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Dedicated to Professor Heydar Radjavi on his 80th birthday

Abstract. We introduce a matricial Toeplitz transform and prove that
the Toeplitz transform of a second order recurrence sequence is another

second order recurrence sequence. We investigate the injectivity of this
transform and show how this distinguishes the Fibonacci sequence among
other recurrence sequences. We then obtain new Fibonacci identities as
an application of our transform.
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1. Introduction

Many authors have investigated determinants of Hankel and Toeplitz matri-
ces ([2,5,8–10,15,19,20]). More recently, matrices whose entries are Fibonacci
numbers have been popular ([1, 3, 6, 12, 16–18]). There has also been a recent
trend to consider the sequence of Hankel determinants as a sequential transform
([4,5,7,14]). The contents of this note continues to build on these developments,
with an investigation of the transforms of Fibonacci sequences obtained from
the sequence of determinants of corresponding symmetric Toeplitz matrices.

Let a unilateral complex sequence s = (s0, s1, . . .) be given, and define, for
each natural number n, a corresponding symmetric Toeplitz matrix

Tn(s) =


s0 s1 . . . sn−2 sn−1

s1 s0 s1 . . . sn−2

...
. . .

. . .
...

sn−2 . . . . . . s1
sn−1 sn−2 . . . s1 s0

 .
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We define the Toeplitz transform of s to be the sequence

τ(s)n = detTn(s) (n = 1, 2, . . .).

Our definition of the Toeplitz transform is akin to the sequential Hankel
transform defined in [14]. What we found intriguing is the relationship be-
tween this Hankel transform and the Catalan sequence (see OEIS A000108):
the Catalan sequence is completely determined as the unique sequence whose
Hankel transform gives constant ones, and whose shifted transform also gives
constant ones [7]. That there is a unique sequence with this property is trivial.
With |A| denoting the determinant of A, one can recursively solve the equations

∣∣ c0 ∣∣ = 1,
∣∣ c1 ∣∣ = 1,

∣∣∣∣ c0 c1
c1 c2

∣∣∣∣ = 1,

∣∣∣∣ c1 c2
c2 c3

∣∣∣∣ = 1,

∣∣∣∣∣∣
c0 c1 c2
c1 c2 c3
c2 c3 c4

∣∣∣∣∣∣ = 1, . . .

to obtain {c0, c1, . . .}. The surprise here is that the solution is the Catalan
sequence. As we will see, our Toeplitz transform appears particularly well
suited for recurrence sequences, with the surprise that the celebrated Fibonacci
sequence is distinguished by this transform, much as the Catalan sequence is
by the Hankel transform.

We refer the reader to [13] for a delightful exposition of second order recur-
rence sequences. For complex numbers a and b we let R(a, b) denote the set of
bilateral complex sequences (si) with

bsi−2 + asi−1 = si.

When the polynomial x2 − ax− b has two distinct roots, we will denote them
with ϕ and ψ. The geometric sequences (ϕi) and (ψi) then give a basis of
R(a, b). We refer to these as the geometric elements of R(a, b). This basis
allows one to write any element of R(a, b) in a closed form. We refer to the
element s ∈ R(a, b) with s0 = 0 and s1 = 1 as the Fibonacci element of R(a, b),
and the element with s0 = 2 and s1 = a is called the Lucas element.

2. The transform of recurrence sequences

Theorem 2.1. Assume that s ∈ R(a, b). Then τ(s) is a second order recur-
rence sequence that satisfies

(bs1+as0−s1)b(s−1−s1)τ(s)i−2+(s0−bs2−2as1+a(bs1+as0))τ(s)i−1 = τ(s)i

for all i ≥ 3.
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Proof. Use the recurrence relation, and the multi-linearity of the determinant,
on the last column of Tn(s) to write

τ(s)n = |Tn(s)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−2 0
s1 s0 s1 . . . 0
...

. . .
. . .

...
sn−3 0
sn−2 . . . s0 s1 − bs1 − as0
sn−1 sn−2 . . . s1 s0 − bs2 − as1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

It follows that

|Tn(s)| = (s0 − bs2 − as1)|Tn−1(s)| − (s1 − bs1 − as0)|W |,

with W given by

W =


s0 s1 . . . sn−2

s1 . . . sn−3

...
. . .

. . .
...

sn−3 sn−4 . . . s1
sn−1 sn−2 . . . s1

 .

Now use the multi-linearity again, this time on the last row, to write

|W | = b

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−2

s1 . . . sn−3

...
. . .

. . .
...

sn−3 sn−4 . . . s1
sn−3 sn−4 . . . s−1

∣∣∣∣∣∣∣∣∣∣∣
+ a

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−2

s1 . . . sn−3

...
. . .

. . .
...

sn−3 sn−4 . . . s1
sn−2 sn−3 . . . s0

∣∣∣∣∣∣∣∣∣∣∣
= b

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−2

s1 . . . sn−3

...
. . .

. . .
...

sn−3 sn−4 . . . s1
0 0 . . . s−1 − s1

∣∣∣∣∣∣∣∣∣∣∣
+ a

∣∣∣∣∣∣∣∣∣∣∣

s0 s1 . . . sn−2

s1 . . . sn−3

...
. . .

. . .
...

sn−3 sn−4 . . . s1
sn−2 sn−3 . . . s0

∣∣∣∣∣∣∣∣∣∣∣
= b(s−1 − s1)τ(s)n−2 + aτ(s)n−1.

Substituting this expression into the most recent equation for |Tn(s)| above
completes the proof. □

It is worthwhile to isolate two special cases of our theorem, that reduce the
recurrence formula to a more manageable expression. In the case of R(k, 1), the
elements have frequently been referred to as k-Fibonacci sequences ([16], [17]),
and our theorem takes the following form.

Corollary 2.2. If s ∈ R(k, 1), then τ(s) ∈ R(−2ks1 + k2s0,−k2s20).
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In the spaceR(1, 1), that has long been referred to as the space of generalized
Fibonacci sequences [11], our theorem is the following.

Corollary 2.3. If s ∈ R(1, 1), then τ(s) ∈ R(−2s1 + s0,−s20).

Example 2.4. Let (fi) denote the classical Fibonacci sequence, i.e. (f0, f1, f2,
. . .) is the sequence

0, 1, 1, 2, 3, . . . ,

an element of R(1, 1). It follows that τ(f) is the element of R(−2, 0) whose
first two terms are τ(f)1 = 0 and τ(f)2 = −1. Thus we have

τ(f)n = (−1)n−12n−2

for n ≥ 2. This particular transform leads to a Fibonacci identity for the
difference between the nth Fibonacci number and 2n−1, which we give later in
this note.

Example 2.5. Let (fi) denote the Fibonacci element of R(2, 1), the Pell se-
quence

0, 1, 2, 5, 12, 29, . . . .

It follows that τ(f) is the element of R(−4, 0) given by

τ(f)n = (−1)n−14n−2

for n ≥ 2.

Example 2.6. Let (si) denote the shifted classical Fibonacci sequence, i.e.
(s0, s1, s2, . . .) is the sequence

1, 1, 2, 3, . . . .

This time τ(s) ∈ R(−1,−1) and begins with τ(s)1 = 1 and τ(s)2 = 0, so τ(s)
is

1, 0,−1, 1, 0,−1, . . . .

This gives inspiration for a nice Putnam problem: form the symmetric Toeplitz
matrix using the Fibonacci numbers, and prove that the resulting n×n matrix
is singular if and only if n = 2 (mod 3).

Example 2.7. Assume (fi) is the Fibonacci element of R(11,−10), the se-
quence of repunits,

0, 1, 11, 111, 1111, . . . .

Then the Toeplitz transform is the sequence τ(f)n = (n− 1)(−1)n−111n−2 for
n ≥ 2.

Example 2.8. Let (fi) be the Fibonacci element of R(2,−1), the arithmetic
progression

0, 1, 2, 3, 4, . . . .
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We have τ(f)n = (n− 1)(−1)n−12n−2 for n ≥ 2. A little more generally, if (si)
is the arithmetic progression

0, k, 2k, . . . ,

then τ(s)n = knτ(f)n = kn(n− 1)(−1)n−12n−2 for n ≥ 2.

3. Injectivity of the Toeplitz transform

Let a complex sequence s = (si) be given. We are interested in investigating
the extent of injectivity of the transform τ at s. We will say τ is k-injective
at s if the inverse image of τ(s) contains exactly k sequences. When k = 1,
we will say that τ is injective at s, instead of saying “1-injective”, and we will
use the term bi-injective at s instead of 2-injective at s. If the inverse image of
τ(s) is infinite, we will say that τ is completely non-injective at s.

For each natural number n we define a polynomial pn(s) as follows: in the
matrix Tn(s) replace the sn−1 in both the northeast and the southwest corners
with a variable x, and call the resulting matrix T x

n (s), then define

pn(s) = |T x
n (s)| − |Tn(s)|.

In this way we manufacture a polynomial, of degree less than or equal to two,
which must have sn−1 as a root. We will use this sequence of polynomials to
detect injectivity, but first let us dispense with a triviality.

Lemma 3.1. If α is a non-zero complex number, then τ is k-injective at s if
and only if τ is k-injective at αs.

Proof. This follows from the equality

τ(αs)n = αnτ(s)n.

□

In terms of the polynomials pn(s), a sufficient condition for τ to be k-injective
at s is that pn(s) be eventually a perfect square, i.e. that eventually, sn−1 be
a double root of pn(s). This is exactly what happens when s is either the
Fibonacci element of R(a, b), or s is a geometric element of R(a, b).

Theorem 3.2. Assume that s ∈ R(a, b) with b = 1. Then, for all n ≥ 4, pn(s)
is a perfect square, if and only if s is a multiple of the Fibonacci element, or s
is a multiple of a geometric element.

Proof. In anticipation of using the determinant’s multi-linearity on the first and
last columns, let us denote with u and v the first and last columns of Tn(s),
with ux and vx the first and last columns of T x

n (s), let lx be the column vector
whose last entry is x−sn−1 and zeros elsewhere, and let rx be the column vector
whose first entry is x− sn−1 and zeros elsewhere. If we group the unchanging
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central columns into a matrixM , then the equalities ux = u+lx and vx = v+rx
let us relate the determinants |Tn(s)| and |T x

n (s)| via the equation

|T x
n (s)| = |((u+ lx),M, (v + rx))|

= |Tn(s)|+ |(lx,M, v)|+ |(u,M, rx)|+ |(lx,M, rx)|.
It follows that

pn(s) = |(lx,M, v)|+ |(u,M, rx)|+ |(lx,M, rx)|
= 2|(lx,M, v)|+ |(lx,M, rx)|.

As |(lx,M, rx)| is a constant multiple of (x − sn−1)
2, we need to see when

|(lx,M, v)| = 0. Using the recurrence relation on the last three columns gives

|(lx,M, v)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 s1 . . . sn−2 0
0 s0 s1 . . . 0
...

. . .
. . .

...
0 0
0 . . . s0 s1 − bs1 − as0

x− sn−1 sn−2 . . . s1 s0 − bs2 − as1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0

if and only if ∣∣∣∣∣∣∣∣∣∣∣

s1 . . . sn−2 0
s0 s1 . . . 0
...

. . .
...
0

. . . s0 s1 − bs1 − as0

∣∣∣∣∣∣∣∣∣∣∣
= 0.

Continue using the recurrence relation on the last three columns until you
have reduced the matrix to a 2 × 2, and you see this determinant equal to
(s1 − bs1 − as0)

n−2(s21 − s0s2), so pn(s) is a perfect square if and only if

(s1 − bs1 − as0)
n−2(s21 − s0s2) = 0.

Assuming b = 1, this happens if and only if s0 = 0 (s is a multiple of the
Fibonacci element) or s21 = s0s2 (s is a multiple of the geometric element). □

Comment 3.3. In case b ̸= 1, the preceding proof shows that the distinction
enjoyed by the Fibonacci element shifts elsewhere. For example, if b = 2 and
a = −1, the proof shows that the element of R(a, b) beginning with s0 = 1 and
s1 = 1 has perfect square pn(s) for n ≥ 4. In this case (sn) is the constant
1 sequence, and the inverse image of τ(s) contains exactly two elements, the
additional one being the alternating sequence 1,−1, 1,−1, . . ..

Corollary 3.4. If b = ±1, then τ is bi-injective at the Fibonacci element of
R(a, b). For any a and b, τ is bi-injective at a non-zero geometric element of
R(a, b). In the inverse image of τ(s), the additional element is the alternating
sequence (−1)i(si) ∈ R(a,−b).
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Proof. Note that (−1)i(si) has the same transform as (si) follows from that fact
that the corresponding Toeplitz matrices are similar, via the invertible diagonal
operator with alternating 1 and −1 on the diagonal. For the Fibonacci sequence
in R(a, b), one has p3(s) = 2(x − a), and higher order pn(s) all have a single
(repeated) root, so there can be no other elements of the inverse image. For
the geometric element (ϕi), we get p3(s) = (ϕ2 − x)2, with repeated roots for
all higher n. □

Example 3.5. Assume that ϕ a root of the polynomial x2 +x− 1, so s = (ϕi)
is a geometric element of R(−1, 1). It follows that τ(s) ∈ R(2ϕ+ 1,−1), and

(−1)(ϕk−2) + (2ϕ+ 1)(ϕk−1) = ϕk−2(ϕ2 + (ϕ2 + ϕ− 1)) = ϕk

shows that s = (ϕi) is also a geometric element of R(2ϕ + 1,−1), and in
particular, s is a fixed point of τ . Thus there are exactly two fixed points of τ ,
and τ is bi-injective at each fixed point.

Example 3.6. Let s be the Lucas element of R(1, 1). It follows that τ(s)1 = 2,
τ(s)2 = 3, τ(s)3 = −8, and τ(s)4 = −12. Seeking other recurrence sequences
with the same transform, begin by solving the system of equations

(bs1 + as0 − s1)b(s−1 − s1)τ(s)1 + (s0 − bs2 − 2as1 + a(bs1 + as0))τ(s)2 = τ(s)3
(bs1 + as0 − s1)b(s−1 − s1)τ(s)2 + (s0 − bs2 − 2as1 + a(bs1 + as0))τ(s)3 = τ(s)4

to find that
(bs1 + as0 − s1)b(s−1 − s1) = −4
s0 − bs2 − 2as1 + a(bs1 + as0) = 0

.

It must be that s0 = 2 and s1 = ±1, so we substitute s0 = 2 and s1 = 1 into
the above getting

(b+ 2a− 1)2 = 4
2 + 2(a2 − b2)− 2a = 0

(be aware that s−1 = (1/b)(s1 − as0) and s2 = bs0 + as1). Solving for a and
b gives the four solutions (a, b) = (− 5

3 ,
7
3 ), (

8
3 ,−

7
3 ), (0,−1) and (1, 1). We get

four more solutions with s1 = −1, which shows that τ is 8-injective at s when
restricted to the recurrence sequences with b ̸= 0. All our evidence suggests
that, in general, τ is completely non-injective at s, but we have not been able
to prove this.

Comment 3.7. We have had success using the polynomials pn(s) to obtain
an upper bound on the size of an inverse image, but are frustrated when using
the polynomials to obtain a lower bound on the cardinality of an inverse image.
When s is the Lucas sequence, as in the previous example, we can show that
pn(s) has two distinct roots for every n ≥ 2, so one might think that recursively
selecting a root could lead to new elements of the inverse image. A problem
with this strategy becomes apparent when showing that τ is injective at the
zero element. In this case, pn(s) is the constant zero polynomial as soon as
n ≥ 3, so one could presumably choose a non-zero number α at the nth step,
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seeking a non-zero sequence in the pre-image. After this, it is not until the
(2n)th step that our choice of α returns to haunt us, when we try to select an
x that makes

|T x
2n(s)| =

∣∣∣∣ 0 A
A∗ 0

∣∣∣∣ = 0,

with upper triangular A given by

A =


α ∗ ∗ · · ·
0 α ∗ · · ·
0 0 α ∗
...

. . .
...

0 0 · · · α

 .

But clearly, |T x
2n(s)| = α2.

4. Fibonacci identities

The amazing identities that decorate Fibonacci sequences are certainly one
of their main attractions. We have two new identities that relate the traditional
Fibonacci sequence (. . . , f0, f1, f2, . . .) ∈ R(1, 1) to the geometric sequence 2n.
Our first one is a trivial restatement of Theorem 2.1 and Example 2.4, but it
is still striking and worth isolating. The formula on the left of the equality is
just the standard definition of determinant applied to the matrix Tn(f). In
particular, the summation is over all permutations σ.

Identity 4.1. For n ≥ 2,∑
σ

n−1∏
i=0

sgnσf|i−σi| = (−1)n−12n−2.

Our second identity was discovered while in a frenzy of column additions of
Tn(f). What resulted from the column additions we describe by writing, for
k ≥ 1,

F
(0)
k = fk, F

(1)
k =

k−1∑
i=0

fi, F
(2)
k =

k−1∑
i=0

F
(1)
i ,

and in general

F
(n)
k =

k−1∑
i=0

F
(n−1)
i .

We define F
(i)
0 = 0 for all non-negative integers i.

Identity 4.2. For n ≥ 3,

2n − fn+1 =

n−1∑
i=0

F (i)
n .
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Our original proof, via determinants, is long and arduous, and it includes
more than one questionable step. Upon reflection we found a much simpler
proof, without the mysterious leaps of faith.

Proof. Let C denote the matrix of the operator that transforms the sequence

(fi) into (F
(1)
i ), i.e.

C =


0 0 0 · · ·
1 0 0 · · ·
1 1 0 · · ·
...

. . .
. . .

 .

It follows that
n−1∑
i=0

F (i)
n =

n−1∑
i=0

(
Cif

)
n
=

(
n−1∑
i=0

Cif

)
n

=
(
(1− Cn)(1− C)−1f

)
n
.

We need to compute the nth coordinate of (1 − Cn)(1 − C)−1f , so begin by
noting that the nth row of (1− Cn) is

(−1 0 0 · · · 0 1 0 0 · · · ),
so we need to find the first and nth coordinate of (1 − C)−1f . The ma-
trix of (1 − C)−1 is lower triangular Toeplitz, with the generating sequence
1, 1, 2, 22, 23, . . ., from which we see the first coordinate of (1−C)−1f is f0 and
the nth coordinate is

2n−1f0 + 2n−2f1 + . . .+ 2fn−2 + fn−1 + fn.

That f0 = 0 leaves us with proving

n−1∑
i=1

2n−1−ifi + fn = 2n − fn+1

for all n ≥ 3. When n = 3 we have that 2f1 + f2 + f3 = 23 − f4, which is
certainly true, so assume the induction hypothesis and compute∑n

i=1 2
n−ifi + fn+1 = 2(

∑n−1
i=1 2n−i−1fi) + fn + fn+1

= 2(2n − fn+1 − fn) + fn + fn+1

= 2n+1 − fn+2

.

□
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