
...

Special Issue of the

Bulletin of the

.

Iranian Mathematical Society
in Honor of Professor Heydar Radjavi’s 80th Birthday

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 41 (2015), No. 7, pp. 99–106

.

Title:

.

A Haar wavelets approach to Stirling’s formula

.

Author(s):

.

M. Ahmadinia and H. Naderi Yeganeh

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 41 (2015), No. 7, pp. 99–106
Online ISSN: 1735-8515

A HAAR WAVELETS APPROACH TO STIRLING’S

FORMULA

M. AHMADINIA∗ AND H. NADERI YEGANEH

(Communicated by Peter Rosenthal)

Dedicated to Professor Heydar Radjavi on his 80th birthday

Abstract. This paper presents a proof of Stirling’s formula using Haar
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1. Introduction

Stirling’s formula (limn→∞
n!

nne−n
√
2πn

= 1) plays an important role in statis-

tics and probability; its main use is estimating the value of n!. The first proofs
of Stirling’s formula were presented by de Moivre and Stirling (see [4, 8]). Es-
timates of n! have been obtained via upper and lower bounds of n! by various
authors (for example see [3], [5] and [6]). Some papers prove Stirling’s formula
by different techniques as well (for example see [2]). The present paper in-
troduces a new method of proving Stirling’s formula by using Haar wavelets.
Although there are some proofs of Stirling’s formula that are simpler than the
present one, we feel that it is of interest to know that this formula can be
established using Haar wavelets.

The outline of the paper is as follows: In Section 2, we introduce some
notation and present two lemmas related to Parseval’s identity and the Haar
wavelet basis. In Section 3, we present an application of the two lemmas, and
in the last section we give a proof of Stirling’s formula and of a lower and upper
bound for n!.
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2. Preliminaries and Haar Wavelets

This section introduces Haar wavelets and some related notation. The following
notation is fixed throughout the paper:

Z∗ := N ∪ {0},

(N is the set of natural numbers). The bijective function P and the surjective
function Q are defined as follows:

P : S → N, P (n, k) := 2n + k,

and

Q :W → Z∗, Q(r, n) := n,

where

S := {(n, k) ∈ Z∗ × Z∗|0 ≤ k ≤ 2n − 1}, & W := {(r, n) ∈ Z∗ × Z∗|r ≤ n}.

Consider the following functions

ϕ(x) :=

{
1, 0 ≤ x < 1,

0, otherwise,

and

ψ(x) :=


1, 0 ≤ x < 1

2 ,

−1, 1
2 ≤ x < 1,

0, otherwise,

and also

ψn,k(x) := 2
n
2 ψ(2nx− k), (n, k) ∈ S.

The real Hilbert space L2([0, 1]) with inner product ⟨f, g⟩ :=
∫ 1

0
f(x)g(x)dx,

has the following orthonormal basis, which is called “the Haar wavelets basis”:

{ϕ(x)} ∪ {ψn,k(x) | (n, k) ∈ S} .(2.1)

Parseval’s identity implies that

⟨f, g⟩ = ⟨f, ϕ⟩⟨g, ϕ⟩+
∞∑

n=0

2n−1∑
k=0

⟨f, ψn,k⟩⟨g, ψn,k⟩,(2.2)

(for details see [1] and [7]). For convenience, we employ the following notation:∫
n,k

f :=

∫ k+1
2n

k
2n

f(x)dx.
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Lemma 2.1. If f and g are in L2([0, 1]), then

⟨f, g⟩ = 2r
2r−1∑
k=0

∫
r,k

f

∫
r,k

g +
∞∑

n=r

2n−1∑
k=0

⟨f, ψn,k⟩⟨g, ψn,k⟩,(2.3)

for all r ∈ Z∗.

Proof. This lemma is proved by induction. If r = 0, then (2.3) and (2.2) are
the same. If the equation (2.3) holds for r, then

⟨f, g⟩ = 2r
2r−1∑
k=0

∫
r,k

f

∫
r,k

g +
2r−1∑
k=0

⟨f, ψr,k⟩⟨g, ψr,k⟩+
∞∑

n=r+1

2n−1∑
k=0

⟨f, ψn,k⟩⟨g, ψn,k⟩.

(2.4)

Let h be an arbitrary function in L2([0, 1]). Then∫
r,k

h =

∫
r+1,2k

h+

∫
r+1,2k+1

h,(2.5)

and

⟨h, ψr,k⟩ = 2
r
2

(∫
r+1,2k

h−
∫
r+1,2k+1

h

)
.(2.6)

We can derive the following equation by using (2.5) and (2.6) in the left side
of the equation:

2r
2r−1∑
k=0

∫
r,k

f

∫
r,k

g +

2r−1∑
k=0

⟨f, ψr,k⟩⟨g, ψr,k⟩ = 2r+1
2r+1−1∑
k=0

∫
r+1,k

f

∫
r+1,k

g.(2.7)

Substitution of (2.7) into (2.4) yields (2.3) for r + 1. □

Lemma 2.2. If f and g are continuous functions on [0, 1] that are differentiable
on (0, 1), and if also |f ′(x)| < M1 and |g′(x)| < M2 for all x ∈ (0, 1), then the
following assertions are true:

(i) |⟨f, ψn,k⟩| < M1

2
3n
2

+1
and |⟨g, ψn,k⟩| < M2

2
3n
2

+1
, (n, k) ∈ S,

(ii) |
∫
r,k
fg − 2r

∫
r,k
f
∫
r,k
g| < M1M2

3·23r , (r, k) ∈ S.

Proof. The mean value theorem for integrals and (2.6) imply

⟨f, ψn,k⟩ = 2
n
2

(∫
n+1,2k

f −
∫
n+1,2k+1

f

)
=
f(c1)

2
n
2 +1

− f(c2)

2
n
2 +1

,

for some c1 ∈ ( 2k
2n+1 ,

2k+1
2n+1 ) and c2 ∈ ( 2k+1

2n+1 ,
2k+2
2n+1 ). The mean value theorem for

derivatives yields

⟨f, ψn,k⟩ =
f ′(c)(c1 − c2)

2
n
2 +1

,
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for some c ∈ (c1, c2). Note that |c1 − c2| < 1
2n . Then

|⟨f, ψn,k⟩| ≤
|f ′(c)|
2

3n
2 +1

<
M1

2
3n
2 +1

.

The proof of statement (i) is completed by applying a similar proof for g. To
prove statement (ii), consider the following functions on [0, 1] with (r, k) ∈ S
arbitrary and fixed:

f1(x) := f(
x+ k

2r
), & g1(x) := g(

x+ k

2r
).

Then ∫
r,k

fg − 2r
∫
r,k

f

∫
r,k

g =
1

2r
⟨f1 , g1⟩ −

1

2r
⟨f1 , ϕ⟩⟨g1 , ϕ⟩

=
1

2r

∞∑
n=0

2n−1∑
l=0

⟨f1 , ψn,l⟩⟨g1 , ψn,l⟩.(2.8)

(The first equation is clear and the second equation is obtained from (2.2).)
Since M1

2r and M2

2r are the bounds for f ′
1
and g′

1
respectively, statement (i)

implies

|⟨f1 , ψn,k⟩| <
M1

2
3n
2 +1+r

& |⟨g1 , ψn,k⟩| <
M2

2
3n
2 +1+r

.(2.9)

Using (2.8) and (2.9) yields∣∣∣∣∫
r,k

fg − 2r
∫
r,k

f

∫
r,k

g

∣∣∣∣ < ∞∑
n=0

1

23n+2

2n−1∑
l=0

M1M2

23r
=
M1M2

3 · 23r
.

□

3. An Application: An Infinite Product

An infinite product can be obtained by applying the above two lemmas, in
the special case where f = 1

1+x and g = 1 + x.

Theorem 3.1. The following equation holds:

e√
2

∞∏
m=1

e(
m

m+ 1
)

2m+1
2 =

√
π.(3.1)

Proof. Consider the following functions on [0, 1]:

f(x) :=
1

1 + x
, g(x) := 1 + x.

The inner product ⟨f, g⟩ can be written as follows, for all r ∈ Z∗:

⟨f, g⟩ =
2r−1∑
k=0

∫
r,k

fg,(3.2)
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Lemma 2.1 and (3.2) imply that

2r−1∑
k=0

(∫
r,k

fg − 2r
∫
r,k

f

∫
r,k

g

)
=

∞∑
n=r

2n−1∑
k=0

⟨f, ψn,k⟩⟨g, ψn,k⟩,(3.3)

The following equation is clear, by (3.3),

∞∑
r=0

2r
2r−1∑
k=0

(∫
r,k

fg − 2r
∫
r,k

f

∫
r,k

g

)
=

∞∑
r=0

2r
∞∑

n=r

2n−1∑
k=0

⟨f, ψn,k⟩⟨g, ψn,k⟩,(3.4)

Note that the left hand side of (3.4) is convergent by part (ii) of Lemma 2.2.
Also, part (i) of Lemma 2.2 implies that the right hand side of (3.4) is absolutely
convergent. Thus this series can be rearranged using the surjective function Q
as follows:

∞∑
r=0

2r
∞∑

n=r

2n−1∑
k=0

⟨f, ψn,k⟩⟨g, ψn,k⟩ =
∞∑
r=0

2r
∞∑

n=r

2
Q(r,n)

−1∑
k=0

⟨f, ψ
Q(r,n),k

⟩⟨g, ψ
Q(r,n),k

⟩

=
∞∑
i=0

∑
Q(t,u)=i

2t
2i−1∑
k=0

⟨f, ψi,k⟩⟨g, ψi,k⟩

=

∞∑
i=0

(
i∑

t=0

2t

)
2i−1∑
k=0

⟨f, ψi,k⟩⟨g, ψi,k⟩

=

∞∑
i=0

(2i+1 − 1)

2i−1∑
k=0

⟨f, ψi,k⟩⟨g, ψi,k⟩.

Hence, (3.4) can be written as

∞∑
r=0

2r
2r−1∑
k=0

(∫
r,k

fg − 2r
∫
r,k

f

∫
r,k

g

)
=

∞∑
r=0

(2r+1 − 1)

2r−1∑
k=0

⟨f, ψr,k⟩⟨g, ψr,k⟩.

(3.5)

Together, (2.2) and (3.5) yield:

⟨f, g⟩ − ⟨f, ϕ⟩⟨g, ϕ⟩+A = B,(3.6)

where

A =
∞∑
r=0

2r
2r−1∑
k=0

(∫
r,k

fg − 2r
∫
r,k

f

∫
r,k

g

)
,

and

B =

∞∑
r=0

2r+1
2r−1∑
k=0

⟨f, ψr,k⟩⟨g, ψr,k⟩.
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Parts (ii) and (i) of Lemma 2.2 show that the series A and B are absolutely
convergent. Therefore, we can rearrange these series using the bijective function
P to get:

A =
∞∑
r=0

2r−1∑
k=0

(
1− 2(2r + k) + 1

2
ln

(
2r + k + 1

2r + k

))

=
∞∑
r=0

2r−1∑
k=0

(
1− 2P (r, k) + 1

2
ln

(
P (r, k) + 1

P (r, k)

))

=
∞∑

m=1

(
1− 2m+ 1

2
ln

(
m+ 1

m

))
,(3.7)

and

B =
1

2

∞∑
r=0

2r−1∑
k=0

ln

(
(2r+1 + 2k)(2r+1 + 2k + 2)

(2r+1 + 2k + 1)2

)

=
1

2

∞∑
r=0

2r−1∑
k=0

ln

(
2P (r, k)(2P (r, k) + 2)

(2P (r, k) + 1)2

)

=
1

2

∞∑
m=1

ln

(
2m(2m+ 2)

(2m+ 1)2

)
.(3.8)

Substitution of (3.7) and (3.8) into (3.6) implies that

1− 3

2
ln 2 +

∞∑
m=1

(
1− 2m+ 1

2
ln

(
m+ 1

m

))
=

1

2

∞∑
m=1

ln

(
2m(2m+ 2)

(2m+ 1)2

)
.(3.9)

Using the function exp(x) in (3.9) yields

e

2
√
2

∞∏
m=1

e(
m

m+ 1
)

2m+1
2 =

( ∞∏
m=1

2m(2m+ 2)

(2m+ 1)2

) 1
2

.(3.10)

The square of the right hand side of (3.10) is π
4 (which is the Wallis’ Product).

This completes the proof. □

4. Stirling’s Formula

Now, we can prove Stirling’s formula. Equation (3.1) implies

lim
M→∞

eM+1

√
2π

M∏
m=1

(
m

m+ 1
)

2m+1
2 = 1.(4.1)
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The following equation is clear:

M∏
m=1

(
m

m+ 1
)2m+1 =

(M !)2

(M + 1)2M+1
.(4.2)

Substitution of (4.2) into (4.1) yields

lim
M→∞

(M + 1)!eM+1

(M + 1)M+1
√
2π(M + 1)

= 1,

which is Stirling’s formula. Finally, we obtain a lower and upper bound of
n!

nne−n
√
2πn

. Equations (3.1) and (4.2) yield

∞∏
m=n

e−1(
m+ 1

m
)

2m+1
2 = Θ(n), n = 1, 2, 3, . . .

where

Θ(n) :=
n!

nne−n
√
2πn

.

The following inequalities follow from elementary calculus:

∫ ∞

n

−1 +
2x+ 1

2
ln(

x+ 1

x
)dx ≤

∞∑
m=n

(
−1 +

2m+ 1

2
ln(

m+ 1

m
)

)
,

and
∞∑

m=n

(
−1 +

2m+ 1

2
ln(

m+ 1

m
)

)
≤
∫ ∞

n−1

−1 +
2x+ 1

2
ln(

x+ 1

x
)dx.

Since ln(Θ(n)) =
∑∞

m=n

(
−1 + 2m+1

2 ln(m+1
m )

)
, the last two inequalities imply

that

−n− n2

2
ln(

n+ 1

n
) +

2n+ 1

4
≤ ln(Θ(n)) ≤ n− n2

2
ln(

n

n− 1
) +

2n− 1

4
.

Hence

e
2n+1

4

(
n+ 1

n

)−n−n2

2

≤ Θ(n) ≤ e
2n−1

4

(
n

n− 1

)n−n2

2

,

for n = 2, 3, . . ..
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