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ABSTRACT. Let A and B be C*-algebras. Assume that A is of real rank
zero and unital with unit I and k > 0 is a real number. It is shown that if
® : A — Bis an additive map preserving |-|* for all normal elements; that
is, ®(|A|*) = |®(A)|* for all normal elements A € A, ®(I) is a projection,
and there exists a positive number ¢ such that ®(¢I)®(:I)* < c@(I)P(I)*,
then @ is the sum of a linear Jordan *-homomorphism and a conjugate-
linear Jordan *-homomorphism. If, moreover, the map ® commutes with
|.|F on A, then @ is the sum of a linear *-homomorphism and a conjugate-
linear *-homomorphism. In the case when k # 1, the assumption ®(I)
being a projection can be deleted.

Keywords: C*-algebras, additive maps, Jordan homomorphism, *-hom-
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1. Introduction

Let A and A’ be algebras over a field F. Recall that a map ® : A — A’
is called multiplicative if ®(AB) = ®(A)®(B) for all A, B € A; it is called a
Jordan multiplicative map if ®(AB + BA) = ®(A)®(B) + ®(B)®(A) for all
A, B € A; the mapping @ is called a (Jordan) homomorphism if it is additive
and (Jordan) multiplicative; moreover, if the algebras involved are *-algebras
and @ is *-preserving, then ® is called a (Jordan) *-homomorphism.

In the present paper we always assume that A, B are C*-algebras [9, 10].
Thus a linear (i.e., C-linear) Jordan *-homomorphism is exactly a C*-homomor-
phism. For a real number & > 0, a map ® : A — B is said to be k’th-power
absolute value preserving if

(1.1) O(|A1") = |e(A)*
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Additive maps on C*-algebras 86

for all A € A, where |A] = (A*A)z; that is, ® commutes with | - |* on A. Note
that we do not assume here that k is a positive integer.

Let H and K be complex Hilbert spaces, and let B(H) and B(K) denote
the algebras of all bounded linear operators on H and K, respectively. Assume
that ® : B(H) — B(H) is an additive map with range containing all finite rank
operators and k > 0 is a natural number. It was shown by Molnér in [12] that,
if @ satisfies (1.1), then there exists a positive real number ¢ and an additive
*_automorphism ¥ such that ® = ¢¥; moreover, if k > 1, then ® = ¥. This
result was generalized to the maps from a von Neumann algebra into B(H)
by Bai and Hou in [2]. It was shown by Radjabalipour, Seddighi and Taghavi
in [16] that if an additive map ® : B(H) — B(K) satisfies ®(|A]) = |®(A)]
for all A in B(H), and if ®(iI)K C ¢(I)K and ®(I) is a projection, then &
is the sum of two *-homomorphisms, one of which is linear and the other is
conjugate-linear. For the case that A is a von Neumann algebra, Radjabalipour
proved in [17] that if ¢ : A — B(K) satisfies |p(A)| = ¢(|4]) (A € A) and if
A contains no nonzero abelian central projection, then there exists a space
decomposition K = Ko @ K. @ K_, *-homomorphism ¢4 : A — B(K.) with
4 linear and p_ conjugate-linear, and positive operator C1 € B(Ky) such
that p(A) = Crp(A) & C_p_(A) for all A € A. Recently, Taghavi [19]
considered further the question for additive maps between C*-algebras. Let A
be a unital C*-algebra and B be a C*-algebras of real rank zero. It is shown in
[19] that if ® : A — B is an additive surjective map satisfying ®(|A|) = |®(A4)|
for every A € A and ®(I) is a projection, then ® is a linear or conjugate-linear
*_homomorphism.

The aim of this paper is to continue the studying of characterizing additive
maps between C*-algebras satisfying (1.1). We generalize some known results
mentioned above by two aspects. Firstly, for given k£ > 0 instead of positive
integer, we consider the map ® satisfying ®(|A|*) = |®(A)[¥, where ® is an
additive map between C*-algebras; secondly, we assume that ®(|A[¥) = |®(A)|
is satisfied only for normal elements A.

Let A and B be C*-algebras. Denote by A and Ay respectively the set
of all self-adjoint elements in A and the set of all normal elements in A, that
is,forAe A, Aec A, & A=A and A € Ay & A*A = AA*. Assume
that A is of real rank zero and unital with unit I, £ > 0 is a real number.
We show that if an additive map ® : A — B with ®(I) a projection satisfies
®(JA|*) = |®(A)|* for all A in Ay, and there exists a positive real number
¢ > 0 such that ®GEI)PGE)* < c®(I)P(I)*, then ® is the sum of a linear
Jordan *-homomorphism and a conjugate-linear Jordan *-homomorphism; if
O(|AJ¥) = |®(A)|* for all A € A, then ® is the sum of a linear *-homomorphism
and a conjugate-linear *-homomorphism. Moreover, if k # 1, the assumption
that ®(I) is a projection can be omitted.
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2. Main results and corollaries

The following is our main result which states that, under some soft assump-
tions, every additive map from a C*-algebra of real rank zero into a C*-algebra
which preserves the k’th powers of the absolute values of normal operators is
the sum of a linear Jordan *-homomorphism and a conjugate-linear Jordan
*_homomorphism.

For a unital C*-algebra A, recall that the real rank of A is the smallest
integer, RR(A), such that for each n-tuple (z1,...,x,) of self-adjoint elements
in A, with n < RR(A) + 1, and every ¢ > 0, there is an n-tuple (y1,...,¥n)
in Ag such that Y y,? is invertible and || > (zx — yk)?|| < e. By definition
RR(A) = 0 if and only if every self-adjoint element in .4 can be approximated
by an invertible self-adjoint element. It is well known that, if A is of real rank
zero, then the set of all elements that can be written as real linear combination
of mutually orthogonal projections is dense in A4, (Ref. [3]).

Theorem 2.1. Let A, B be C*-algebras. Denote Ay = {A e A: AA* = A*A}.
Assume that A is of real rank zero and unital with unit I, k > 0 is a positive
number. If ® : A — B is an additive map satisfying

(i) ®(|A|F) = |®(A)|* for all A € Ay;

(ii) ©(I) is a projection;

(iit) there exists a positive real number ¢ > 0 such that ®GEIPGEI)* <
c®(P(I)*,
then there exist projections Q1,Q2 € B with Q1Q2 = 0, a linear Jordan *-
homomorphism ®1 : A — Q1BQ1 and a conjugate-linear Jordan *-homomorphi-

sm ®g : A — Q2BQ> such that
D(A) = 21(A) + P2(A)

for all A € A. Moreover, in the case when k # 1, the assumption (ii) can be
deleted.

Proof. We prove the theorem by firstly considering the case of k¥ = 1 and
secondly considering the case of k # 1.

Part I. The case of k = 1.

The proof is divided into several steps.

Step 1. ® sends self-adjoint (resp, positive) elements of A into self-adjoint
(resp, positive) elements of B. Moreover, ®| 4, is a continuous R-linear map.

The idea is similar to that in [12, Proof of Theorem 1]. Indeed, if A is a
positive element, then ®(A4) = ®(|A]) = |P(A)| is also a positive operator.
So ® maps positive elements of A into positive elements of B. Since & is
additive and every self-adjoint element in a C*-algebra is the difference of two
orthogonal positive ones, ® preserves self-adjointness. It follows that & is
order-preserving. Let A > 0 and A € R be fixed for a moment and consider
arbitrary rational numbers r, s with » < A < s. Since ® is additive, it is Q-
linear. Consequently, we have r®(A) = ¢(rd) < d(AA) < P(sA) = sP(A).
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This gives that ®(AA) = AP(A). So @ is a real linear map from Ay into Bs.
Let us turn to the continuity of ®|4,. For any A € Ay, by the inequality
|A] < |||A||II = ||A|lL, we get |®(A)| = ®(|A]) < ||A||®(]). Since the norm
of a positive operator is equal to its numerical radius, we arrive at ||®(A)|| =
e < |A|®(I)]], which yields the continuity of ® when restricted to
the real linear Banach space A;. Recall that, for any T' € B, the numerical
range of T is the set W(T') = {f(T) : f € S(B)} and the numerical radius is
w(T) = sup{|A| : A € W(T)}, where S(B) is the set of all states of 5.

Step 2. For any pair of commuting self-adjoint operators A, B € A, we
have

(1°) ®(iB)*®(A) = —®(A)®(iB) and

(2°) if AB = 0, then ®(A)®(B) =0

The proof is similar to the Step 2 of the proof in [17], we omit it here.

Step 3. ® preserves projections and orthogonality. Moreover,

B(P) = B(P)(I) = (I)D(P)

holds for all projections P € A.

For every projection P, as ® is order-preserving, we have ®(P) < ®(I). It
follows from the assumption (ii) that ®(I) is a projection and thus ®(I)®(P) =
®(P). Now, by the assertion (2°) of Step 2, we can conclude that ® sends
projections to projections and preserves orthogonality of projections since

®(P)? = ®(P)®(I) = ®(1)D(P) = ®(P).

Step 4. The restriction of ® to A; is a real linear Jordan homomorphism.

Note that A, B are C*-algebras, one only needs to check that ®(A4%) = ®(4)?

holds for all A € A,. Instead of using the spectral theorem in [16], here
we use the assumption that the C*-algebra A is of real rank zero. Suppose

A= Z i P;, where \; € R, {P;} are mutually orthogonal projections. Then
i=1

Z)\Cb ), and ®(A42%) Z/\2 P;) as A? = i)\?ﬂ-. Since

{®(P;)} are also mutually orthogonal pro_]ectlons we have

0(A)? = (O M®(P))* = ZA?‘I’ P

So ®(A?) = ®(A)%. Now, as A is of real rank zero, every element in As

can be approximated by elements of the form Z/\iH as above. Then, by
i=1
the continuity of ®, we arrive at ®(A4%) = ®(A4)? for any A € A,. Thus the
restriction of ® to Ay is a Jordan homomorphism.
Step 5. For every A € A, ®(A) = D(A)D(I) = P(1)P(A).
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We first prove that, for every self-adjoint S € A,
(2.1) O(S) =0(5)P(I) = &(1)P(9).

As A is a C*-algebra of real rank zero and ®| 4, is continuous and real linear,
Eq. (2.1) follows from Step 3.
Now let us turn to show that

(2.2) O(iT) = B(T)B(I) = B(1)D(iT)

holds for every self-adjoint operator T

By the representation theorem of C*-algebras, we may assume that A C
B(H) and B C B(K) for some complex Hilbert spaces H and K. Since, for any
projection P € A,

®(P) = ®(P)* = |®(iP)|* = ®(iP)*®(iP),
we see that |®(iP)| = ®(P) and, by [7, Theorem 1], we have
ran®(iP)* = ran®(P) C ran® (7).
So ®(I)®(iP)* = ®(iP)* as ®(I) is a projection, which implies that
(2.3) D(iP)P(I) = P(iP).

Similar to the argument in [16, Proof of Theorem 1], we let ®(il) = V&(I)
be the polar decomposition of ®(il), where V € B(K) is a partial isometry
with the initial space ran®(I) and the final space ran®(i/). For any projection
P in A, write ®(iP) = Vp®(P) and ®(i({ — P)) = Vi_p®(I — P) the polar
decompositions of ®(iP) and ®(i(I — P)), respectively. Note that, as B is a
Cr-algebra, V,V,, Vi_p may not be in B. In fact, one of the task below is to
show that V € B. Clearly, we have

Vp®(P) + Vi_p®(I — P) = (il) = VO(P) + V(I — P).

Multiplying ®(P) from the right of the above equations and applying the as-
sertion of Step 1, one gets Vp®(P) = V®(P). So,

O(iP) =Vo(P)
for every projection P. Again, since A is of real rank zero, we also get
O(iS) =Vo(9)

for every A € A;. Now, by the hypotheses (ii) and (iii), there exists a positive
real number ¢ such that

OENDET)* < c®(I)P(I)* = c®(I)? = cd(I).

It follows from [7] that ran®(il) C ran®(I), and consequently, ®(I)®(il) =
®(iI). Thus we get

(2.4) OGN =Ve(I) =V =d(I)V
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and
O(iP) =VP®(P)=P(HI)P(P) for every projection P € A.
Hence V € B and
O(NP(iP) = D(I)PI)P(P) = @(il)P(P) = (i P),
which, together with (2.3), shows that
(2.5) O(iP)P(I) = P(iP) = ¢(1)P(:P)

holds for every projection P € A.
Now using the assumption A is of real rank zero, we conclude from (2.5)
that

(2.6) OUT)D(I) = @(T) = O(1)P(iT)
holds for every self-adjoint element 7" in A.
Finally, for any A € A, we can write A in the form A = S+iT, where S and
T are self-adjoint operators. Thus, by Egs.(2.1) and (2.6), it is easily checked
that
D(A)D(I) = (A) = ©(1)2(A)
holds for all A € A, that is, the assertion of Step 5 is true.
Step 6. Let V be the partial isometry as in Step 5. Then, for every A € A,
we have ®(1A) = VO(A) and P(A)V =V O(A).
It is clear that ranV* = ran®(I) because the initial space of V' is ran® (7).
On the other hand, substitute A = B = I in (1°) of Step 2, one gets
O(NVP(I) = —D(I)V*P(I). Hence we must have
(2.7) V=-v*
and consequently,
ran®(il) = ranV™* = ranV = ran®(I).
It follows from (2.7) that
(2.8) —V2=V*V =VV*=o().
For every A € A, write A = S 4T, where S,T € As. By Step 5 and (2.8),

one gets
B(iA) = 0(iS —T) = VO(S) — (T)

and
VO(A) = V(®(S)+ ®3UT)) = VO(S) + V2&(T)
= V&(S5) - o(I)®(T) = Vo(S) — o(T).
Therefore,
(2.9) D(iA) =VP(A) for every A € A.

By substituting B = I in (1°) of Step 2 and applying (2.9) we obtain
S(AVI(I) = -D(I)V*P(A), VA€ A,.
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Thus, by (2.7), we have ®(A)VO(I) = &(I)VP(A), which, together with (2.9),
implies that ®(A)V = VP(A) and ®(1A)V = VP(iA) holds for all A € A, as
O(I)V =V&(I)=V. Now it is obvious that ®(A)V = V®(A) holds for every
A € A, completing the proof of Step 6.

Step 7. ® is a real linear Jordan *-homomorphism from A into B.

By Step 4, @ is a real linear Jordan homomorphism from A, into B;.

For any A € R and any A € A, write A = S+14T, where S,T € A,. We have

DNA) = B(AS) + B(i(AT)) = AB(S) + VO(AT)
= M®(S) + VO(T)) = AB(A).

So, ® is real linear on A.

For any B € A;, iB is a skew self-adjoint element in A, that is (iB)* = —iB.
By Step 5 and (1°) of Step 2 with A = I, one gets ®(iB)* = ®(iB)*®(I) =
—®(I)®(iB) = —®(:B) = ®((:B)*). Then it follows from the additivity of ®
that

D(A*) = D(A)* forall Ae A,
that is, ® is *-preserving.
Furthermore, for any self-adjoint operator T' € A, by Steps 5-6 and (2.8),
we have

O((iT)%) = —®(T%) = —@(T)* = (V&(T))* = o(iT)*.
Now, since
B(A%) = &(S? +iST +iTS + (iT)*) = ®(S?) + VO(ST + TS) + ®((iT)?)

and

D(A)? = O(S)2+ O(S)P(iT) + ¢(ET)D(S) + O(iT)?
®(S)2+ @(S)VO(T) + VO(T)P(S) + O(iT)?

(
= ®(S)2+VO(S)(T)+ VO(T)P(S) + ®(iT)?,

one sees that
0(A%) = @(4)?
holds for all A € A, that is, ® is a real linear Jordan *-homomorphism.

Step 8. There exist two orthogonal projections Q1,Q2 € B and a lin-
ear Jordan *-homomorphism ®; : A — Q1BQ1, a conjugate-linear Jordan
*-homomorphism ®5 : A — Q28Q2 such that (A) = 1(A) + Py(A) for all A
in A.

Let By = ®(I)BP(I). Then, I; = ®(I) is the unit of By and, by Step 5, it is
easily seen that ®(A) C B;. So, we can regard ® as a unital real linear Jordan
*_homomorphism from A into Bj.

Since ®(i) is skew self-adjoint, V' = ®(il) = (W for some self-adjoint
element W € By. Furthermore, —W? = ®(i[)? = —®(I) = —1I; gives W? = I;.
Then the spectrum of W as an element in By, oB (W) C {—1, 1}, which implies
that there exists a projection @ in B; so that W = 2Q — I; and ®(il) =
i(2Q — I).
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It is clear by Step 6 that iW®(A) = &(A)iWW for all A € A. So we have
Wo(A) = ®(A)W for all A, which entails that Q®(A) = ®(A)Q for each
A e A. Then

D(A) = QP(A) + (I — Q)2(4)
holds for all A. Now let Q1 = @, Q2 = I; — Q and define @1, Py by &1(A4) =
Ql(p(A), @2(14) = QQ(I)(A) Then, QlQQ = O7 (pz A — Qzlngz is real
linear Jordan *-homomorphism, ¢ = 1,2. In addition, as ®(il) = Q1 P(il)Q1 +
Q2®(iI)Q2, we see that ®1(if) = iQq and P5(i]) = —iQ2. Hence P, is linear
and ®, is conjugate-linear. This completes the proof of the theorem for the
case when k = 1.

Part II. The case when k # 1.

For any positive element A € A, there is a unique positive element B € A
such that A = B*. Thus ®(A) = ®(B*) = ®(|B|¥) = |®(B)|* > 0. So ®(A) is
positive. Moreover, for any normal element A, we have |®(A)|* = ®(|AF) =
®(JA])k. As the positive k'th root of a positive element is unique, we see that
|®(A)| = ®(JA]). Thus, @ satisfies the hypothesis (i).

Next we show that ®(I) is automatically a projection and hence the assump-
tion (ii) is superfluous.

If P € Ais a projection, then ®(P)* = |®(P)|*¥ = ®(|P|¥) = ®(P*) = &(P).
Let ®(P) = f()llq>(P)” tdE; be the spectral resolution of ®(P) regarded as a
positive operator in B(K). Thus we have fOHq)(P)” thdE, = ®(P)k = ®(P) =

OH@(P)H tdE,;, which implies that t* = ¢ almost everywhere. As k # 1, the
support of the spectral measure is a subset of {0,1}. Then it follows that t2 = ¢
a.e. and hence ®(P)? = ®(P). Thus ® is projection preserving. Particularly,
®(I)? = ®(I). So, ® meets all the assumptions of Part I, and then, has the

form stated in the theorem, completing the proof. O

If we strengthen the assumption on ® by letting ®(|A|*) = |®(A)|¥ holds for
all A € A, then ® is the sum of a linear *-homomorphism and a conjugate-linear
*_homomorphism, as stated in the following result.

Theorem 2.2. Let A and B be C*-algebras. Assume that A is of real rank
zero and unital with unit I, k is a positive number. Then ® : A — B is an
additive map satisfying that

(i) ®(|AF) = |®(A)|F for all A € A;

(ii) ®(I) is a projection;

(iii) there exists a positive real number ¢ > 0 such that ®(EI)PEI1)* <
o (1) (1),
if and only if there exist projections Q1,Q2 € B with Q1Q2 = 0, a lin-
ear *-homomorphism ®1 : A — Q1BQ1, a conjugate-linear *~homomorphism
Dy 1 A — Q2BQ2 such that P(A) = &1(A) + D3(A) for all A € A. Moreover,
in the case when k # 1, the assumption (ii) can be omitted.
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Proof. The “if” part is obvious. In fact, if ® has the form ®(A) = ®1(A) +
®y(A) as stated in Theorem 2.2, where @4 is a linear *-homomorphism and @
is a conjugate-linear *-homomorphism with ®;(A)®3(A4) = ®2(A)P1(A) =0
for every A, then it is clear that ®(I) is a projection and

SGENDEN = By (i) Py (i])* + o(il) By (il)*
= Qi (1)(i®1(1))* — i®2(I)(—i®2(1))" = (1) 2(1)",

that is, @ satisfies the conditions (ii) and (iii).
Obviously, ®(S*¥) = ®(S)* for every positive element S > 0. So, for any
element A € A, we have

[D(A)[F = (2(A)*2(A))

for every A € A. So (i) also holds.

Next we check the “only if” part. By Theorem 2.1, there exist projections
Q1,Q2 € B with Q1Q2 = 0, a linear Jordan *-homomorphism ®; : A —
Q1BQ1, a conjugate-linear Jordan *-homomorphism ®5 : A — Q2BQ> such
that ®(A) = ®1(A) + P2(A) for all A € A. We have to show that ®(AB) =
®(A)P(B) holds for any A, B € A.

Similar to the argument in the Part II of the proof of Theorem 2.1, it is
easily checked that

P =0(A"A)% = o(|AN)

(2.10) ®(|A]) = |B(A)| holds for all A € A
Since ®(S)? = ®(S5?) for all self-adjoint elements S € A, by (2.10), we have
(2.11) P(A"A) = O(JA]) = B(|A])* = |(A)|* = ©(A)"(4)

holds for any A € A. Replacing A in (2.11) once by A+ B and once by A+iB
shows that

O(A*B) = ®(A)*P(B)
for all A,B € A, which entails that ®(AB) = ®(A)P(B) for all A,B € A.
Hence, ® is a *-homomorphism and has the form stated in Theorem 2.2. O

Remark 2.3. The assumption (iii) in Theorem 2.1 and Theorem 2.2 can not
be omitted. For example, let A4 be a unital C*-algebra of real rank zero and

consider the map ® : A — A® M, defined by ®(A) = ( 8 g;ﬁ ) It is clear

that ® is additive and ®(I) is a projection. Obviously, ® breaks the condition
(iii). For any A € Ay, write A = S + 4T, where S = Red = A+TA* and
T =1ImA = AEIA*. As A is normal, we have ST = TS and |A| = v/S2 + T2,
Then it is easily checked that |®(A)| = ®(]A|). Thus & satisfies the conditions
(i) of Theorem 2.1. But ® is not of the form stated in Theorem 2.1. For an
example for Theorem 2.2, let A be a commutative algebra.

However, if the map is “surjective” in some sense, the assumption (iii) is
superfluous.
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Corollary 2.4. Let A be a unital C*-algebra of real rank zero and B be a C*-
algebra. Assume that k is a positive number and ® : A — B is an additive map
with By C ®(An). If @ satisfies that ®(JA|*) = |®(A)|* for all A € Ay and
if ®(I) is a projection, then ®(I) = I, there exists a central projection @ € B,
a linear Jordan *-homomorphism ®1 : A — QB and a conjugate-linear Jordan
*-homomorphism ®2 : A — (I — Q)B such that ®(A) = ®1(A) + Po(A) for
every A € A. Particularly, if B is a factor C*-algebra, then ® is either a linear
or a conjugate-linear Jordan *-homomorphism. Moreover, in the case when
k # 1, the assumption ®(I) being a projection can be omitted.

Proof. Note that, ®(|A|) = |®(A)] for all normal elements A and the assertions
of Step 1-Step 4 in the proof of Theorem 2.1 are still true for ® here. For any
positive element B € B, as By C ®(Ay), there is some A € Ay such that
B = ®(A). Thus B = |B| = |®(A)| = ®(|A|), which means every positive
element is a ®-image of a positive element, and consequently, Bs C ®(Ay).
Since ®(I)P(A) = ®(A)P(I) = ®(A) holds for every A € Ay, one has that
®(I)B = B®(I) = B for every B € B,. Hence B must be unital and ®(I) =T
is its unit. Thus ® meets all conditions (i)-(iii) and has the form of Theorem
2.1 with Q14+ Q2 = ®(I) = I. Tt is clear that both @1 and Q2 commute with all
elements of B. So, @1, Q2 are central projections of Band B = Q18Q14+Q280Q-.
Thus, if B is a factor, then either @; = I,Q2 = 0, in this case ® is a linear
Jordan *-homomorphism; or Q1 = 0, Q2 = I, in this case ® is a conjugate-linear
Jordan *-homomorphism. O

The following corollary is immediate by Theorem 2.2 and the proof of Corol-
lary 2.4.

Corollary 2.5. Let A be a unital C*-algebra of real rank zero and B be a C*-
algebra. Assume that k is a positive number and ® : A — B is an additive
surjective map with ®(I) a projection. Then ® satisfies that ®(|A|F) = |®(A)|*
for all A € A if and only if there exist a central projection Q € B, a linear
*-homomorphism ®1 : A — QB and a conjugate-linear *-homomorphism @y :
A — (I—Q)B such that (A) = ®1(A)+P2(A) for every A € A. Particularly,
if B is a factor, then ® is either a linear or conjugate linear *-homomorphism.
Moreover, in the case when k # 1, the assumption ®(I) being a projection can
be omitted.

If the map is bijective, one can say more.

Corollary 2.6. Let A be a unital C*-algebra of real rank zero and B be a C*-
algebra. Assume that k is a positive number and ® : A — B is an additive
bijective map with ®(I) a projection. Then ® satisfies that ®(|A|*) = |®(A)|F
for all A € A if and only if there exist a central projection P € A, with QQ =
O(P) central projection in B, a linear *~homomorphism ®, : PAP — QBQ, a
conjugate-linear *-homomorphism @2 : (I — P)A(I — P) — (I — Q)B(I — Q),
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such that ® = &1 @ ®5. Particularly, if B is a factor, then ® is either a linear
or conjugate linear *-homomorphism. Moreover, in the case when k # 1, the
assumption ®(I) being a projection can be omitted.

Proof. If ®(|A|F) = |®(A)|* for all A € A, then it has the form stated in
Corollary 2.5. Since ® is injective, we have ker®;N ker®y = {0}. Let A; =
~1(QB), Ay = &~ 1((I-Q)B). Since QB+(I-Q)B = B, we have A = A; +As.
Also, Q1BNQ2B = {0} entails that A; N Ay = {0}. For any 4; € A;, i € {1,2},
one has ®(A4;142) = ®(A41)P(Az) = QP1(41)(I — Q)P2(A2) = 0, which implies
that A; Ay = AyA; = 0 by the injectivity of ®. Let P = &~ 1(Q) = &, 1(Q).
Clearly P is a projection. Write P, = P and P, = I — P; also Q1 = Q
and Q2 = I — Q. We claim that A, = P,A= AP;, i = 1,2. As ®(I) = 1,
we have P, = ®71(Q,). Clearly, P, € A;, and hence P,AP; C A;. Since
Ay C kerfbl, Ay gkel@g, for any Ae A, we have @(PlApl) = (I)l(PlAlpl) =
1 (P1)P1(A)1(P1) = @1P1(A) = ©1(P1A4) = 21(A)Q1 = P1(AP1), which
implies that PPAP, = PiA = AP, holds for all A € A. Thus P, € Z(A),
the center of A. So A; = ®~1(QB) = PLA = APy, and P; is the unit of A;.
Similarly, As = P, A = AP,. Thus we may regard ®; as a bijective map from
A; onto B; = Q;B and ® = &1 @ P, where ®; is a linear *-homomorphism
and ®, is a conjugate-linear *-homomorphism. O

As an application of Theorems 2.1 and 2.2, in the following we characterize
additive maps preserving absolute values of skew products.

Corollary 2.7. Let A be a unital C*-algebra of real rank zero and B be a
C*-algebra. Assume that ® : A — B is an additive map. If ® satisfies that
O(|A*B|) = |®(A)*®(B)| for any A, B € A with A*B = BA*, then there exist
projections Q1,Q2 € B with Q1Q2 = 0, a linear Jordan *-homomorphism @y :
A — Q1BQ1, a conjugate-linear Jordan *-homomorphism @4 : A — Q2BQ2
such that ®(A) = ®1(A) + P2(A) for all A € A.

Proof. For any A € Ax we have ®(|A]?) = ®(|A*A]) = |®(A)*®(4)| =
|®(A)|2. Thus ® meets the condition (i) of Theorem 2.1 with k = 2. It
follows that ® is a R-linear Jordan homomorphism from A into By and ®(7)
is a projection as proved in the Part II of the proof of Theorem 2.1. Moreover,
O(|A|) = |®(A)| for all A € Ay. By an argument similar to Step 2-Step 5 of
Theorem 2.1, one obtains that

(2.12) D(iS)* P(A) = —D(A)P(4S)
and
(213)  B(ES)"D(S) = |B(iS)2 = B(IS])? = ()] = B(S)?

hold for all commuting self-adjoint operator A, S € A, and
(2.14) D(A) =d()P(A) = D(A)D(])
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holds for all A € A,.
Without loss of generality, we may assume that B C B(K) for some Hilbert
space K. Thus, with respect to the space decomposition K = Ky ® Kot

with Ky = ker®(I), we have &(I) = ( 00 ) and ®(.5) has the form ®(S) =

0 I
0 0 \.ro. . [ C (iS)

< 0 () > if S is self-adjoint. Write ®(i.5)= ( D £iS) , where S € Aj.

It follows from (2.12) by letting A = I that D = 0. By (2.13) and (2.14), one

gets C' = 0. So there exist R-linear continuous maps £ and 7 from A into

respectively B(Ko") and B(Ky", K;) such that
0 n(A) )
O(A) = .
w=(o &

Moreover n(S) = 0 for any S € A,. Particularly, ®(iI) = ( 8 gg;g . Let
A =1il, B =il; by the assumption of ®, one gets |®(il)*®(iI)| = ®(I). That

is to say n(il)*n(il) + £GI)"E(I) = I;. Similarly, let A =1 and B = il, we
have £(iI)"¢(il) = I;. Then, it follows that n(il) = 0. So we have ®(il) =

0 0 , which entails that there exists a positive real number ¢ > 0 such

0 &@i)
that ®(i1)®(il)* < c@(I)P(I)*. Thus ® meets all the assumptions of Theorem
2.1 and has the desired form. O

Corollary 2.8. Let A be a unital C*-algebra of real rank zero and B be a C*-
algebra. Assume that ® : A — B is an additive map. Then ® satisfies that
O(|A*B|) = |®(A)*®(B)| for all A, B € A if and only if there exist projections
Q1,Q2 € B with Q1Q2 = 0, a linear *-homomorphism ®1 : A — Q1BQ1, a
conjugate-linear *-homomorphism ®o : A — Q2BQ2 such that P(A) = &1(A)+
Dy (A) for all A € A.

Proof. The “if” part is clear. In fact, by Theorem 2.2, ® is a ring *~homomorph-
ism and |®(A)] = ®(|A|) for all A € A. Thus, |®(A)*®(B)| = |®(A*)P(B)| =
|©(A*B)| = ©(|A*B]).

Next we check the “only if” part. By Corollary 2.7, ® is the sum of a linear
Jordan *-homomorphism and a conjugate-linear Jordan *-homomorphism. So,
we only need to show that ® is multiplicative, that is, ®(AB) = ®(A)P(B)
holds for any A, B € A.

By the proof of Corollary 2.6, one has

(2.15) o(|A]) = |2(A4)|

(2.16) for all A € A and ®(S5)? = &(S?)

for all self-adjoint elements S € A,. Hence, by (2.15) (2.16), for any A € A,
(2.17) D(A™A) = O(|AP) = ©(|A])* = [2(A)* = 2(A) @ (A).
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Replacing A in (2.17) once by A + B and once by A + iB derives

B(A*B) = B(A)*B(B)

for all A, B € A, which entails that ®(AB) = ®(A)®(B) forall A, Be A. O
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