha a_{rr} e + \beta a_{rs} e, \alpha a_{rr} e + \beta a_{rs} e] \sim_{\ell_2} [\alpha a_{rr} P_{rs} e_k + \beta a_{rs} P_{rs} e_k, \alpha a_{rr} P_{rs} e_k + \beta a_{rs} P_{rs} e_k].$$
If \(a_{rr}a_{rs} \neq 0 \), we prove that \(P_{rr} = P_{rs} \). Let \(\alpha = 1 \) and \(\beta = 0 \). We have \(e = RP_{rr}e_k = RP_{rs}e_k \), for some row substochastic matrix \(R \). Since \(R \) has at most one column equal to \(e \) and \(k \) is arbitrary, \(P_{rr} = P_{rs} \).

Now, suppose \(a_{rr}a_{sr} \neq 0 \). We prove that \(P_{rr} = P_{sr} \). Let \(\alpha, \beta \) be such that \((\alpha a_{rr})(\beta a_{sr}) > 0\). We know that
\[
\alpha a_{rr}e + \beta a_{sr}e \sim_{ts} \alpha a_{rr}P_{rr}e_k + \beta a_{sr}P_{sr}e_k
\]
If \(P_{rr} \neq P_{sr} \), then \(\alpha a_{rr} + \beta a_{sr} \in \text{Conv}(\{\alpha a_{rr}, \beta a_{sr}\} \cup \{0\}) \), which is a contradiction. Therefore, \(P_{rr} = P_{sr} \).

Now suppose that \(a_{rr}a_{ss} \neq 0 \), but \(a_{rs} = a_{sr} = 0 \). Thus,
\[
[\alpha a_{rr}e, \beta a_{ss}e] \sim_{ts} [\alpha a_{rr}P_{rr}e_k, \beta a_{ss}P_{ss}e_k].
\]
Let \(\alpha = \beta = 1 \). Then \(e = RP_{rr}e_k = RP_{ss}e_k \). Since \(k \) is arbitrary and \(R \) has at most one column equal to \(e \), we get \(P_{rr} = P_{ss} \).

We conclude that \(P_{ij} = P \) for all \(i, j \in \{1, \ldots, m\} \). Therefore,
\[
T(X) = \begin{bmatrix} \sum_{i=1}^{m}a_{i1}X_1, \ldots, \sum_{i=1}^{m}a_{im}X_m \end{bmatrix} = P[\sum_{i=1}^{m}a_{i1}X_1, \ldots, \sum_{i=1}^{m}a_{im}X_m] = PXA,
\]
where \(A = [a_{ij}] \).

\[\Box \]

Theorem 3.3. Let \(T : M_{nm} \to M_{nm} \) be a linear operator. Then the following assertions are equivalent:

(a) \(T \) preserves \(\prec_{ts} \),
(b) \(T \) preserves \(\sim_{ts} \),
(c) \(T(X) = PXA \), for all \(X \in M_{nm} \), some \(A \in M_m \), and some \(n \times n \) permutation matrix \(P \).

Proof. By Theorem 3.2, it is sufficient to prove that (c) implies (a). Let \(T(X) = PXA \) and \(R \) be a row substochastic matrix. Since \(PR = PR'P \) for some row substochastic matrix \(R' \), \(T(RX) = PRXA = R'PX = R'(T(X)) \). Hence \(T(RX) \prec_{ts} T(X) \).

\[\Box \]

Corollary 3.4. A linear operator \(T : M_{nm} \to M_{nm} \) strongly preserves the majorization relation \(\prec_{ts} \) if and only if there exists \(P \in P(n) \) and an invertible matrix \(L \) in \(M_m \) such that \(T(X) = PXL \) for all \(X \in M_{nm} \).

Proof. By Theorem 3.2, there exists \(P \in P(n), L \in M_m \), and a nonzero real number \(a \) such that \(T(X) = aPXL \) for all \(X \in M_{nm} \). Choose \(X \in M_{nm} \) such that \(XL = 0 \). Thus, \(T(X) = aPXL = 0 \prec_{ts} 0 = T(0) \) and therefore, \(X \prec_{ts} 0 \). Hence, \(X = 0 \) which implies that \(L \) is invertible. Replacing \(L \) by \(a^{-1}L \) yields \(T(X) = PXL \) for all \(X \in M_{nm} \), for some \(P \in P(n) \) and an invertible matrix \(L \in M_m \).
Let $T(X) \prec_{\ell s} T(Y)$ for $X, Y \in M_{nm}$. Then $PXL = RPYL$ for some row substochastic matrix R. Since L is invertible $PX = RPY$, then $X = RY$ and hence $X \prec_{\ell s} Y$. □

References

(Fatemeh Khalooei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

E-mail address: f_khalooei@uk.ac.ir