Special Issue of the

Bulletin of the
 Iranian Mathematical Society

in Honor of Professor Heydar Radjavi's 80th Birthday

Vol. 41 (2015), No. 7, pp. 77-83

Title:

Linear maps preserving or strongly preserving majorization on matrices
Author(s):

F. Khalooei

Published by Iranian Mathematical Society http://bims.ims.ir

LINEAR MAPS PRESERVING OR STRONGLY PRESERVING MAJORIZATION ON MATRICES

F. KHALOOEI
(Communicated by Bamdad Yahaghi)
Dedicated to Professor Heydar Radjavi on his 80th birthday

Abstract

For $A, B \in M_{n m}$, we say that A is left matrix majorized (resp. left matrix submajorized) by B and write $A \prec_{\ell} B$ (resp. $A \prec_{\ell s} B$), if $A=R B$ for some $n \times n$ row stochastic (resp. row substochastic) matrix R. Moreover, we define the relation $\sim_{\ell s}$ on $M_{n m}$ as follows: $A \sim_{\ell s} B$ if $A \prec_{\ell s} B \prec_{\ell s} A$. This paper characterizes all linear preservers and all linear strong preservers of $\prec_{\ell s}$ and $\sim_{\ell s}$ from $M_{n m}$ to $M_{n m}$. Keywords: Linear preserver, row substochastic matrix, matrix majorization. MSC(2010): Primary: 15A04; Secondary: 15A21, 15A51.

1. Introduction

Throughout the paper, the notation $M_{n m}$ is used for the space of all $n \times m$ real matrices. We also write $M_{n n}=M_{n}$ and $M_{n 1}=\mathbb{R}^{n}$. I_{n} is the $n \times n$ identity matrix and $\mathcal{P}(n)$ will denote all $n \times n$ permutation matrices. An $n \times m$ matrix $R=\left[r_{i j}\right]$ is called row stochastic (resp. row substochastic) if for all $i, j, r_{i j} \geq 0$ and $\sum_{k=1}^{m} r_{i k}$ is equal (resp. at most equal) to 1 . For $A, B \in M_{n m}$, we say that A is left matrix majorized (resp. left matrix submajorized) by B and write $A \prec_{\ell} B$ (resp. $A \prec_{\ell s} B$) if $A=R B$ for some $n \times n$ row stochastic (resp. row substochastic) matrix R. For a given relation \prec, we write $A \sim B$ if $A \prec B \prec A$. A linear operator $T: M_{n m} \rightarrow M_{n m}$ is said to be a linear preserver of \prec if $A \prec B$ implies that $T(A) \prec T(B)$ for all $A, B \in M_{n m}$. It is a strong preserver of \prec when $A \prec B$ if and only if $T(A) \prec T(B)$.
A.M. Hasani and M. Radjabalipour [7] characterized the structure of all linear operators $T: M_{n m} \rightarrow M_{n m}$ preserving \prec_{ℓ}. In particular, they proved that if $T: M_{n} \rightarrow M_{n}$ strongly preserves \prec_{ℓ}, then there exists a permutation

[^0]matrix $P \in \mathcal{P}(n)$ and an invertible matrix $L \in M_{n}$ such that $T(X)=P X L$ for all $X \in M_{n}$.
A. Armandnejad and A. Salemi [2] characterized the structure of all linear preservers of \prec_{ℓ} on complex matrices. Also, M. Radjabalipour and P. Torabian [14] characterized all preservers of \prec_{ℓ} on \mathbb{R}^{n} which are not necessarily linear.

For more information about left matrix majorization and the previous work on this subject we also refer to [3, 5, 8, 9, 10] and [13]. The structure of linear operators that preserve other types of majorization have been derived by Ando [1], Beasley, Lee and Y.H. Lee [4], Dahl [6], and Li and E. Poon [11]. Marshall and Olkin's text [12] is a standard general reference for majorization.

The present paper is organized as follows. In Section 2 we derive necessary and sufficient conditions for a linear operator T from \mathbb{R}^{n} to \mathbb{R}^{n} to preserve $\prec_{\ell s}$. In particular, we prove that the structure of linear preservers of $\prec_{\ell}, \prec_{\ell s}$ and $\sim_{\ell s}$ are the same for $n \geq 3$. In Section 3 we characterize a general linear preserver T from $M_{n m}$ to $M_{n m}$. In particular, we give necessary and sufficient conditions for a linear operator $T: M_{n m} \rightarrow M_{n m}$ to strongly preserve $\prec_{\ell s}$.

We note that necessary and sufficient conditions for $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to be a linear preserver of \prec_{ℓ} have been derived before and the following theorems are known.

Theorem 1.1. [7, Theorem 2.3] Let $n \geq 3$. Then $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of \prec_{ℓ} if and only if T has the form $T(X)=a P X$, for all $X \in R^{n}$, for some some $a \in \mathbb{R}$ and some $P \in \mathcal{P}(n)$.

Theorem 1.2. [7, Theorem 2.3] Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear operator. Then, T is a linear preserver of \prec_{ℓ} if and only if T has the form $T(X)=(a I+b P) X$ for all $X \in \mathbb{R}^{2}$, where P is a 2×2 permutation matrix not equal I_{2}, and $a b \leq 0$.

The following theorem states necessary and sufficient conditions for a linear operator $T: M_{n m} \rightarrow M_{n m}$ to be a linear preserver of \prec_{ℓ}.

Theorem 1.3. [7, Theorem 3.1] Let $T: M_{n m} \rightarrow M_{n m}$ be a linear operator. Then T preserves \prec_{ℓ} if and only if $T(X)=(a I+b P) X L$ for all $X \in M_{n m}$, where $L \in M_{m}, P$ is an $n \times n$ permutation matrix, $P \neq I$, a and b are real numbers such that $a b \leq 0$, and, if $n \neq 2, a b=0$. Moreover, if $n \neq 2$, then $a I+b P=c Q$ for some $c \in \mathbb{R}$ and, hence, $T(X)=Q X K$ for some $K \in M_{m}$.

2. Linear preservers of $\prec_{\ell s}$ on \mathbb{R}^{n}

In what follows, $[T]=\left[t_{i j}\right]$ will denote the matrix representation of an operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with respect to the standard basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of \mathbb{R}^{n}. Also, $e=\sum_{j=1}^{n} e_{j} \in \mathbb{R}^{n}$ and

$$
\begin{align*}
\mathbf{a}: & =\max \left\{t_{i j} \mid 1 \leq i, j \leq n\right\} \\
\mathbf{b}: & =\min \left\{t_{i j} \mid 1 \leq i, j \leq n\right\} \tag{2.1}
\end{align*}
$$

By Theorem 1.2, the matrix representation of a linear preserver of \prec_{ℓ} with respect to the standard basis of \mathbb{R}^{2} is as follows:

$$
\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

for some real numbers a, b satisfying $a b \leq 0$.
All linear operators $T: \mathbb{R} \rightarrow \mathbb{R}$ are preservers of $\prec_{\ell s}\left(T(r x) \prec_{\ell s} T(x)\right.$ for all $x \in \mathbb{R}$ and for all $r \in[0,1])$. Also, $T=0$ is a linear preserver of $\prec_{\ell s}$. Hence, throughout the paper, for a linear operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ we shall assume that $T \neq 0$ and $n \geq 2$.
$T: M_{n m} \rightarrow M_{n m}$ is a linear preserver of $\prec_{\ell s}$ if and only if αT is a linear preserver of $\prec_{\ell s}$ for all nonzero real numbers α. Hence without loss of generality we shall assume that $\mathbf{a}>0$ and $|\mathbf{b}| \leq \mathbf{a}$, where \mathbf{a} and \mathbf{b} are as in (2.1).

Throughout the paper, for a given vector $x \in \mathbb{R}^{n}$, $\max x$ and $\min x$ denote the maximum and minimum values of components of x, respectively. Also, we write $x_{M}=\max x$ and $x_{m}=\min x$.

The following important lemmas are easy consequences of the definitions of $\prec_{\ell s}$ and $\sim_{\ell s}$.
Lemma 2.1. Let $x, y \in \mathbb{R}^{n}$. If $x \prec_{\ell s} y$ then the following assertions are true. (a) $x_{i} \in \operatorname{Conv}\left(\left\{y_{1}, \ldots, y_{n}\right\} \cup\{0\}\right)$, for all $i(1 \leq i \leq n)$.
(b) If $y_{m} \geq 0$, then $x_{m} \geq 0$.
(c) If $y_{M} \leq 0$, then $x_{M} \leq 0$.
(d) If $y_{m} \leq 0$ and $y_{M} \geq 0$, then $y_{m} \leq x_{m} \leq x_{M} \leq y_{M}$.

Lemma 2.2. Let x, y be nonzero vectors in \mathbb{R}^{n}. If $x \sim_{\ell s} y$, then exactly one of the following occurs:
(a) x, y are entrywise nonnegative and $x_{M}=y_{M}$.
(b) x, y are entrywise nonpositive and $x_{m}=y_{m}$.
(c) $x_{m}=y_{m} \leq 0$ and $x_{M}=y_{M} \geq 0$.

Furthermore, if $x, y \in \mathbb{R}^{n}$ and at least one of the conditions (a), (b) and (c) holds, then $x \sim_{\ell s} y$.

Theorem 2.3 presents some necessary conditions for a nonzero operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, n \geq 2$, to be a linear preserver of $\sim_{\ell s}$.

Theorem 2.3. Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a nonzero linear preserver of $\sim_{\ell s}$, and assume that $n \geq 2$, and \mathbf{a} and \mathbf{b} are as in (2.1). Then the following assertions are true
(a) For each $j \in\{1,2, \ldots, n\}$, $\max T\left(e_{j}\right)=\mathbf{a}$. In particular, every column of $[T]$ contains at least one entry equal to \mathbf{a}.
(b) $\max T(e)=\mathbf{a}$; moreover, if a row of $[T]$ contains an entry equal to \mathbf{a}, then all other nonnegative entries of that row are zero.
(c) $\mathbf{b}=0$.

Proof. (a). Without loss of generality, we can assume that $t_{11}=\mathbf{a}$ and $\mathbf{a}>0 . t_{11}=\mathbf{a}$ implies that $\max T\left(e_{1}\right)=\mathbf{a}$. Let $j \in\{1,2, \ldots, n\}$ be fixed. Since $e_{j} \sim_{\ell s} e_{1}$ and T preserves $\sim_{\ell s}$, hence $T\left(e_{j}\right) \sim_{\ell s} T\left(e_{1}\right)$. By Lemma 2.2, $\max T\left(e_{j}\right)=\max T\left(e_{1}\right)=\mathbf{a}$. Since $j \in\{1,2, \ldots, n\}$ is arbitrary, $\max T\left(e_{j}\right)=\mathbf{a}$, for all $j(1 \leq j \leq n)$, therefore, every column of $[T]$ has at least one entry equal to a.
(b). By Lemma 2.2, $\Sigma_{j \in J} e_{j} \sim_{\ell s} e_{1}$, for all $J \subseteq\{1, \ldots, n\}$ and hence $\Sigma_{j \in J} T\left(e_{j}\right)$ $\sim_{\ell s} T\left(e_{1}\right)$. Lemma 2.2 implies that $\max \Sigma_{j \in J} T\left(e_{j}\right)=\mathbf{a}$, for all $J \subseteq\{1,2, \ldots, n\}$. Therefore, for all $J \subseteq\{1, \ldots, n\}$, max $\Sigma_{j \in J} t_{i j}=\mathbf{a}$ where the maximum is taken over $i(1 \leq i \leq n)$. Thus, if a row of $[T]$ contains an entry equal to \mathbf{a}, then all nonnegative entries of that row are zero. In particular, $\max T(e)=\mathbf{a}$.
(c). From (a), it follows that every column of $[T]$ has at least one entry equal to a. Also, (b) implies that every row of $[T]$ has at most one entry equal to a. Since $[T]$ is $n \times n$, every row of $[T]$ has exactly one entry equal to a. Hence by (b), all other nonnegative entries of rows of $[T]$ must be zero. Therefore $\mathbf{b} \leq 0$. If $\mathbf{b}<0$, without loss of generality, we may write $t_{11}=\mathbf{b}$. So, $\max T\left(e_{1}\right)=\mathbf{a}>0$ and $\min T\left(e_{1}\right)=\mathbf{b}<0$. Let $k \in\{1, \ldots, n\}$ be fixed, since $e_{1} \sim_{\ell s} e_{k}$ and T preserves $\sim_{\ell s}$, then $T\left(e_{1}\right) \sim_{\ell s} T\left(e_{k}\right)$. Hence by Lemma 2.2, $\max T\left(e_{k}\right)=\max T\left(e_{1}\right)=\mathbf{a}$ and $\min T\left(e_{k}\right)=\min T\left(e_{1}\right)=\mathbf{b}$. Since k is arbitrary, each column of $[T]$ has at least one entry equal to \mathbf{b}. Let $J \subseteq\{1, \ldots, n\}$. Since $\Sigma_{j \in J} e_{j} \sim_{\ell s} e_{1}, \Sigma_{j \in J} T\left(e_{j}\right) \sim_{\ell s} T\left(e_{1}\right)$, by Lemma 2.2, min $\Sigma_{j \in J} T\left(e_{j}\right)=\mathbf{b}$, for all $J \subseteq\{1, \ldots, n\}$. Thus, if a row of $[T]$ has one entry equal to \mathbf{b}, then all its other nonpositive entries of it must be zero. Thus, at most one entry of each row of $[T]$ equals to \mathbf{b}. Since $[T]$ is $n \times n$, each row of $[T]$ has one entry equal to \mathbf{b} and other nonpositive entries are zero. But one entry of each row of $[T]$ is equal to \mathbf{a}, which is a contradiction, hence $\mathbf{b}=0$.

Theorem 2.4. If T is such that $T(x)=a P x$, for all $x \in \mathbb{R}^{n}$, for a real number a and a permutation matrix $P \in \mathcal{P}(n)$, the operator $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, n \geq 2$ is a linear preserver of $\prec_{\ell s}$.

Proof. Let $x \in \mathbb{R}^{n}$ and R be a row substochastic matrix in M_{n}. Since $P R=R^{\prime} P$ for some row substochastic matrix $R^{\prime}, T(R x)=a P R x=R^{\prime} a P x=R^{\prime}(T(x))$. Therefore, T is a linear preserver of $\prec_{\ell s}$.

The following theorem follows from Theorem 2.2 and Theorem 2.4.
Theorem 2.5. Let $n \geq 2$ and $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear operator. Then the following assertions are equivalent:
(a) T preserves $\prec_{\ell s}$,
(b) T preserves $\sim_{\ell s}$,
(c) $T(x)=a P x$, for all $x \in \mathbb{R}^{n}$ and $a \in \mathbb{R}$.

Theorem 1.1 and Theorem 2.2 imply the following corollary.

Corollary 2.6. Let $n \geq 3$. Then $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a linear preserver of \prec_{ℓ} if and only if T is a linear preserver of $\prec_{\ell s}$.

The following example shows that, the Corollary 2.6 is not true for $n=2$.
Example 2.7. The linear operator whose matrix representation is

$$
[T]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

is a linear preserver of \prec_{ℓ} but not a linear preserver of $\prec_{\ell s}$.

3. Linear Preservers of $\prec_{\ell s}$ on $M_{n m}$

For each $i(1 \leq i \leq m)$, define the linear operators $E_{i}: \mathbb{R}^{n} \rightarrow M_{n m}$ by $E_{i}(x)=x e_{i}^{t}$ for all $x \in \mathbb{R}^{n}$ and $E^{i}: M_{n m} \rightarrow \mathbb{R}^{n}$ by $E^{i}(X)=X e_{i}$ for all $X \in M_{n m}$, where $\left\{e_{1}, \ldots, e_{m}\right\}$ denotes the standard basis for $\mathbb{R}^{m}[7]$.
Lemma 3.1. Let $T: M_{n m} \rightarrow M_{n m}$ be a linear preserver of $\prec_{\ell s}$. Then the linear operators $T_{i j}=E^{j} \circ T \circ E_{i}$ preserve $\prec_{\ell s}$ for all $i, j=1,2, \ldots, m$.

Proof. Let $x \in \mathbb{R}^{n}$ and R be a row substochastic matrix in M_{n}. $R x \prec_{\ell s} x$ implies that $E_{i}(R x) \prec_{\ell s} E_{i}(x)$. Since T is a linear preserver of $\prec_{\ell s}$, for every $i(1 \leq i \leq m), T\left(E_{i}(R x)\right) \prec_{\ell s} T\left(E_{i}(x)\right)$. Therefore $E^{j}\left(T\left(E_{i}(R x)\right)\right) \prec_{\ell s}$ $E^{j}\left(T\left(E_{i}(x)\right)\right)$, for all $i, j=1,2, \ldots, m$.

Theorem 3.2. Let $T: M_{n m} \rightarrow M_{n m}$ be a linear operator. If T preserves $\sim_{\ell s}$, then $T(X)=P X A$, for all $X \in M_{n m}$, for some $A \in M_{n}$ and some $n \times n$ permutation matrix P.
Proof. For each $X=\left[x_{1}, x_{2}, \ldots, x_{m}\right] \in M_{n m}$, it is easily seen that

$$
T(X)=T\left(\left[x_{1}, x_{2}, \ldots, x_{m}\right]\right)=\left[\Sigma_{i=1}^{m} T_{i 1}\left(x_{i}\right), \ldots, \Sigma_{i=1}^{m} T_{i m}\left(x_{i}\right)\right] .
$$

It follows from Lemma 3.1 that every $T_{i j}$ is a linear preserver of $\sim_{\ell s}$. Hence, by Theorem 2.4, $T_{i j}(x)=a_{i j} P_{i j} x$ for some permutation matrices $P_{i j}$ and some real numbers $a_{i j}$, where $i, j=1,2, \ldots, m$. Since $T \neq 0, a_{i j} \neq 0$, for some $i, j(1 \leq i, j \leq m)$. Without loss of generality, let $i=j=1$ and $P=P_{11}$.

We claim that $P_{i j}=P$, for all $i, j=1,2, \ldots, m$. Let $r, s \in\{1, \ldots, m\}$, α, β be scalars and $(X)_{i}$ denote the $i^{\text {th }}$ column of the matrix $X \in M_{n m}$. Fix $k \in\{1, \ldots, n\}$ and define $X, Y \in M_{n m}$ by $(X)_{r}=\alpha e,(Y)_{r}=\alpha e_{k},(X)_{s}=\beta e$, $(Y)_{s}=\beta e_{k}$ and $(X)_{i}=(Y)_{i}=0$, if $i \neq r, i \neq s . X \sim_{\ell s} Y$ implies that $T(X) \sim_{\ell_{s}} T(Y)$, and hence,

$$
\left[(T(X))_{r},(T(X))_{s}\right] \sim_{\ell_{s}}\left[(T(Y))_{r},(T(Y))_{s}\right] .
$$

Therefore,

$$
\left[\alpha a_{r r} e+\beta a_{s r} e, \alpha a_{r s} e+\beta a_{s s} e\right] \sim_{\ell s}\left[\alpha a_{r r} P_{r r} e_{k}+\beta a_{s r} P_{s r} e_{k}, \alpha a_{r s} P_{r s} e_{k}+\beta a_{s s} P_{s s} e_{k}\right] .
$$

If $a_{r r} a_{r s} \neq 0$, we prove that $P_{r r}=P_{r s}$. Let $\alpha=1$ and $\beta=0$. We have $e=R P_{r r} e_{k}=R P_{r s} e_{k}$, for some row substochastic matrix R. Since R has at most one column equal to e and k is arbitrary, $P_{r r}=P_{r s}$.

Now, suppose $a_{r r} a_{s r} \neq 0$. We prove that $P_{r r}=P_{s r}$. Let α, β be such that $\left(\alpha a_{r r}\right)\left(\beta a_{s r}\right)>0$. We know that

$$
\alpha a_{r r} e+\beta a_{s r} e \sim_{\ell s} \alpha a_{r r} P_{r r} e_{k}+\beta a_{s r} P_{s r} e_{k}
$$

If $P_{r r} \neq P_{s r}$, then $\alpha a_{r r}+\beta a_{s r} \in \operatorname{Conv}\left(\left\{\alpha \mathrm{a}_{\mathrm{rr}}, \beta \mathrm{a}_{\mathrm{sr}}\right\} \cup\{0\}\right)$, which is a contradiction. Therefore, $P_{r r}=P_{s r}$.

Now suppose that $a_{r r} a_{s s} \neq 0$, but $a_{r s}=a_{s r}=0$. Thus,

$$
\left[\alpha a_{r r} e, \beta a_{s s} e\right] \sim_{\ell s}\left[\alpha a_{r r} P_{r r} e_{k}, \beta a_{s s} P_{s s} e_{k}\right]
$$

Let $\alpha=\beta=1$. Then $e=R P_{r r} e_{k}=R P_{s s} e_{k}$. Since k is arbitrary and R has at most one column equal to e, we get $P_{r r}=P_{s s}$.

We conclude that $P_{i j}=P$ for all $i, j \in\{1, \ldots, m\}$. Therefore,

$$
\begin{aligned}
T(X) & =\left[\sum_{i=1}^{m} a_{i 1} P_{i 1} X_{i}, \ldots, \Sigma_{i=1}^{m} a_{i m} P_{i m} X_{i}\right] \\
& =P\left[\Sigma_{i=1}^{m} a_{i 1} X_{i}, \ldots, \Sigma_{i=1}^{m} a_{i m} X_{i}\right] \\
& =P X A,
\end{aligned}
$$

where $A=\left[a_{i j}\right]$.

Theorem 3.3. Let $T: M_{n m} \rightarrow M_{n m}$ be a linear operator. Then the following assertions are equivalent:
(a) T preserves $\prec_{\ell s}$,
(b) T preserves $\sim_{\ell s}$,
(c) $T(X)=P X A$, for all $X \in M_{n m}$, some $A \in M_{m}$, and some $n \times n$ permutation matrix P.

Proof. By Theorem 3.2, it is sufficient to prove that (c) implies (a). Let $T(X)=$ $P X A$ and R be a row substochastic matrix. Since $P R=R^{\prime} P$ for some row substochastic matrix $R^{\prime}, T(R X)=P R X A=R^{\prime} P X A=R^{\prime}(T(X))$. Hence $T(R X) \prec_{\ell s} T(X)$.

Corollary 3.4. A linear operator $T: M_{n m} \rightarrow M_{n m}$ strongly preserves the majorization relation $\prec_{\ell s}$ if and only if there exists $P \in \mathcal{P}(n)$ and an invertible matrix L in M_{m} such that $T(X)=P X L$ for all $X \in M_{n m}$.

Proof. By Theorem 3.2, there exists $P \in \mathcal{P}(n), L \in M_{m}$ and a nonzero real number a such that $T(X)=a P X L$ for all $X \in M_{n m}$. Choose $X \in M_{n m}$ such that $X L=0$. Thus, $T(X)=a P X L=0 \prec_{\ell s} 0=T(0)$ and therefore, $X \prec_{\ell s} 0$. Hence, $X=0$ which implies that L is invertible. Replacing L by $a^{-1} L$ yields $T(X)=P X L$ for all $X \in M_{n m}$, for some $P \in \mathcal{P}(n)$ and an invertible matrix $L \in M_{m}$.

Let $T(X) \prec_{\ell s} T(Y)$ for $X, Y \in M_{n m}$. Then $P X L=R P Y L$ for some row substochastic matrix R. Since L is invertible $P X=R P Y$, then $X=R Y$ and hence $X \prec_{\ell s} Y$.

References

[1] T. Ando, Majorization, doubly stochastic matrices, and comparison of eigenvalues, Linear Algebra Appl. 118 (1989) 163-248.
[2] A. Armandnejad and A. Salemi, The structure of linear preservers of gs-majorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 31-42.
[3] A. Armandnejad and H. Heydari, Linear preserving gd-majorization functions from $\mathbf{M}_{n, m}$ to $\mathbf{M}_{n, k}$, Bull. Iranian Math. Soc. $\mathbf{3 7}$ (2011), no. 1, 215-224.
[4] L. B. Beasley, S.-G. Lee and Y.-H. Lee, Linear operators preserving multivariate majorization, Linear Algebra Appl. 304 (2000), no. 1-3, 141-159.
[5] L. B. Beasley, S.-G. Lee and Y.-H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra Appl. 367 (2003) 341-346.
[6] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999), no. 1-3, 53-73.
[7] A. M. Hasani and M. Radjabalipour, Linear preserver of matrix majorization, Int. J. Pure Appl. Math. 32 (2006), no. 4, 475-482.
[8] F. Khalooei and A. Salemi, The structure of linear preservers of left matrix majorization on \mathbb{R}^{p}, Electron. J. Linear Algebra 18 (2009) 88-97.
[9] F. Khalooei and A. Salemi, Linear preservers of majorization, Iranian J. Math. Sci. Inform. 6 (2011), no. 2, 43-50.
[10] F. Khalooei, Linear preservers of two-sided matrix majorization, Wavelet and linear Algebra 1 (2014) 33-38.
[11] C. K. Li and E. Poon, Linear operators preserving directional majorization, Linear Algebra Appl. 325 (2001), no. 1-3, 141-146.
[12] A. W. Marshall and I. Olkin and C. B Arnold, Inequalities, Theory of Majorization and its Applications, Springer, New York, 2011.
[13] F. D. Martínez Pería, P. G. Massey and L. E. Silvestre, Weak matrix majorization, Linear Algebra Appl. 403 (2005) 343-368.
[14] M. Radjabalipour and P. Torabian, On nonlinear preservers of weak matrix majorization, Bull. Iranian Math. Soc. 32 (2006), no. 2, 21-30.
(Fatemeh Khalooei) Department of Pure Mathematics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran.

E-mail address: f_khalooei@uk.ac.ir

[^0]: Article electronically published on December 31, 2015
 Received: 19 July 2014, Accepted: 8 February 2015.

