# COMMON FIXED POINT THEOREMS FOR FOUR MAPPINGS IN COMPLETE METRIC SPACES 

S. SEDGHI* AND N. SHOBE<br>Communicated by Fraydoun Rezakhanlou


#### Abstract

In this paper, we prove some common fixed point theorems for four maps in complete metric spaces. These theorems are versions of some known results in ordinary metric spaces.


## 1. Introduction and preliminaries

In the present work, we introduce a new binary operation which is a probable modification of the definition of ordinary metric. In section 1 , we give some properties about this operation metric. In section 2 , we prove two common fixed point theorems for four weakly compatible maps in complete metric spaces. In section 3, we prove a fixed point theorem for compatible mappings satisfying a new general contractive type condition.

In what follows, $\mathbf{N}$ is the set of all natural numbers and $\mathbf{R}^{+}$is the set of all positive real numbers.

Let $\diamond: \mathbf{R}^{+} \times \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+}$be a binary operation satisfyng the following conditions:

[^0](i) $\diamond$ is associative and commutative,
(ii) $\diamond$ is continuous.

Five typical examples of $\diamond$ are:
$a \diamond b=\max \{a, b\}, a \diamond b=a+b, a \diamond b=a b, a \diamond b=a b+a+b$ and $a \diamond b=\frac{a b}{\max \{a, b, 1\}}$ for each $a, b \in \mathbf{R}^{+}$.

Definition 1.1. The binary operation $\diamond$ is said to satisfy $\alpha$-property if there exists a positive real number $\alpha$ such that

$$
a \diamond b \leq \alpha \max \{a, b\}
$$

for all $a, b \in \mathbf{R}^{+}$.
Example 1.2. (1) If $a \diamond b=a+b$, for each $a, b \in \mathbf{R}^{+}$, then for $\alpha \geq 2$, we have $a \diamond b \leq \alpha \max \{a, b\}$.
(2) If $a \diamond b=\frac{a b}{\max \{a, b, 1\}}$, for each $a, b \in \mathbf{R}^{+}$, then for $\alpha \geq 1$, we have $a \diamond b \leq \alpha \max \{a, b\}$.

In 1996 Jungck [4] introduced the concept of weakly compatible mappings and proved some common fixed point theorems using this concept on ordinary metric spaces. After then, many fixed point results have been obtained using weakly compatible mappings on ordinary metric spaces (see [1], [2], [3], [6]).

Definition 1.3. Let $A$ and $S$ be mappings from a metric space ( $X, d$ ) into itself. $A$ and $S$ are said to be weakly compatible if they commute at their coincidence points, that is, $A x=S x$ for some $x \in X$ implies that $A S x=S A x$.

## 2. Main results

Theorem 2.1. Let $(X, d)$ be a complete metric space such that $\diamond$ satisfies $\alpha$-property with $\alpha>0$. Let $A, B, S$ and $T$ be self mappings of $X$ into itself satisfying the following conditions
(i) $A(X) \subseteq T(X), B(X) \subseteq S(X)$ and $T(X)$ or $S(X)$ is a closed subset of $X$,
(ii) the pairs $(A, S)$ and $(B, T)$ are weakly compatible,
(iii) for all $x, y \in X$,

$$
\begin{aligned}
d(A x, B y) \leq & k_{1}(d(S x, T y) \diamond d(A x, S x))+k_{2}(d(S x, T y) \diamond d(B y, T y)) \\
& +k_{3}\left(d(S x, T y) \diamond \frac{d(S x, B y)+d(A x, T y)}{2}\right)
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}>0$ and $0<\alpha\left(k_{1}+k_{2}+k_{3}\right)<1$.
Then, $A, B, S$ and $T$ have a unique common fixed point in $X$.
Proof. Let $x_{0}$ be an arbitrary point in $X$. By (i), we can define inductively a sequence $\left\{y_{n}\right\}$ in $X$ such that $y_{2 n}=A x_{2 n}=T x_{2 n+1}$ and $y_{2 n+1}=B x_{2 n+1}=S x_{2 n+2}$, for $n=0,1,2, \cdots$. We claim that the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence.

Using (iii), we have

$$
\begin{aligned}
& d\left(y_{2 n}, y_{2 n+1}\right) \\
= & d\left(A x_{2 n}, B x_{2 n+1}\right) \\
\leq & k_{1}\left(d\left(S x_{2 n}, T x_{2 n+1}\right) \diamond d\left(A x_{2 n}, S x_{2 n}\right)\right) \\
& +k_{2}\left(d\left(S x_{2 n}, T x_{2 n+1}\right) \diamond d\left(B x_{2 n+1}, T x_{2 n+1}\right)\right) \\
& +k_{3}\left(d\left(S x_{2 n}, T x_{2 n+1}\right) \diamond \frac{d\left(S x_{2 n}, B x_{2 n+1}\right)+d\left(A x_{2 n}, T x_{2 n+1}\right)}{2}\right) \\
= & k_{1}\left(d\left(y_{2 n-1}, y_{2 n}\right) \diamond d\left(y_{2 n}, y_{2 n-1}\right)\right) \\
& +k_{2}\left(d\left(y_{2 n-1}, y_{2 n}\right) \diamond d\left(y_{2 n+1}, y_{2 n}\right)\right) \\
& +k_{3}\left(d\left(y_{2 n-1}, y_{2 n}\right) \diamond \frac{d\left(y_{2 n-1}, y_{2 n+1}\right)+d\left(y_{2 n}, y_{2 n}\right)}{2}\right) .
\end{aligned}
$$

Set $d_{n}=d\left(y_{n}, y_{n+1}\right)$. Using the above inequality, we get
$d_{2 n} \leq k_{1}\left(d_{2 n-1} \diamond d_{2 n-1}\right)+k_{2}\left(d_{2 n-1} \diamond d_{2 n}\right)+k_{3}\left(d_{2 n-1} \diamond \frac{d\left(y_{2 n-1}, y_{2 n+1}\right)}{2}\right)$.
Hence,
$d_{2 n} \leq k_{1} \alpha d_{2 n-1}+k_{2} \alpha \max \left\{d_{2 n-1}, d_{2 n}\right\}+k_{3} \alpha \max \left\{d_{2 n-1}, \frac{d_{2 n-1}+d_{2 n}}{2}\right\}$.
If $d_{2 n}>d_{2 n-1}$, we obtain

$$
d_{2 n} \leq k_{1} \alpha d_{2 n}+k_{2} \alpha d_{2 n}+k_{3} \alpha d_{2 n}<d_{2 n}
$$

which is a contradiction. Hence $d_{2 n} \leq d_{2 n-1}$. Similarly it is easy to see that $d_{2 n+1} \leq d_{2 n}$. Therefore, $d_{n} \leq d_{n-1}$, for $n=1,2, \cdots$.

Using the above inequality we get

$$
d_{n} \leq \alpha\left(k_{1}+k_{2}+k_{3}\right) d_{n-1}=k d_{n-1}
$$

where $\alpha\left(k_{1}+k_{2}+k_{3}\right)=k<1$. So

$$
d_{n} \leq k d_{n-1} \leq k^{2} d_{n-2} \leq \cdots \leq k^{n} d_{0}
$$

That is,

$$
d\left(y_{n}, y_{n+1}\right) \leq k^{n} d\left(y_{0}, y_{1}\right) \longrightarrow 0 \text { as } n \rightarrow \infty
$$

If $m>n$ then

$$
\begin{aligned}
d\left(y_{n}, y_{m}\right) & \leq d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, y_{n+2}\right)+\cdots+d\left(y_{m-1}, y_{m}\right) \\
& \leq k^{n} d\left(y_{0}, y_{1}\right)+k^{n+1} d\left(y_{0}, y_{1}\right) \cdots+k^{m-1} d\left(y_{0}, y_{1}\right) \\
& =\frac{k^{n}}{1-k} d\left(y_{0}, y_{1}\right) \longrightarrow 0
\end{aligned}
$$

as $n, m \rightarrow \infty$. It follows that the sequence $\left\{y_{n}\right\}$ is a Cauchy sequence and by the completeness of $X,\left\{y_{n}\right\}$ converges to $y \in X$. Therefore,
$\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} A x_{2 n}=\lim _{n \rightarrow \infty} B x_{2 n+1}=\lim _{n \rightarrow \infty} S x_{2 n+2}=\lim _{n \rightarrow \infty} T x_{2 n+1}=y$.
Assume that $T(X)$ is a closed subset of $X$. Then there exists $v \in X$ such that $T v=y$.

If $B v \neq y$ then by using (iii), we obtain

$$
\begin{aligned}
d\left(A x_{2 n}, B v\right) \leq & k_{1}\left(d\left(S x_{2 n}, T v\right) \diamond d\left(A x_{2 n}, S x_{2 n}\right)\right) \\
& +k_{2}\left(d\left(S x_{2 n}, T v\right) \diamond d(B v, T v)\right) \\
& +k_{3}\left(d\left(S x_{2 n}, T v\right) \diamond \frac{d\left(S x_{2 n}, B v\right)+d\left(A x_{2 n}, T v\right)}{2}\right)
\end{aligned}
$$

As $n \rightarrow \infty$, we get

$$
\begin{aligned}
d(y, B v) \leq & k_{1}(d(y, T v) \diamond d(y, y))+k_{2}(d(y, T v) \diamond d(B v, T v)) \\
& +k_{3}\left(d(y, T v) \diamond \frac{d(y, B v)+d(y, T v)}{2}\right) \\
\leq & k_{1} \alpha \max \{d(y, T v), 0\}+k_{2} \alpha \max \{0, d(B v, y)\} \\
& +k_{3} \alpha \max \left\{0, \frac{d(y, B v)+0}{2}\right\} \\
< & d(y, B v) .
\end{aligned}
$$

It follows that $B v=y=T v$. Since $B$ and $T$ are weakly compatible, we have $B T v=T B v$ and so $B y=T y$.

If $y \neq B y$, by (iii), we get

$$
\begin{aligned}
\lim _{n \rightarrow \infty} d\left(A x_{2 n}, B y\right) \leq & \lim _{n \rightarrow \infty}\left[k_{1}\left(d\left(S x_{2 n}, T y\right) \diamond d\left(A x_{2 n}, S x_{2 n}\right)\right)\right. \\
& +k_{2}\left(d\left(S x_{2 n}, T y\right) \diamond d(B y, T y)\right) \\
& \left.+k_{3}\left(d\left(S x_{2 n}, T y\right) \diamond \frac{d\left(S x_{2 n}, B y\right)+d\left(A x_{2 n}, T y\right)}{2}\right)\right]
\end{aligned}
$$

Hence,

$$
\begin{aligned}
d(y, B y) \leq & k_{1}(d(y, T y) \diamond d(y, y))+k_{2}(d(y, T y) \diamond d(B y, T y)) \\
& +k_{3}\left(d(y, T y) \diamond \frac{d(y, B y)+d(y, T y)}{2}\right) \\
\leq & k_{1} \alpha \max \{d(y, T y), d(y, y)\}+k_{2} \alpha \max \{d(y, T y), d(B y, T y) \\
& +k_{3} \alpha \max \left\{d(y, T y), \frac{d(y, B y)+d(y, T y)}{2}\right\} \\
< & d(y, B y)
\end{aligned}
$$

and so $B y=y$.
Since $B(X) \subseteq S(X)$, there exists $w \in X$ such that $S w=y$.
If $A w \neq y$, by (iii), we have

$$
\begin{aligned}
d(A w, B y) \leq & k_{1}(d(S w, T y) \diamond d(A w, S w))+k_{2}(d(S w, T y) \diamond d(B y, T y)) \\
& +k_{3}\left(d(S w, T y) \diamond \frac{d(S w, B y)+d(A w, T y)}{2}\right)
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
d(A w, y) \leq & k_{1}(d(S w, y) \diamond d(A w, S w))+k_{2}(d(S w, y) \diamond d(y, y)) \\
& +k_{3}\left(d(S w, y) \diamond \frac{d(S w, y)+d(A w, y)}{2}\right) \\
\leq & k_{1} \alpha \max \{d(S w, y), d(A w, S w)\}+k_{2} \alpha \max \{d(S w, y), d(y, y)\} \\
& +k_{3} \alpha \max \left\{d(S w, y), \frac{d(S w, y)+d(A w, y)}{2}\right\} \\
< & d(A w, y)
\end{aligned}
$$

This implies that $A w=y$ and hence $A w=S w=y$. Since $A$ and $S$ are weakly compatible, $A S w=S A w$ and so $A y=S y$.

If $A y \neq y$ then by (iii), we get

$$
\begin{aligned}
d(A y, y)= & d(A y, B y) \\
\leq & \left.k_{1}(d(S y, T y) \diamond d(A y, S y))+k_{2} d(S y, T y) \diamond d(B y, T y)\right) \\
& +k_{3}\left(d(S y, T y) \diamond \frac{d(S y, B y)+d(A y, T y)}{2}\right) \\
= & k_{1}(d(S y, y) \diamond d(A y, S y))+k_{2}(d(S y, y) \diamond d(y, y)) \\
& +k_{3}\left(d(S y, y) \diamond \frac{d(S y, y)+d(A y, y)}{2}\right) \\
\leq & k_{1} \alpha \max \{d(S y, y), d(A y, S y)\}+k_{2} \alpha \max \{d(S y, y), d(y, y)\} \\
& +k_{3} \alpha \max \left\{d(S y, y), \frac{d(S y, y)+d(A y, y)}{2}\right\} \\
< & d(A y, y)
\end{aligned}
$$

and so $A y=y$. Thus, $A y=S y=B y=T y=y$, that is, $y$ is a common fixed point for $A, B, S$ and $T$.

The proof is similar when $S(X)$ is assumed to be a closed subset of $X$.

The uniqueness of $y$ follows from (iii).
Corollary 2.2. Let $(X, d)$ be a complete metric space. Let $A, B, S$ and $T$ be self mappings of $X$ into itself satisfying the following conditions
(i) $A(X) \subseteq T(X), B(X) \subseteq S(X)$ and $T(X)$ or $S(X)$ is a closed subset of $X$,
(ii) the pairs $(A, S)$ and $(B, T)$ are weakly compatible,
(iii) for all $x, y \in X$,

$$
\begin{aligned}
d(A x, B y) \leq & k_{1}(d(S x, T y)+d(A x, S x))+k_{2}(d(S x, T y)+d(B y, T y)) \\
& +k_{3}\left(d(S x, T y)+\frac{d(S x, B y)+d(A x, T y)}{2}\right)
\end{aligned}
$$

where $k_{1}, k_{2}, k_{3}>0$ and $0<k_{1}+k_{2}+k_{3}<\frac{1}{2}$.
Then $A, B, S$ and $T$ have a unique common fixed point in $X$.
Proof. Define $a \diamond b=a+b$ for each $a, b \in \mathbf{R}^{+}$. Then for $\alpha \geq 2$, we have $a \diamond b \leq \alpha \max \{a, b\}$. Putting $\alpha=2$, we get $0<\alpha\left(k_{1}+k_{2}+k_{3}\right)<1$, and hence all conditions of Theorem 2.1 hold. Therefore $A, B, S$ and $T$ have a unique common fixed point in $X$.

## 3. A further generalization of a contraction principle

In what follows we deal with the class $\Psi$ of all functions $\psi:[0, \infty)^{6} \longrightarrow$ $\mathbf{R}$ with the following properties:
(1) $\left(\psi_{1}\right): \psi(u, v, v, u, u+v, 0) \leq 0$ or $\psi(u, v, u, v, 0, u+v) \leq 0$ for every $v>0$ implies that $u<v$ and $v=0$ implies that $u=0$;
(2) $\left(\psi_{2}\right): \psi$ is non-increasing in variables $t_{5}$ and $t_{6}$;
(3) $\left(\psi_{3}\right): \psi(u, u, 0,0, u, u) \leq 0$ implies that $u=0$;
(4) $\left(\psi_{4}\right): \psi$ is continuous in each coordinate variable.

Examples of $\psi$ are
$\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-p \max \left\{t_{2}, t_{3}, t_{4}, \frac{1}{2} t_{5}, \frac{1}{2} t_{6}\right\}, 0<p<1 ;$
and
$\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=\int_{0}^{t_{1}} \phi(s) d s-h \max \left\{\int_{0}^{t_{i}} \phi(s) d s\right\}, i=2,3,4$, where $0<h<1$ and $\phi: \mathbf{R}^{+} \longrightarrow \mathbf{R}^{+}$is a Lebesgue integrable mapping which is summable non-negative and such that

$$
\int_{0}^{\epsilon} \phi(t) d t>0 \text { for each } \epsilon>0
$$

Theorem 3.1. Let $(X, d)$ be a metric space and $f, g, S, T: X \longrightarrow X$ be mappings such that
(i) $f(X) \subseteq T(X), g(X) \subseteq S(X)$, and $E=\{d(f x, S x) \mid x \in X\}$ is a closed subset of $[0, \infty)$,
(ii) the pairs $(f, S)$ and $(g, T)$ are weakly compatible,
(iii) $\psi\binom{d(f x, g y), d(S x, T y), d(S x, f x)}{,d(g y, T y), d(S x, g y), d(T y, f x)} \leq 0$,
for all $x, y \in X$ and $\psi \in \Psi$.
Then $f, g, S$ and $T$ have a unique fixed point in $X$.
Proof. Since $E$ is nonempty and a lower bounded subset of $[0, \infty)$, putting $\alpha=\inf E$, we have $\alpha \in \bar{E}=E$. That is, there exists $u \in X$ such that $\alpha=d(f u, S u)$. Since $f u \in f(X) \subseteq T(X)$, there exists $v \in X$ such that $f u=T v$. Thus

$$
\alpha=d(f u, S u)=d(T v, S u)
$$

We prove that $\alpha=0$. On letting $\alpha>0$, by (iii), we get

$$
\psi\binom{d(f u, g v), d(S u, T v), d(S u, f u),}{d(g v, T v), d(S u, g v), d(T v, f u)} \leq 0
$$

Since $d(S u, g v) \leq d(S u, f u)+d(f u, g v)$, by the above inequality, it follows that

$$
\psi\binom{d(f u, g v), \alpha, \alpha}{d(g v, f u), \alpha+d(f u, g v), 0} \leq 0
$$

and $\left(\psi_{1}\right)$ implies that $d(f u, g v)<\alpha=d(f u, S u)$. Since $g v \in g(X) \subseteq$ $S(X)$, there exists $w \in X$ such that $S w=g v$. Similarly, using (iii), we obtain

$$
\psi\binom{d(f w, g v), d(S w, T v), d(S w, f w)}{d(g v, T v), d(S w, g v), d(T v, f w)} \leq 0
$$

As $d(f w, T v) \leq d(f w, S w)+d(S w, T v)$, by the above inequality, we have

$$
\psi\binom{d(f w, S w), d(g v, T v), d(S w, f w)}{d(g v, T v), 0, d(f w, S w)+d(g v, T v)} \leq 0
$$

If $d(g v, T v)=0$, by $\left(\psi_{1}\right)$, we get $d(f w, S w)=0$. Thus

$$
\alpha=d(f u, S u) \leq d(f w, S w)=0
$$

a contradiction. So $d(g v, T v)>0$, and by $\left(\psi_{1}\right)$, we get $d(f w, S w)<$ $d(g v, T v)$. Thus

$$
\begin{aligned}
\alpha=d(f u, S u) & \leq d(f w, S w) \\
& <d(g v, T v) \\
& <d(f u, S u)=\alpha
\end{aligned}
$$

a contradiction. Hence $\alpha=0$ which implies that $f u=S u=T v$. If $g v \neq T v$, by (iii), we get

$$
\begin{aligned}
& \psi\binom{d(f u, g v), d(S u, T v), d(S u, f u),}{d(g v, T v), d(S u, g v), d(T v, f u)} \\
= & \psi\binom{d(T v, g v), 0,0}{d(g v, T v), d(T v, g v), 0} \\
\leq & 0
\end{aligned}
$$

From $\left(\psi_{1}\right)$ it follows that $g v=T v$. Hence, $T v=g v=f u=S u=p$.
By weak compatibility of the pairs $(g, T)$ and $(f, S)$, we have $g p=T p$ and $f p=S p$. We now prove that $f p=p$. In fact, if $p \neq f p$, by using
(iii), we have

$$
\begin{aligned}
& \psi\binom{d(f p, g v), d(S p, T v), d(S p, f p),}{d(g v, T v), d(S p, g v), d(T v, f p)} \\
= & \psi\binom{d(f p, p), d(f p, p), 0,}{0, d(f p, p), d(p, f p)} \\
\leq & 0,
\end{aligned}
$$

and $\left(\psi_{3}\right)$ implies that $p=f p=S p$. We next prove that $g p=p$. Indeed, if $p \neq g p$, by using (iii), we obtain

$$
\begin{aligned}
& \leq \psi\binom{d(f p, g p), d(S p, T p), d(S p, f p),}{d(g p, T p), d(S p, g p), d(T p, f p)} \\
& =\psi\binom{d(p, g p), d(p, g p), 0}{0, d(p, g p), d(p, g p)} \\
& \leq 0
\end{aligned}
$$

and $\left(\psi_{3}\right)$ implies that $p=g p=T p$. Therefore, $p$ is a common fixed point of $f, g, S$ and $T$.

The uniqueness of $p$ follows from (iii).
Example 3.2. Let $(X, d)$ be a metric space with $d(x, y)=|x-y|$. Define the self-maps $f, g, S$ and $T$ on $X$ by

$$
f x=g x=1 / 2, S x=\frac{x+1}{3} \text { and } T x=\frac{2 x+1}{4},
$$

for all $x \in X$. Hence

$$
0=d(f x, g x) \leq d(S x, T x),
$$

for every $x$ in $X$. If we define $\psi\left(t_{1}, t_{2}, t_{3}, t_{4}, t_{5}, t_{6}\right)=t_{1}-t_{2}$, it is easy to see that all conditions of Theorem 3.1 hold and there exists a unique $z=1 / 2$ such that

$$
f(1 / 2)=g(1 / 2)=S(1 / 2)=T(1 / 2)=1 / 2 .
$$

Corollary 3.3. Let $f_{i}, g_{j}, T$ and $S$ be self-mappings of a complete metric space ( $X, d$ ) satisfying the following conditions:
(i) there exists $i_{0}, j_{0} \in \mathbf{N}$ such that $f_{i_{0}}(X) \subseteq T(X), g_{j_{0}}(X) \subseteq S(X)$ and $E=\left\{d\left(f_{i_{0}} x, S x\right) \mid x \in X\right\}$ is a closed subset of $[0, \infty)$,
(ii) the pairs $\left(f_{i_{0}}, S\right)$ and $\left(g_{j_{0}}, T\right)$ are weakly compatible,
(iii) $\psi\binom{d\left(f_{i} x, g_{j} y\right), d(S x, T y), d\left(S x, f_{i} x\right)}{,d\left(g_{j} y, T y\right), d\left(S x, g_{j} y\right), d\left(T y, f_{i} x\right)} \leq 0$,
for all $x, y \in X, \psi \in \Psi$ and $i, j=1,2, \cdots$.
Then, $f_{i}, g_{j}, S$ and $T$ have a unique common fixed point in $X$ for all $i, j=1,2, \cdots$.

Proof. By Theorem 3.1, $S, T$ and $f_{i_{0}}$ and $g_{j_{0}}$, for some $i_{0}, j_{0} \in \mathbf{N}$, have a unique common fixed point in $X$. That is, there exists a unique $z \in X$ such that

$$
S(z)=T(z)=f_{i_{0}}(z)=g_{j_{0}}(z)=z
$$

Suppose there exists $j \in \mathbf{N}$ such that $j \neq j_{0}$. Then by (iii) we have

$$
\begin{gathered}
\psi\binom{d\left(f_{i_{0}} z, g_{j} z\right), d(S z, T z), d\left(S z, f_{i_{0}} z\right)}{d\left(g_{j} z, T z\right), d\left(S z, g_{j} z\right), d\left(T z, f_{i_{0}} z\right)} \\
=\psi\binom{d\left(z, g_{j} z\right), 0,0}{d\left(g_{j} z, z\right), d\left(z, g_{j} z\right), 0} \leq 0
\end{gathered}
$$

By $(\psi 3)$, it follows that $d\left(g_{j} z, z\right)=0$. Hence for every $j \in \mathbf{N}$, we have $g_{j}(z)=z$. Similarly for every $i \in \mathbf{N}$, we get $f_{i} z=z$. Therefore for every $i, j \in \mathbf{N}$, we have

$$
f_{i} z=g_{j} z=S z=T z=z
$$

## References

[1] M. A. Ahmed, Common fixed point theorems for weakly compatible mappings, Rocky Mountain J. Math. 33 (4) (2003), 1189-1203.
[2] R. Chugh and S. Kumar, Common fixed points for weakly compatible maps, Proc. Indian Acad. Sci. Math. Sci. 111 (2) (2001), 241-247.
[3] Lj. B. Ćirić and J. S. Ume, Some common fixed point theorems for weakly compatible mappings, J. Math. Anal. Appl. 314 (2) (2006), 488-499.
[4] G. Jungck, Common fixed points for non-continuous non-self maps on non metric spaces, Far East J. Math. Sci. 4 (2) (1996), 199-215.
[5] G. Jungck and B. E. Rhoades, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29 (3) (1998), 227-238.
[6] V. Popa, A general fixed point theorem for four weakly compatible mappings satisfying an implicit relation, Filomat 19 (2005), 45-51.

Shaban Sedghi<br>Department of Mathematics<br>Islamic Azad University-Ghaemshahr Branch<br>Ghaemshahr P. O. Box 163<br>Iran<br>email: sedghi_gh@yahoo.com<br>Nabi Shobe<br>Department of Mathematics<br>Islamic Azad University-Babol Branch<br>Iran<br>email: nabi_shobe@yahoo.com


[^0]:    MSC(2000): Primary 47H10; Secondary 54H25
    Keywords: Fixed point, Weakly compatible mappings
    Received: 16 June 2007, Accepted: 15 August 2007
    *Corresponding author
    (c) 2007 Iranian Mathematical Society.

