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Abstract. Let A and B be C∗-algebras. Assume that A is of real rank
zero and unital with unit I and k > 0 is a real number. It is shown that if

Φ : A → B is an additive map preserving |·|k for all normal elements; that
is, Φ(|A|k) = |Φ(A)|k for all normal elements A ∈ A, Φ(I) is a projection,
and there exists a positive number c such that Φ(iI)Φ(iI)∗ ≤ cΦ(I)Φ(I)∗,
then Φ is the sum of a linear Jordan *-homomorphism and a conjugate-

linear Jordan *-homomorphism. If, moreover, the map Φ commutes with
|.|k on A, then Φ is the sum of a linear *-homomorphism and a conjugate-
linear *-homomorphism. In the case when k ̸= 1, the assumption Φ(I)
being a projection can be deleted.

Keywords: C∗-algebras, additive maps, Jordan homomorphism, *-hom-
omorphism.
MSC(2010): Primary 47B49; Secondary: 46L05, 47L30.

1. Introduction

Let A and A′ be algebras over a field F. Recall that a map Φ : A → A′

is called multiplicative if Φ(AB) = Φ(A)Φ(B) for all A,B ∈ A; it is called a
Jordan multiplicative map if Φ(AB + BA) = Φ(A)Φ(B) + Φ(B)Φ(A) for all
A,B ∈ A; the mapping Φ is called a (Jordan) homomorphism if it is additive
and (Jordan) multiplicative; moreover, if the algebras involved are *-algebras
and Φ is *-preserving, then Φ is called a (Jordan) *-homomorphism.

In the present paper we always assume that A,B are C∗-algebras [9, 10].
Thus a linear (i.e., C-linear) Jordan *-homomorphism is exactly a C∗-homomor-
phism. For a real number k > 0, a map Φ : A → B is said to be k′th-power
absolute value preserving if

(1.1) Φ(|A|k) = |Φ(A)|k
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Additive maps on C∗-algebras 86

for all A ∈ A, where |A| = (A∗A)
1
2 ; that is, Φ commutes with | · |k on A. Note

that we do not assume here that k is a positive integer.
Let H and K be complex Hilbert spaces, and let B(H) and B(K) denote

the algebras of all bounded linear operators on H and K, respectively. Assume
that Φ : B(H) → B(H) is an additive map with range containing all finite rank
operators and k > 0 is a natural number. It was shown by Molnár in [12] that,
if Φ satisfies (1.1), then there exists a positive real number c and an additive
*-automorphism Ψ such that Φ = cΨ; moreover, if k > 1, then Φ = Ψ. This
result was generalized to the maps from a von Neumann algebra into B(H)
by Bai and Hou in [2]. It was shown by Radjabalipour, Seddighi and Taghavi
in [16] that if an additive map Φ : B(H) → B(K) satisfies Φ(|A|) = |Φ(A)|
for all A in B(H), and if Φ(iI)K ⊂ ϕ(I)K and Φ(I) is a projection, then Φ
is the sum of two *-homomorphisms, one of which is linear and the other is
conjugate-linear. For the case that A is a von Neumann algebra, Radjabalipour
proved in [17] that if φ : A → B(K) satisfies |φ(A)| = φ(|A|) (A ∈ A) and if
A contains no nonzero abelian central projection, then there exists a space
decomposition K = K0 ⊕K+ ⊕K−, *-homomorphism φ± : A → B(K±) with
φ+ linear and φ− conjugate-linear, and positive operator C± ∈ B(K±) such
that φ(A) = C+φ+(A) ⊕ C−φ−(A) for all A ∈ A. Recently, Taghavi [19]
considered further the question for additive maps between C∗-algebras. Let A
be a unital C∗-algebra and B be a C∗-algebras of real rank zero. It is shown in
[19] that if Φ : A → B is an additive surjective map satisfying Φ(|A|) = |Φ(A)|
for every A ∈ A and Φ(I) is a projection, then Φ is a linear or conjugate-linear
*-homomorphism.

The aim of this paper is to continue the studying of characterizing additive
maps between C∗-algebras satisfying (1.1). We generalize some known results
mentioned above by two aspects. Firstly, for given k > 0 instead of positive
integer, we consider the map Φ satisfying Φ(|A|k) = |Φ(A)|k, where Φ is an
additive map between C∗-algebras; secondly, we assume that Φ(|A|k) = |Φ(A)|k
is satisfied only for normal elements A.

Let A and B be C∗-algebras. Denote by As and AN respectively the set
of all self-adjoint elements in A and the set of all normal elements in A, that
is, for A ∈ A, A ∈ As ⇔ A = A∗ and A ∈ AN ⇔ A∗A = AA∗. Assume
that A is of real rank zero and unital with unit I, k > 0 is a real number.
We show that if an additive map Φ : A → B with Φ(I) a projection satisfies
Φ(|A|k) = |Φ(A)|k for all A in AN , and there exists a positive real number
c > 0 such that Φ(iI)Φ(iI)∗ ≤ cΦ(I)Φ(I)∗, then Φ is the sum of a linear
Jordan *-homomorphism and a conjugate-linear Jordan *-homomorphism; if
Φ(|A|k) = |Φ(A)|k for all A ∈ A, then Φ is the sum of a linear *-homomorphism
and a conjugate-linear *-homomorphism. Moreover, if k ̸= 1, the assumption
that Φ(I) is a projection can be omitted.
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2. Main results and corollaries

The following is our main result which states that, under some soft assump-
tions, every additive map from a C∗-algebra of real rank zero into a C∗-algebra
which preserves the k′th powers of the absolute values of normal operators is
the sum of a linear Jordan *-homomorphism and a conjugate-linear Jordan
*-homomorphism.

For a unital C∗-algebra A, recall that the real rank of A is the smallest
integer, RR(A), such that for each n-tuple (x1, . . . , xn) of self-adjoint elements
in A, with n ≤ RR(A) + 1, and every ε > 0, there is an n-tuple (y1, . . . , yn)
in As such that

∑
yk

2 is invertible and ∥
∑

(xk − yk)
2∥ < ε. By definition

RR(A) = 0 if and only if every self-adjoint element in A can be approximated
by an invertible self-adjoint element. It is well known that, if A is of real rank
zero, then the set of all elements that can be written as real linear combination
of mutually orthogonal projections is dense in As (Ref. [3]).

Theorem 2.1. Let A, B be C∗-algebras. Denote AN = {A ∈ A : AA∗ = A∗A}.
Assume that A is of real rank zero and unital with unit I, k > 0 is a positive
number. If Φ : A → B is an additive map satisfying

(i) Φ(|A|k) = |Φ(A)|k for all A ∈ AN ;
(ii) Φ(I) is a projection;
(iii) there exists a positive real number c > 0 such that Φ(iI)Φ(iI)∗ ≤

cΦ(I)Φ(I)∗,
then there exist projections Q1, Q2 ∈ B with Q1Q2 = 0, a linear Jordan *-
homomorphism Φ1 : A → Q1BQ1 and a conjugate-linear Jordan *-homomorphi-
sm Φ2 : A → Q2BQ2 such that

Φ(A) = Φ1(A) + Φ2(A)

for all A ∈ A. Moreover, in the case when k ̸= 1, the assumption (ii) can be
deleted.

Proof. We prove the theorem by firstly considering the case of k = 1 and
secondly considering the case of k ̸= 1.

Part I. The case of k = 1.
The proof is divided into several steps.
Step 1. Φ sends self-adjoint (resp, positive) elements of A into self-adjoint

(resp, positive) elements of B. Moreover, Φ|As
is a continuous R-linear map.

The idea is similar to that in [12, Proof of Theorem 1]. Indeed, if A is a
positive element, then Φ(A) = Φ(|A|) = |Φ(A)| is also a positive operator.
So Φ maps positive elements of A into positive elements of B. Since Φ is
additive and every self-adjoint element in a C∗-algebra is the difference of two
orthogonal positive ones, Φ preserves self-adjointness. It follows that Φ is
order-preserving. Let A ≥ 0 and λ ∈ R be fixed for a moment and consider
arbitrary rational numbers r, s with r < λ < s. Since Φ is additive, it is Q-
linear. Consequently, we have rΦ(A) = Φ(rA) ≤ Φ(λA) ≤ Φ(sA) = sΦ(A).
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This gives that Φ(λA) = λΦ(A). So Φ is a real linear map from As into Bs.
Let us turn to the continuity of Φ|As . For any A ∈ As, by the inequality
|A| ≤ ∥|A|∥I = ∥A∥I, we get |Φ(A)| = Φ(|A|) ≤ ∥A∥Φ(I). Since the norm
of a positive operator is equal to its numerical radius, we arrive at ∥Φ(A)∥ =
∥|Φ(A)|∥ ≤ ∥A∥∥Φ(I)∥, which yields the continuity of Φ when restricted to
the real linear Banach space As. Recall that, for any T ∈ B, the numerical
range of T is the set W (T ) = {f(T ) : f ∈ S(B)} and the numerical radius is
w(T ) = sup{|λ| : λ ∈ W (T )}, where S(B) is the set of all states of B.

Step 2. For any pair of commuting self-adjoint operators A,B ∈ As, we
have

(1◦) Φ(iB)∗Φ(A) = −Φ(A)Φ(iB) and
(2◦) if AB = 0, then Φ(A)Φ(B) = 0
The proof is similar to the Step 2 of the proof in [17], we omit it here.
Step 3. Φ preserves projections and orthogonality. Moreover,

Φ(P ) = Φ(P )Φ(I) = Φ(I)Φ(P )

holds for all projections P ∈ A.
For every projection P , as Φ is order-preserving, we have Φ(P ) ≤ Φ(I). It

follows from the assumption (ii) that Φ(I) is a projection and thus Φ(I)Φ(P ) =
Φ(P ). Now, by the assertion (2◦) of Step 2, we can conclude that Φ sends
projections to projections and preserves orthogonality of projections since

Φ(P )2 = Φ(P )Φ(I) = Φ(I)Φ(P ) = Φ(P ).

Step 4. The restriction of Φ to As is a real linear Jordan homomorphism.
Note that A,B are C∗-algebras, one only needs to check that Φ(A2) = Φ(A)2

holds for all A ∈ As. Instead of using the spectral theorem in [16], here
we use the assumption that the C∗-algebra A is of real rank zero. Suppose

A =
n∑

i=1

λiPi, where λi ∈ R, {Pi} are mutually orthogonal projections. Then

Φ(A) =
n∑

i=1

λiΦ(Pi), and Φ(A2) =
n∑

i=1

λ2
iΦ(Pi) as A2 =

n∑
i=1

λ2
iPi. Since

{Φ(Pi)} are also mutually orthogonal projections, we have

Φ(A)2 = (
n∑

i=1

λiΦ(Pi))
2 =

n∑
i=1

λ2
iΦ(Pi).

So Φ(A2) = Φ(A)2. Now, as A is of real rank zero, every element in As

can be approximated by elements of the form
n∑

i=1

λiPi as above. Then, by

the continuity of Φ, we arrive at Φ(A2) = Φ(A)2 for any A ∈ As. Thus the
restriction of Φ to As is a Jordan homomorphism.

Step 5. For every A ∈ A, Φ(A) = Φ(A)Φ(I) = Φ(I)Φ(A).
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We first prove that, for every self-adjoint S ∈ As,

(2.1) Φ(S) = Φ(S)Φ(I) = Φ(I)Φ(S).

As A is a C∗-algebra of real rank zero and Φ|As is continuous and real linear,
Eq. (2.1) follows from Step 3.

Now let us turn to show that

(2.2) Φ(iT ) = Φ(iT )Φ(I) = Φ(I)Φ(iT )

holds for every self-adjoint operator T .
By the representation theorem of C*-algebras, we may assume that A ⊂

B(H) and B ⊂ B(K) for some complex Hilbert spaces H and K. Since, for any
projection P ∈ A,

Φ(P ) = Φ(P )2 = |Φ(iP )|2 = Φ(iP )∗Φ(iP ),

we see that |Φ(iP )| = Φ(P ) and, by [7, Theorem 1], we have

ranΦ(iP )∗ = ranΦ(P ) ⊆ ranΦ(I).

So Φ(I)Φ(iP )∗ = Φ(iP )∗ as Φ(I) is a projection, which implies that

(2.3) Φ(iP )Φ(I) = Φ(iP ).

Similar to the argument in [16, Proof of Theorem 1], we let Φ(iI) = V Φ(I)
be the polar decomposition of Φ(iI), where V ∈ B(K) is a partial isometry

with the initial space ranΦ(I) and the final space ranΦ(iI). For any projection
P in A, write Φ(iP ) = VPΦ(P ) and Φ(i(I − P )) = VI−PΦ(I − P ) the polar
decompositions of Φ(iP ) and Φ(i(I − P )), respectively. Note that, as B is a
C∗-algebra, V, Vp, VI−P may not be in B. In fact, one of the task below is to
show that V ∈ B. Clearly, we have

VPΦ(P ) + VI−PΦ(I − P ) = Φ(iI) = V Φ(P ) + V Φ(I − P ).

Multiplying Φ(P ) from the right of the above equations and applying the as-
sertion of Step 1, one gets VPΦ(P ) = V Φ(P ). So,

Φ(iP ) = V Φ(P )

for every projection P . Again, since A is of real rank zero, we also get

Φ(iS) = V Φ(S)

for every A ∈ As. Now, by the hypotheses (ii) and (iii), there exists a positive
real number c such that

Φ(iI)Φ(iI)∗ ≤ cΦ(I)Φ(I)∗ = cΦ(I)2 = cΦ(I).

It follows from [7] that ranΦ(iI) ⊆ ranΦ(I), and consequently, Φ(I)Φ(iI) =
Φ(iI). Thus we get

(2.4) Φ(iI) = V Φ(I) = V = Φ(I)V
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and

Φ(iP ) = V Φ(P ) = Φ(iI)Φ(P ) for every projection P ∈ A.

Hence V ∈ B and

Φ(I)Φ(iP ) = Φ(I)Φ(iI)Φ(P ) = Φ(iI)Φ(P ) = Φ(iP ),

which, together with (2.3), shows that

(2.5) Φ(iP )Φ(I) = Φ(iP ) = Φ(I)Φ(iP )

holds for every projection P ∈ A.
Now using the assumption A is of real rank zero, we conclude from (2.5)

that

(2.6) Φ(iT )Φ(I) = Φ(iT ) = Φ(I)Φ(iT )

holds for every self-adjoint element T in A.
Finally, for any A ∈ A, we can write A in the form A = S+ iT , where S and

T are self-adjoint operators. Thus, by Eqs.(2.1) and (2.6), it is easily checked
that

Φ(A)Φ(I) = Φ(A) = Φ(I)Φ(A)

holds for all A ∈ A, that is, the assertion of Step 5 is true.
Step 6. Let V be the partial isometry as in Step 5. Then, for every A ∈ A,

we have Φ(iA) = V Φ(A) and Φ(A)V = V Φ(A).
It is clear that ranV ∗ = ranΦ(I) because the initial space of V is ranΦ(I).
On the other hand, substitute A = B = I in (1◦) of Step 2, one gets

Φ(I)V Φ(I) = −Φ(I)V ∗Φ(I). Hence we must have

(2.7) V = −V ∗

and consequently,

ranΦ(iI) = ranV ∗ = ranV = ranΦ(I).

It follows from (2.7) that

(2.8) − V 2 = V ∗V = V V ∗ = Φ(I).

For every A ∈ A, write A = S + iT , where S, T ∈ As. By Step 5 and (2.8),
one gets

Φ(iA) = Φ(iS − T ) = V Φ(S)− Φ(T )

and
V Φ(A) = V (Φ(S) + Φ(iT )) = V Φ(S) + V 2Φ(T )

= V Φ(S)− Φ(I)Φ(T ) = V Φ(S)− Φ(T ).

Therefore,

(2.9) Φ(iA) = V Φ(A) for every A ∈ A.

By substituting B = I in (1◦) of Step 2 and applying (2.9) we obtain

Φ(A)V Φ(I) = −Φ(I)V ∗Φ(A), ∀A ∈ As.
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Thus, by (2.7), we have Φ(A)V Φ(I) = Φ(I)V Φ(A), which, together with (2.9),
implies that Φ(A)V = V Φ(A) and Φ(iA)V = V Φ(iA) holds for all A ∈ As as
Φ(I)V = V Φ(I) = V . Now it is obvious that Φ(A)V = V Φ(A) holds for every
A ∈ A, completing the proof of Step 6.

Step 7. Φ is a real linear Jordan *-homomorphism from A into B.
By Step 4, Φ is a real linear Jordan homomorphism from As into Bs.
For any λ ∈ R and any A ∈ A, write A = S+ iT , where S, T ∈ As. We have

Φ(λA) = Φ(λS) + Φ(i(λT )) = λΦ(S) + V Φ(λT )
= λ(Φ(S) + V Φ(T )) = λΦ(A).

So, Φ is real linear on A.
For any B ∈ As, iB is a skew self-adjoint element in A, that is (iB)∗ = −iB.

By Step 5 and (1◦) of Step 2 with A = I, one gets Φ(iB)∗ = Φ(iB)∗Φ(I) =
−Φ(I)Φ(iB) = −Φ(iB) = Φ((iB)∗). Then it follows from the additivity of Φ
that

Φ(A∗) = Φ(A)∗ for all A ∈ A,

that is, Φ is *-preserving.
Furthermore, for any self-adjoint operator T ∈ A, by Steps 5-6 and (2.8),

we have

Φ((iT )2) = −Φ(T 2) = −Φ(T )2 = (V Φ(T ))2 = Φ(iT )2.

Now, since

Φ(A2) = Φ(S2 + iST + iTS + (iT )2) = Φ(S2) + V Φ(ST + TS) + Φ((iT )2)

and
Φ(A)2 = Φ(S)2 +Φ(S)Φ(iT ) + Φ(iT )Φ(S) + Φ(iT )2

= Φ(S)2 +Φ(S)V Φ(T ) + V Φ(T )Φ(S) + Φ(iT )2

= Φ(S)2 + V Φ(S)Φ(T ) + V Φ(T )Φ(S) + Φ(iT )2,

one sees that

Φ(A2) = Φ(A)2

holds for all A ∈ A, that is, Φ is a real linear Jordan *-homomorphism.
Step 8. There exist two orthogonal projections Q1, Q2 ∈ B and a lin-

ear Jordan *-homomorphism Φ1 : A → Q1BQ1, a conjugate-linear Jordan
*-homomorphism Φ2 : A → Q2BQ2 such that Φ(A) = Φ1(A) +Φ2(A) for all A
in A.

Let B1 = Φ(I)BΦ(I). Then, I1 = Φ(I) is the unit of B1 and, by Step 5, it is
easily seen that Φ(A) ⊆ B1. So, we can regard Φ as a unital real linear Jordan
*-homomorphism from A into B1.

Since Φ(iI) is skew self-adjoint, V = Φ(iI) = iW for some self-adjoint
element W ∈ B1. Furthermore, −W 2 = Φ(iI)2 = −Φ(I) = −I1 gives W 2 = I1.
Then the spectrum of W as an element in B1, σ

B1(W ) ⊆ {−1, 1}, which implies
that there exists a projection Q in B1 so that W = 2Q − I1 and Φ(iI) =
i(2Q− I1).
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It is clear by Step 6 that iWΦ(A) = Φ(A)iW for all A ∈ A. So we have
WΦ(A) = Φ(A)W for all A, which entails that QΦ(A) = Φ(A)Q for each
A ∈ A. Then

Φ(A) = QΦ(A) + (I1 −Q)Φ(A)

holds for all A. Now let Q1 = Q, Q2 = I1 −Q and define Φ1,Φ2 by Φ1(A) =
Q1Φ(A), Φ2(A) = Q2Φ(A). Then, Q1Q2 = 0, Φi : A → QiB1Qi is real
linear Jordan *-homomorphism, i = 1, 2. In addition, as Φ(iI) = Q1Φ(iI)Q1+
Q2Φ(iI)Q2, we see that Φ1(iI) = iQ1 and Φ2(iI) = −iQ2. Hence Φ1 is linear
and Φ2 is conjugate-linear. This completes the proof of the theorem for the
case when k = 1.

Part II. The case when k ̸= 1.
For any positive element A ∈ A, there is a unique positive element B ∈ A

such that A = Bk. Thus Φ(A) = Φ(Bk) = Φ(|B|k) = |Φ(B)|k ≥ 0. So Φ(A) is
positive. Moreover, for any normal element A, we have |Φ(A)|k = Φ(|A|k) =
Φ(|A|)k. As the positive k′th root of a positive element is unique, we see that
|Φ(A)| = Φ(|A|). Thus, Φ satisfies the hypothesis (i).

Next we show that Φ(I) is automatically a projection and hence the assump-
tion (ii) is superfluous.

If P ∈ A is a projection, then Φ(P )k = |Φ(P )|k = Φ(|P |k) = Φ(P k) = Φ(P ).

Let Φ(P ) =
∫ ∥Φ(P )∥
0

tdEt be the spectral resolution of Φ(P ) regarded as a

positive operator in B(K). Thus we have
∫ ∥Φ(P )∥
0

tkdEt = Φ(P )k = Φ(P ) =∫ ∥Φ(P )∥
0

tdEt, which implies that tk = t almost everywhere. As k ̸= 1, the

support of the spectral measure is a subset of {0, 1}. Then it follows that t2 = t
a.e. and hence Φ(P )2 = Φ(P ). Thus Φ is projection preserving. Particularly,
Φ(I)2 = Φ(I). So, Φ meets all the assumptions of Part I, and then, has the
form stated in the theorem, completing the proof. □

If we strengthen the assumption on Φ by letting Φ(|A|k) = |Φ(A)|k holds for
all A ∈ A, then Φ is the sum of a linear *-homomorphism and a conjugate-linear
*-homomorphism, as stated in the following result.

Theorem 2.2. Let A and B be C∗-algebras. Assume that A is of real rank
zero and unital with unit I, k is a positive number. Then Φ : A → B is an
additive map satisfying that

(i) Φ(|A|k) = |Φ(A)|k for all A ∈ A;
(ii) Φ(I) is a projection;
(iii) there exists a positive real number c > 0 such that Φ(iI)Φ(iI)∗ ≤

cΦ(I)Φ(I)∗,
if and only if there exist projections Q1, Q2 ∈ B with Q1Q2 = 0, a lin-
ear *-homomorphism Φ1 : A → Q1BQ1, a conjugate-linear *-homomorphism
Φ2 : A → Q2BQ2 such that Φ(A) = Φ1(A) + Φ2(A) for all A ∈ A. Moreover,
in the case when k ̸= 1, the assumption (ii) can be omitted.
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Proof. The “if” part is obvious. In fact, if Φ has the form Φ(A) = Φ1(A) +
Φ2(A) as stated in Theorem 2.2, where Φ1 is a linear *-homomorphism and Φ2

is a conjugate-linear *-homomorphism with Φ1(A)Φ2(A) = Φ2(A)Φ1(A) = 0
for every A, then it is clear that Φ(I) is a projection and

Φ(iI)Φ(iI)∗ = Φ1(iI)Φ1(iI)
∗ +Φ2(iI)Φ2(iI)

∗

= iΦ1(I)(iΦ1(I))
∗ − iΦ2(I)(−iΦ2(I))

∗ = Φ(I)Φ(I)∗,

that is, Φ satisfies the conditions (ii) and (iii).
Obviously, Φ(Sk) = Φ(S)k for every positive element S ≥ 0. So, for any

element A ∈ A, we have

|Φ(A)|k = (Φ(A)∗Φ(A))
k
2 = Φ(A∗A)

k
2 = Φ(|A|k)

for every A ∈ A. So (i) also holds.
Next we check the “only if” part. By Theorem 2.1, there exist projections

Q1, Q2 ∈ B with Q1Q2 = 0, a linear Jordan *-homomorphism Φ1 : A →
Q1BQ1, a conjugate-linear Jordan *-homomorphism Φ2 : A → Q2BQ2 such
that Φ(A) = Φ1(A) + Φ2(A) for all A ∈ A. We have to show that Φ(AB) =
Φ(A)Φ(B) holds for any A,B ∈ A.

Similar to the argument in the Part II of the proof of Theorem 2.1, it is
easily checked that

(2.10) Φ(|A|) = |Φ(A)| holds for all A ∈ A
Since Φ(S)2 = Φ(S2) for all self-adjoint elements S ∈ As, by (2.10), we have

(2.11) Φ(A∗A) = Φ(|A|2) = Φ(|A|)2 = |Φ(A)|2 = Φ(A)∗Φ(A)

holds for any A ∈ A. Replacing A in (2.11) once by A+B and once by A+ iB
shows that

Φ(A∗B) = Φ(A)∗Φ(B)

for all A,B ∈ A, which entails that Φ(AB) = Φ(A)Φ(B) for all A,B ∈ A.
Hence, Φ is a *-homomorphism and has the form stated in Theorem 2.2. □

Remark 2.3. The assumption (iii) in Theorem 2.1 and Theorem 2.2 can not
be omitted. For example, let A be a unital C∗-algebra of real rank zero and

consider the map Φ : A → A⊗M2 defined by Φ(A) =

(
0 ImA
0 ReA

)
. It is clear

that Φ is additive and Φ(I) is a projection. Obviously, Φ breaks the condition

(iii). For any A ∈ AN , write A = S + iT , where S = ReA = A+A∗

2 and

T = ImA = A−A∗

2i . As A is normal, we have ST = TS and |A| =
√
S2 + T 2.

Then it is easily checked that |Φ(A)| = Φ(|A|). Thus Φ satisfies the conditions
(i) of Theorem 2.1. But Φ is not of the form stated in Theorem 2.1. For an
example for Theorem 2.2, let A be a commutative algebra.

However, if the map is “surjective” in some sense, the assumption (iii) is
superfluous.
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Corollary 2.4. Let A be a unital C∗-algebra of real rank zero and B be a C∗-
algebra. Assume that k is a positive number and Φ : A → B is an additive map
with BN ⊆ Φ(AN ). If Φ satisfies that Φ(|A|k) = |Φ(A)|k for all A ∈ AN and
if Φ(I) is a projection, then Φ(I) = I, there exists a central projection Q ∈ B,
a linear Jordan *-homomorphism Φ1 : A → QB and a conjugate-linear Jordan
*-homomorphism Φ2 : A → (I − Q)B such that Φ(A) = Φ1(A) + Φ2(A) for
every A ∈ A. Particularly, if B is a factor C∗-algebra, then Φ is either a linear
or a conjugate-linear Jordan *-homomorphism. Moreover, in the case when
k ̸= 1, the assumption Φ(I) being a projection can be omitted.

Proof. Note that, Φ(|A|) = |Φ(A)| for all normal elements A and the assertions
of Step 1-Step 4 in the proof of Theorem 2.1 are still true for Φ here. For any
positive element B ∈ B, as BN ⊆ Φ(AN ), there is some A ∈ AN such that
B = Φ(A). Thus B = |B| = |Φ(A)| = Φ(|A|), which means every positive
element is a Φ-image of a positive element, and consequently, Bs ⊆ Φ(As).
Since Φ(I)Φ(A) = Φ(A)Φ(I) = Φ(A) holds for every A ∈ As, one has that
Φ(I)B = BΦ(I) = B for every B ∈ Bs. Hence B must be unital and Φ(I) = I
is its unit. Thus Φ meets all conditions (i)-(iii) and has the form of Theorem
2.1 with Q1+Q2 = Φ(I) = I. It is clear that both Q1 and Q2 commute with all
elements of B. So, Q1, Q2 are central projections of B and B = Q1BQ1+Q2BQ2.
Thus, if B is a factor, then either Q1 = I,Q2 = 0, in this case Φ is a linear
Jordan *-homomorphism; orQ1 = 0, Q2 = I, in this case Φ is a conjugate-linear
Jordan *-homomorphism. □

The following corollary is immediate by Theorem 2.2 and the proof of Corol-
lary 2.4.

Corollary 2.5. Let A be a unital C∗-algebra of real rank zero and B be a C∗-
algebra. Assume that k is a positive number and Φ : A → B is an additive
surjective map with Φ(I) a projection. Then Φ satisfies that Φ(|A|k) = |Φ(A)|k
for all A ∈ A if and only if there exist a central projection Q ∈ B, a linear
*-homomorphism Φ1 : A → QB and a conjugate-linear *-homomorphism Φ2 :
A → (I−Q)B such that Φ(A) = Φ1(A)+Φ2(A) for every A ∈ A. Particularly,
if B is a factor, then Φ is either a linear or conjugate linear *-homomorphism.
Moreover, in the case when k ̸= 1, the assumption Φ(I) being a projection can
be omitted.

If the map is bijective, one can say more.

Corollary 2.6. Let A be a unital C∗-algebra of real rank zero and B be a C∗-
algebra. Assume that k is a positive number and Φ : A → B is an additive
bijective map with Φ(I) a projection. Then Φ satisfies that Φ(|A|k) = |Φ(A)|k
for all A ∈ A if and only if there exist a central projection P ∈ A, with Q =
Φ(P ) central projection in B, a linear *-homomorphism Φ1 : PAP → QBQ, a
conjugate-linear *-homomorphism Φ2 : (I − P )A(I − P ) → (I − Q)B(I − Q),
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such that Φ = Φ1 ⊕Φ2. Particularly, if B is a factor, then Φ is either a linear
or conjugate linear *-homomorphism. Moreover, in the case when k ̸= 1, the
assumption Φ(I) being a projection can be omitted.

Proof. If Φ(|A|k) = |Φ(A)|k for all A ∈ A, then it has the form stated in
Corollary 2.5. Since Φ is injective, we have kerΦ1∩ kerΦ2 = {0}. Let A1 =
Φ−1(QB), A2 = Φ−1((I−Q)B). SinceQB+(I−Q)B = B, we haveA = A1+A2.
Also, Q1B∩Q2B = {0} entails that A1∩A2 = {0}. For any Ai ∈ Ai, i ∈ {1, 2},
one has Φ(A1A2) = Φ(A1)Φ(A2) = QΦ1(A1)(I −Q)Φ2(A2) = 0, which implies
that A1A2 = A2A1 = 0 by the injectivity of Φ. Let P = Φ−1(Q) = Φ1

−1(Q).
Clearly P is a projection. Write P1 = P and P2 = I − P ; also Q1 = Q
and Q2 = I − Q. We claim that Ai = PiA = APi, i = 1, 2. As Φ(I) = I,
we have P2 = Φ−1(Q2). Clearly, Pi ∈ Ai, and hence PiAPi ⊆ Ai. Since
A2 ⊆ kerΦ1, A1 ⊆kerΦ2, for any A ∈ A, we have Φ(P1AP1) = Φ1(P1A1P1) =
Φ1(P1)Φ1(A)Φ1(P1) = Q1Φ1(A) = Φ1(P1A) = Φ1(A)Q1 = Φ1(AP1), which
implies that P1AP1 = P1A = AP1 holds for all A ∈ A. Thus P1 ∈ Z(A),
the center of A. So A1 = Φ−1(QB) = P1A = AP1, and P1 is the unit of A1.
Similarly, A2 = P2A = AP2. Thus we may regard Φi as a bijective map from
Ai onto Bi = QiB and Φ = Φ1 ⊕ Φ2, where Φ1 is a linear *-homomorphism
and Φ2 is a conjugate-linear *-homomorphism. □

As an application of Theorems 2.1 and 2.2, in the following we characterize
additive maps preserving absolute values of skew products.

Corollary 2.7. Let A be a unital C∗-algebra of real rank zero and B be a
C∗-algebra. Assume that Φ : A → B is an additive map. If Φ satisfies that
Φ(|A∗B|) = |Φ(A)∗Φ(B)| for any A,B ∈ A with A∗B = BA∗, then there exist
projections Q1, Q2 ∈ B with Q1Q2 = 0, a linear Jordan *-homomorphism Φ1 :
A → Q1BQ1, a conjugate-linear Jordan *-homomorphism Φ2 : A → Q2BQ2

such that Φ(A) = Φ1(A) + Φ2(A) for all A ∈ A.

Proof. For any A ∈ AN we have Φ(|A|2) = Φ(|A∗A|) = |Φ(A)∗Φ(A)| =
|Φ(A)|2. Thus Φ meets the condition (i) of Theorem 2.1 with k = 2. It
follows that Φ is a R-linear Jordan homomorphism from As into Bs and Φ(I)
is a projection as proved in the Part II of the proof of Theorem 2.1. Moreover,
Φ(|A|) = |Φ(A)| for all A ∈ AN . By an argument similar to Step 2-Step 5 of
Theorem 2.1, one obtains that

(2.12) Φ(iS)∗Φ(A) = −Φ(A)Φ(iS)

and

(2.13) Φ(iS)∗Φ(iS) = |Φ(iS)|2 = Φ(|S|)2 = |Φ(S)|2 = Φ(S)2

hold for all commuting self-adjoint operator A,S ∈ As, and

(2.14) Φ(A) = Φ(I)Φ(A) = Φ(A)Φ(I)
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holds for all A ∈ As.
Without loss of generality, we may assume that B ⊆ B(K) for some Hilbert

space K. Thus, with respect to the space decomposition K = K0 ⊕ K0
⊥

with K0 = kerΦ(I), we have Φ(I) =

(
0 0
0 I1

)
and Φ(S) has the form Φ(S) =(

0 0
0 ξ(S)

)
if S is self-adjoint. Write Φ(iS)=

(
C η(iS)
D ξ(iS)

)
, where S ∈ As.

It follows from (2.12) by letting A = I that D = 0. By (2.13) and (2.14), one
gets C = 0. So there exist R-linear continuous maps ξ and η from A into
respectively B(K0

⊥) and B(K0
⊥,K0) such that

Φ(A) =

(
0 η(A)
0 ξ(A)

)
.

Moreover η(S) = 0 for any S ∈ As. Particularly, Φ(iI) =

(
0 η(iI)
0 ξ(iI)

)
. Let

A = iI, B = iI; by the assumption of Φ, one gets |Φ(iI)∗Φ(iI)| = Φ(I). That
is to say η(iI)

∗
η(iI) + ξ(iI)

∗
ξ(iI) = I1. Similarly, let A = I and B = iI, we

have ξ(iI)
∗
ξ(iI) = I1. Then, it follows that η(iI) = 0. So we have Φ(iI) =(

0 0
0 ξ(iI)

)
, which entails that there exists a positive real number c > 0 such

that Φ(iI)Φ(iI)∗ ≤ cΦ(I)Φ(I)∗. Thus Φ meets all the assumptions of Theorem
2.1 and has the desired form. □

Corollary 2.8. Let A be a unital C∗-algebra of real rank zero and B be a C∗-
algebra. Assume that Φ : A → B is an additive map. Then Φ satisfies that
Φ(|A∗B|) = |Φ(A)∗Φ(B)| for all A,B ∈ A if and only if there exist projections
Q1, Q2 ∈ B with Q1Q2 = 0, a linear *-homomorphism Φ1 : A → Q1BQ1, a
conjugate-linear *-homomorphism Φ2 : A → Q2BQ2 such that Φ(A) = Φ1(A)+
Φ2(A) for all A ∈ A.

Proof. The “if” part is clear. In fact, by Theorem 2.2, Φ is a ring *-homomorph-
ism and |Φ(A)| = Φ(|A|) for all A ∈ A. Thus, |Φ(A)∗Φ(B)| = |Φ(A∗)Φ(B)| =
|Φ(A∗B)| = Φ(|A∗B|).

Next we check the “only if” part. By Corollary 2.7, Φ is the sum of a linear
Jordan *-homomorphism and a conjugate-linear Jordan *-homomorphism. So,
we only need to show that Φ is multiplicative, that is, Φ(AB) = Φ(A)Φ(B)
holds for any A,B ∈ A.

By the proof of Corollary 2.6, one has

(2.15) Φ(|A|) = |Φ(A)|

(2.16) for all A ∈ A and Φ(S)2 = Φ(S2)

for all self-adjoint elements S ∈ As. Hence, by (2.15) (2.16), for any A ∈ A,

(2.17) Φ(A∗A) = Φ(|A|2) = Φ(|A|)2 = |Φ(A)|2 = Φ(A)∗Φ(A).
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Replacing A in (2.17) once by A+B and once by A+ iB derives

Φ(A∗B) = Φ(A)∗Φ(B)

for all A,B ∈ A, which entails that Φ(AB) = Φ(A)Φ(B) for all A,B ∈ A. □
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