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Abstract. In his paper mentioned in the title, which appears in the same
issue of this journal, Mehdi Radjabalipour derives the cyclic decomposi-
tion of an algebraic linear transformation. A more general structure the-

ory for linear transformations appears in Irving Kaplansky’s lovely 1954
book on infinite abelian groups. We present a translation of Kaplansky’s
results for abelian groups into the terminology of linear transformations.
We add an additional translation of a ring-theoretic result to give a char-

acterization of algebraically hyporeflexive transformations and the strict
closure of the set of polynomials in a transformation T .
Keywords: Abelian group, PID, module, cyclic, torsion, locally alge-
braic, hyporeflexive, scalar-reflexive ring, strict topology.

MSC(2010): Primary 05C38, 15A15; Secondary 05A15, 15A18.

1. Introduction

In his paper [9], which appears in the same issue of this journal, Mehdi Rad-
jabalipour gives a very short and clear elegant proof of the cyclic decomposition
of an algebraic linear transformation on a vector space V over a field F. This is
part of a larger structure theory for linear transformations that first appeared
in the framework of abelian groups. We know that abelian groups are precisely
the modules over the ring (Z,+, ·) of integers. Over sixty years ago, in his lovely
book [5] on infinite abelian groups, Irving Kaplansky described how most of the
important structure theorems translate to analogues for modules over a prin-
cipal ideal domain (PID). Kaplansky also pointed out, when F is a field, that
there is a natural correspondence between the modules over the polynomial
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ring F [x] and pairs (T, V ), where T is a linear transformation on the vector
space V over F. Moreover, isomorphisms of F [x]-modules correspond to the
similarity of the corresponding linear transformations, submodules correspond
to invariant subspaces, and module homomorphisms correspond to linear trans-
formations in the commutant. Kaplansky also provided a table that translates
familiar properties of abelian groups into the corresponding properties of linear
transformations. Radjabalipour’s result is essentially the linear transformation
version of the theorem that an abelian group in which there is a bound on the
order of all the elements is a direct sum of cyclic groups (See Theorem 3.5).

Since it appears that the applications of Kaplansky’s results to linear trans-
formations are not widely known, in this mostly expository paper, we com-
pletely describe the results on the structure theory of linear transformations
based on Kaplansky’s book [5]. We include other ring-theoretic applications
[3], [4] to the notion of hyporeflexive transformations.

We first describe the correspondence between F [x]-modules and transfor-
mations. Suppose V is an F [x]-module. Then, since F ⊆ F [x], it follows that
V is a vector space over F. We can define a linear transformation T on V as
“multiplication by x”, i.e., if v ∈ V, we define

Tv = x · v.

It easily follows that if f (x) ∈ F [x] and v ∈ V , then

( ∗) f (T ) v = f (x) · v.

Hence the scalar multiplication is completely encoded in T . Hence,
if we are given a vector space V and a linear transformation T, the formula
(∗) above makes V into an F [x]-module, which we will denote by MT . If MS

and MT are isomorphic as F [x]-modules, then there is a module isomorphism
W : MS → MT and we must have that W is linear and WSv = W (x · v) =
x · (Wv) = TWv. This means WSW−1 = T, i.e., S and T are similar. It is
easy to see that if W : MS → MT is merely linear over F and WSW−1 = T ,
then W would be an F [x]-module isomorphism. An F [x]-submodule N of MT

is a vector subspace such that, for every polynomial f , f · N ⊆ N . This is
clearly that same as saying T (N ) ⊆ N , i.e., N is a T -invariant linear subspace

of MT . We can view the quotient module MT /N as the transformation T̂N :
MT /N → MT /N defined by

T̂N (v +N ) = Tv +N ,

which is well defined exactly when T (N ) ⊆ N . In the special case that there
is another submodule N1 such that MT = N ⊕N 1, then T = T |N ⊕T |N1 and

T |N1 is similar to T̂N . More generally, writing MT as a direct sum

MT =
∑⊕

λ∈Λ
Nλ
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is the same as writing T as a direct sum

T =
∑⊕

λ∈Λ
T |Nλ

.

2. Cyclic transformations

We all know what cyclic groups are. If R is a commutative ring with identity
1 and M is an R-module, we say that M is a cyclic R-module if there is a
v ∈ M such that M = R · v. This says that the map L : R → M defined by

L (r) = r · v
is surjective. If we view R as an R-module, it is clear that L is a module
homomorphism and thus we have

M ⋍ R/ kerL.

In the case where R = F [x] and M = MT , we see that MT is a cyclic F [x]-
module if and only if T is a cyclic transformation, i.e., there is a v ∈ MT such
that

{p (T ) v : p ∈ F [x]} = MT .

This means that T is similar to multiplication by x on F [x] /J for some
ideal J of F [x]. But F [x] is a PID, so J = {0} or there is a monic polynomial
f ∈ F [x] such that J = f · F [x]. First suppose deg f = n ≥ 1, and f (x) =
a0 + a1x + · · · + an−1x

n−1 + xn; then ek = xk + f · F [x] , 0 ≤ k < n defines
a basis {e0, e1, . . . , en−1} for F [x] /J and Tek = ek+1 if 0 ≤ k < n − 1, and

Ten−1 = xn +J = −
∑n−1

k=0 akx
k +J =

∑n−1
k=0 −akek. Hence the matrix for T

is the companion matrix for f, i.e.,

Cf =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1

 .

If J = 0, then {xn : n ≥ 0} is a basis for F [x] /J =F [x], and the matrix for T
is

U =



0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·

0 0 1
. . .

...
...

...
. . .

 ,

which we call the (algebraic) unilateral shift matrix.
We summarize our remarks in the following statement.

Proposition 2.1. The module MT is cyclic if and only either
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(1) T is is similar to Cf for some polynomial f ∈ F [x], or
(2) T is similar to the unilateral shift matrix U .

Lemma 2.2. Suppose f = pm with p a prime (i.e., irreducible) monic polyno-
mial in F [x] with deg p = d. Suppose p′ (x) ̸= 0. Then the matrix Cf is similar
to the m×m operator matrix

Jm,p =



Cp 0 · · · 0 0
Id Cp · · · 0 0

0 Id
. . . 0 0

...
...

. . . Cp

...
0 0 · · · Id Cp

 .

Proof. Since p′ ̸= 0 and p is prime, we know that p and p′ are relatively prime.
Thus there are polynomials u (x) and v (x) such that

up+ vp′ = 1.

Thus

u (Cp) p (Cp) + v (Cp) p
′ (Cp) = Id.

However, since Cp is the companion matrix for p, we know p (Cp) = 0. It follows
that p′ (Cp) is invertible. Moreover,

p (Jm,p) =



0 0 · · · 0 0
p′ (Cp) 0 · · · 0 0

∗ p′ (Cp)
. . . 0 0

...
...

. . . 0
...

∗ ∗ · · · p′ (Cp) 0

 .

It follows that f (Jm,p) = (p (Jm,p))
m

= 0 but (p (Jm,p))
m−1 ̸= 0. Hence the

minimal polynomial of Jm,p is f = pm. Hence there is a vector x such that

(p (Jm,p))
m−1

x ̸= 0. If M is the cyclic invariant subspace for Jm,p generated
by x, the minimal polynomial for the restriction Jm,p|M must divide f = pm

and since pm−1 ( Jm,p|M ) ̸= 0, dimM = mp. It follows that x is a cyclic vector
for Jm,p, so Jm,p must be similar to Cf . □

Remark 2.3. (1) If the characteristic of F is zero or F is finite, then
every irreducible polynomial has nonzero derivative [1]. However, if
F = Z2 (t), the field of rational functions over the integers modulo 2,
then t has no square root. Hence p (x) = x2 − t is irreducible, but
p′ (x) = 0. In this case we see that

p (J2,p) = 0,

so J2,p cannot be similar to Cp2 , whose minimal polynomial is p2.
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(2) Note that when p (x) = x− λ, then Cp is the 1× 1 matrix λ and

Jn,p =



λ 0 · · · 0 0
1 λ · · · 0 0

0 1
. . . 0 0

...
...

. . . λ
...

0 0 · · · 1 λ


is the familiar n × n Jordan block matrix. Note that if F [x] is alge-
braically closed, i.e., every polynomial splits into linear factors, then all
of the monic irreducible polynomials are of the form p (x) = x− λ.

3. Cyclic decompositions

The fundamental theorem for finitely generated abelian groups says that
every finitely generated abelian group is a finite direct sum of cyclic groups so
that the finite summands are cyclic groups of prime power order. For a PID
R, the analogue says that every finitely generated R-module is a direct sum of
cyclic R-modules some of which may be isomorphic to R and others isomorphic
to R/pnR where p ∈ R is prime and n ≥ 1. When R =F [x] and the module is
MT , we get that MT is finitely generated if and only if the transformation T
is finitely cyclic, i.e., there are vectors v1, . . . , vn ∈ MT such that

MT = {f1 (T ) v1 + · · ·+ fn (T ) vn : f1, . . . fn ∈ F [x]} .

The translation to linear transformations follows.

Theorem 3.1. Suppose T is a finitely cyclic linear transformation. Then T
is similar to a finite direct sum of linear transformations some of which may
be the unilateral shift matrix U and the others of the form Cpn where p is a
monic irreducible polynomial and n is a positive integer.

Corollary 3.2. If 0 ̸= f ∈ F [x] and f = pn1
1 · · · pekk with p1, . . . , pk distinct

monic primes and n1, . . . , nk ∈ N, then the matrix Cf is similar to the matrix

Cp
n1
1

⊕ · · · ⊕ Cp
nk
k
.

In certain cases we can further decompose the matrices of the form Cpn to
look more like the Jordan form.

Lemma 3.3. Suppose p ∈ F [x] is a prime monic polynomial in F [x] with
deg p = d. Suppose the derivative p′ (x) ̸= 0. Then the matrix Cf is similar to
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the m×m operator matrix

Jm,p =



Cp 0 · · · 0 0
Id Cp · · · 0 0

0 Id
. . . 0 0

...
...

. . . Cp

...
0 0 · · · Id Cp

 .

Proof. Since p′ ̸= 0 and p is prime, we know p and p′ are relatively prime. Thus
there are polynomials u (x) and v (x) such that

up+ vp′ = 1.

Thus

u (Cp) p (Cp) + v (Cp) p
′ (Cp) = Id.

However, since Cp is the companion matrix for p, we know p (Cp) = 0. It follows
that p′ (Cp) is invertible. Moreover,

p (Jm,p) =



0 0 · · · 0 0
p′ (Cp) 0 · · · 0 0

∗ p′ (Cp)
. . . 0 0

...
...

. . . 0
...

∗ ∗ · · · p′ (Cp) 0

 .

It follows that f (Jm,p) = (p (Jm,p))
m

= 0 but (p (Jm,p))
m−1 ̸= 0. Hence the

minimal polynomial of Jm,p is f = pm. Hence there is a vector x such that

(p (Jm,p))
m−1

x ̸= 0. If M is the cyclic invariant subspace for Jm,p generated
by x, the minimal polynomial for the restriction Jm,p|M must divide f = pm

and since pm−1 ( Jm,p|M ) ̸= 0, dimM = mp. It follows that x is a cyclic vector
for Jm,p, so Jm,p must be similar to Cf . □

Corollary 3.4. If T is a linear transformation on a finite-dimensional vector
space, then T is similar to a finite direct sum of matrices of the form Cpn where
p is a monic irreducible polynomial and n is a positive integer. If the minimal
polynomial for T splits over F, this gives the usual Jordan canonical form for
T .

A related result concerns R-modules M with bounded torsion, i.e., there is
a nonzero r ∈ R such that r ·M = {0}. The module MT has bounded torsion
if and only if T is algebraic, i.e., there is a nonzero polynomial f for which
f (T ) = 0. The theorem for abelian groups says that an abelian group with
bounded torsion is a direct sum of cyclic groups of prime power order. Here is
the analogue for linear transformations.
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Theorem 3.5. An algebraic linear transformation T is similar to a (possibly
infinite) direct sum of matrices of the form Cpm (p a monic prime in F [x] and
m ≥ 1), where f = pm and p is a monic irreducible polynomial and m is a
positive integer. If F has characteristic 0 or F is finite, then we can replace the
summands Cpm with Jn,p. If the minimal polynomial of T splits over F, then
the summands have the form Jn,x−λ (λ ∈ F) and the decomposition is a Jordan
canonical form for T (with possibly infinitely many blocks).

4. Torsion equals locally algebraic

An abelian group G is called torsion if every element has finite order. A
moduleM over a ringR is called torsion if for every x ∈ M there is a 0 ̸= r ∈ R
such that r · x = 0. For the module MT torsion means that, for every vector
v there is a nonzero polynomial f such that f (T ) v = 0. For a transformation
T this means that T is locally algebraic. The set of all polynomials f such
that f (T ) v = 0 is an ideal, and since F [x] is a PID, there is a unique monic
polynomial pv,T such that this ideal is pv,T ·F [x]. The polynomial pv,T is called
the minimal local polynomial for T at v.

The module MT is torsion if and only if

MT = ∪{ker f (T ) : 0 ̸= f ∈ F [x]} .

An example of a locally algebraic (in fact, locally nilpotent) transformation
that is not algebraic is a backward shift, which has an infinite matrix

0 1 0 0
...

0 0 1 0
...

0 0 0 1
...

· · · · · · · · ·
. . .

. . .

 ,

i.e., there is a basis {e0, e1, . . .} such that Te0 = 0 and Ten = en−1 for n ≥ 1.
For example T : F [x] → F [x] defined by

(Tf) (x) =
f (x)− f (0)

x

with the basis en = xn for n ≥ 0. If the characteristic of F is 0 and we let
en = 1

n!x
n, the backward shift is merely the differentiation operator D, i.e.,

Df = f ′.

Another example of a torsion module MT is when T is multiplication by x
on the vector space F (x) /F [x] of rational functions modulo the polynomials.
It is important to note that none of the above examples of locally algebraic
transformations can be written as a direct sum of cyclic transformations.
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For each monic prime p ∈ F [x], we define

Ep (T ) = ∪∞
n=0 ker (p

n (T )) .

It follows from that fact that torsion modules over a PID are direct sums of
their p-modules that

MT =
∑⊕

p∈F[x], p prime
Ep (T ) .

If Tp = T |Ep , then we have the following. Note that if p (x) = x−λ, then Tp−λ
is locally nilpotent. When F is algebraically closed, the next result shows why
locally nilpotent transformations play a central role in the structure theory of
locally algebraic transformations.

Proposition 4.1. If T is locally algebraic, then T =
∑⊕

p∈F[x],p prime Tp. More-

over, if all the local polynomials for T split over F, then T is similar to a direct
sum ∑⊕

λ∈F
λ+Aλ

where each Aλ is locally nilpotent.

Even if T is not locally algebraic, we can define

Tor (MT ) = ∪{ker f (T ) : 0 ̸= f ∈ F [x]} .
It is clear that Tor (MT ) =

∑⊕
p∈F[x], p prime Ep (T ) is an invariant subspace

for T and T |Tor(MT ) is locally algebraic. It is clear that Tor (MT ) is the largest
invariant subspace with this property. It is natural to ask if Tor (MT ) is a
direct summand of MT . This would mean that there is a T -invariant subspace
N ⊆ MT such that MT = Tor (MT )⊕N . This is the case when T is finitely
cyclic. However, it is not true in general, as is shown in Example 6.6.

A module M over a ring R is torsion free if and only if Tor (M) = 0. Here
is the translation for linear transformations.

Proposition 4.2. The module MT is torsion-free if and only if ker f (T ) = 0
for every polynomial f ̸= 0. This means that f (T ) is injective for every nonzero
polynomial f .

If F is algebraically closed, MT is torsion-free if and only if T has no eigen-
values.

Note f (T ) being injective for every nonzero polynomial f does not mean
that f (T ) is invertible for every polynomial f ̸= 0. For example if T has a
unilateral shift matrix with respect to some basis, then MT is torsion free, but
if f (x) = x, then f (T ) = T is not surjective. We will see what every f (T )
being surjective means in Section 6.

Here is useful functional analysis result that Kaplansky proved about locally
algebraic transformations. This result was generalized by various authors [7],
[8], [6].
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Proposition 4.3. If T is a bounded linear transformation on a real or complex
Banach space, then T is locally algebraic if and only if T is algebraic.

5. Free modules

A module over a ring R is one that is isomorphic to a direct sum of m copies
of R for some cardinal m (denoted by Rm). In the case R = F [x] we see that
MT is a free module if and only if T is similar to a (possibly infinite) direct sum
ofm copies of the unilateral shift matrix, which we denote by U (m). Well-known
theorems about free modules over a PID is that the number of summands of
R is an isomorphism invariant and every submodule of a free module is free.
Recall that submodules of MT correspond to T -invariant subspaces. Hence
the results on free modules translates as follows.

Theorem 5.1. Suppose m and n are cardinals. Then

(1) U (m) is similar to U (n) if and only if m = n.
(2) The restriction of U (m) to any non-zero invariant subspace is similar

to U (k) for some cardinal k ≤ n.

Not every torsion free module is free, i.e., if T is multiplication by x on the
vector space F (x) of rational functions, then F (x) is torsion free but not free.
In fact T is not a direct sum of two transformations on F (x).

If N is a submodule of a module M over a PID R and if M/N is free then
there is a submodule K of M such that M = N ⊕ K, and (necessarily) K is
isomorphic to M/N .

Recall that if T is a linear transformation on MT and N is a T -invariant
linear subspace of T , then the transformation T̂N : MT → MT is defined by

T̂N (v +N ) = Tv +N

Proposition 5.2. Suppose T is a linear transformation on MT and N is a
T -invariant subspace such that MT /N is free, i.e., T̂N is similar to U (m) for
some cardinal m. Then T is similar to T |N ⊕ U (m).

It is well-known that every module is a free module. Here is the translation
for linear transformations.

Proposition 5.3. Suppose S is a linear transformation. Then there is a trans-
formation T = U (m) for some cardinal m and a T -invariant subspace N ⊆ MT

such that S is similar to T̂N .

6. Divisible modules

A module M over a PID R is divisible if and only if, for every 0 ̸= v ∈ M
and every 0 ̸= r ∈ R, there is a w ∈ M such that rw = v. This is something
like dividing v by r to get w. If M is torsion free, then w is unique, but it is
not unique in general since we could replace w with w+w1 where rw1 = 0. We
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will call a linear transformation T polynomially divisible if and only if MT is
divisible over F [x]. Here is the simple translation for linear transformations.
Note how this relates to torsion free in which p (T ) is injective for each nonzero
polynomial p.

Proposition 6.1. The transformation T is divisible if and only if, for every
nonzero polynomial f, we have f (T ) is surjective.

One example of a transformation T where MT is divisible is when T is
“ultiplication by x” on the vector space F (x) of rational functions over F. This
transformation is the linear transformation analogue of the group (Q,+) of
rational numbers, and we will denote it by DQ. When F is algebraically closed,{

1, x, x2, . . .
}
∪
{

1

(x− λ)
n : λ ∈ F and n ∈ N

}
is a linear basis for F (x) , and we can visualize a sparse, but infinite, matrix
for DQ, given that

Txn = xn+1, and

T
1

(x− λ)
n =

1

(x− λ)
n−1 + λ

1

(x− λ)
n .

An example of a torsion divisible MT is obtained by taking a monic prime

polynomial p, lettingM =
{

f
pn : f ∈ F [x] , n ≥ 0

}
/F [x], and letting T be ”mul-

tiplication by x”. Such a transformation is defined by a basis

{vn,k : n ≥ 1, 1 ≤ k ≤ d = deg (p)}
such that

Tvn,k = vn,k+1 if n ≥ 0, 1 ≤ k < d,

and
p (T ) v0,1 = 0, p (T ) vn+1,1 = vn,1 for n ≥ 0.

We denote this transformation by Dp∞ , and it corresponds to the divisible
abelian group Zp∞ , where p is a prime positive integer. Note when p (x) = x,
Dp∞ is similar to backward shift with matrix

0 1 0 0
...

0 0 1 0
...

0 0 0 1
...

· · · · · · · · ·
. . .

. . .

 .

Proposition 6.2. The following results are true for modules over a PID [5,
Chap. 5]:

(1) A divisible submodule of a module is always a summand.
(2) If M is divisible, then Tor (M) is divisible.
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(3) A direct sum of modules is divisible if and only if each summand is
divisible.

(4) The algebraic sum of all the divisible submodules of a module is divisi-
ble.

(5) Every module M is a direct sum V ⊕ W where V is divisible and W
has no nonzero divisible submodules.

This gives us a complete description of the transformations T for which MT

is divisible. The number of each type of summands is unique. Note that the
transformations DQ and Dp∞ cannot be decomposed as nontrivial direct sums
of transformations. This gives some insight to Problem 2 in [9].

Theorem 6.3. Suppose T is a linear transformation and MT is divisible.
Then T is similar to a direct sum of transformations of the form DQ and Dp∞

(p a monic prime in F [x]).

Proof. It follows from Proposition 6.2 that Tor (MT ) is divisible and hence
a summand of MT . Thus MT = Tor (MT ) ⊕ N , where N is a torsion free
divisible F [x]-module. Thus T = A ⊕ B relative to this decomposition. Since
N is torsion free, we know that f (B) is injective for each nonzero polynomial
f and since N is divisible, we know that f (B) is surjective for each nonzero
polynomial f . Hence if 0 ̸= f ∈ F [x], then f (B) is invertible. It follows that
N is a module over the field F (x) and thus N is isomorphic to a direct sum of
copies of F (x), and it follows that B is similar to a direct sum of copies of DQ.

We also know that Tor (MT ) is a direct sum
∑⊕

p∈F[x], p prime Ep. Since every

summand of a divisible module is divisible, we know that each Ep (T ) is divis-
ible. Suppose Ep (T ) ̸= 0 for some monic prime p ∈ F [x]. Using Zorn’s lemma
we can construct a maximal linearly independent collection C of submodules
of Ep (T ) each having the property that the restriction of A to it is similar to
Dp∞ . The direct sum E of these subspaces is divisible and is a summand. We
can therefore write Ep (T ) = E ⊕ F where A|E is similar to a direct sum of
copies of Dp∞ . Assume, via contradiction that F ̸= 0. Since F ⊂ Ep, it follows
that there is a 0 ̸= v0,1 ∈ F such that p (A) v0,1 = 0. Using the fact that F is
divisible, we can find a sequence {v1,0, v2,0, . . .} so that p (A) vn+1,0 = vn,0. If
d = deg (p) and we define vn,k = Akvn,0 for 1 ≤ k < d, we obtain a submodule
F0 of F so that A|F0 is similar to Dp∞ , which contradicts the maximality of C.
Hence A = T |Ep is similar to a direct sum of copies Dp∞ . □

Proposition 6.2 also give a decomposition of an arbitrary linear transforma-
tion into a “divisible” part and a “completely non-divisible” part.

Theorem 6.4. Every linear transformation is the direct sum D⊕A where MT

is divisible and no submodule of MA is divisible.

Note that a submodule of MT is just a T -invariant vector subspace. If N is
a submodule of MT and A = TN , then N = MA. Hence N is divisible if and
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only if A is a direct sum as in Theorem 6.3. For example, if N is a T -invariant
subspace and T |N is similar to DQ or Dp∞ (e.g., the backward shift matrix),
then N is a direct summand of MT and T is similar to T |N ⊕ B for some
transformation B.

Kaplansky [5, p. 12, Problem 5] proves that if R is a PID, then every R-
module is a submodule of a divisible module. Here is the translation for linear
transformations.

Proposition 6.5. Every linear transformation is similar to the restriction to
an invariant subspace of a transformation that is a direct sum of transforma-
tions of the form DQ and Dp∞ (p a monic prime in F [x]).

Example 6.6. Here we present an example of a linear transformation T for
which Tor (MT ) is not a direct summand of MT . This example sheds light on
Problem 1 in [9]. Euclid’s proof that there are infinitely many prime integers
works in F [x] for any field F. Suppose p1, p2, . . . are distinct primes and let

MT =

∞∏
n=1

F [x] /pnF [x] ,

and let T be “multiplication by x” in every coordinate. It is clear that if
f ∈ F [x], then f is the product of finitely many primes, so that multiplication
by f is invertible on all but finitely many coordinates. It follows that

Tor (MT ) =
∞∑

n=1

F [x] /pnF [x] .

Moreover, if 0 ̸= f ∈ F [x] and e = (e1, e2, . . .) ∈ MT , then there is an
h = (h1, h2, . . .) such that f (x) · hn = en except for finitely many values of
n. This implies MT /Tor (MT ) is divisible. If MT = Tor (MT )⊕N for some
submoduleN , thenN would be isomorphic toMT /Tor (MT ) and would there-
fore be divisible. However, if 0 ̸= g = (g1, g2, . . .) ∈ N , then there must be an
n ∈ N such that gn ̸= 0. Thus there is no y ∈ N for which pn · y = g. This
contradiction implies Tor (MT ) is not a summand. We know that there is a
vector subspace N of MT so that MT = Tor (MT )⊕N , but N cannot be an
F [x]-submodule, i.e., a T -invariant subspace. An interesting fact is that any
finitely many summands of Tor (MT ) is a summand of MT , since

MT =

N∑
n=1

F [x] /pnF [x]⊕
∞∏

n=N+1

F [x] /pnF [x] .

Note that if we let K be any proper submodule containing Tor (MT ), the same
argument shows that K is not a direct summand of MT .

There is one case in which we know that Tor (M) is a direct summand of
M.
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Proposition 6.7. If the restriction of T to Tor (MT ) is a direct sum of cyclic
transformations, then Tor (MT ) is a direct summand of MT . In this case
T = A ⊕ B where A is locally algebraic and, for every nonzero polynomial
f ∈ F [x], ker f (B) = 0.

7. Ulm’s Theorem

In this section we continue the assumption that MT = Ep (T ) and p ∈
F [x] is prime. We also assume that T is reduced, i.e., T has no polynomially
divisible summands. We will define cardinal-valued invariants for T , called the
Ulm invariants. In the case where dimMT is countable, these are complete
similarity invariants.

For each ordinal α we will define a submodule Kα of MT by transfinite
construction as follows:

(1) K0 = p (T ) (MT ) .
(2) For every ordinal α, Kα+1 = p (T ) (Kα).
(3) If α > 0 is a limit ordinal, then

Kα = ∩β<αKβ .

It is clear that α < β implies Kβ ⊂ Kα. Hence there must be the smallest
ordinal γ such that Kγ = Kγ+1. This means p (T ) (Kγ) = Kγ . Since Kγ ⊂
Ep (T ), it follows that, for any polynomial f relatively prime to p, f (T ) |Kγ

is invertible on Kγ . It follows that T |Kγ is polynomially divisible, and, by
Proposition 6.2, is a summand. Since we are assuming that T is reduced, we
conclude that Kγ = 0.

Since p ∈ F [x] is prime, F [x] /pF [x] = Fp is a field. We see that ker p (T )
is a vector space over Fp. For each ordinal α < γ we define the Ulm invariant
uα (T ) as follows

uα (T ) = dimFp (Kα/Kα+1) .

We are now ready to translate Ulm’s theorem [5, Theorem 14].

Theorem 7.1. Suppose p ∈ F [x] is prime, S and T are linear transformations
such that

(1) MS = Ep (S) , MT = Ep (T ),
(2) S and T are reduced,
(3) dimMS and dimMT are countable, and
(4) S and T have the same Ulm invariants.

Then S is similar to T .

Here is the version for locally algebraic transformations. Note that dimMT

might be uncountable with each Ep (T ) (p prime) being countable.

Theorem 7.2. Suppose S and T are locally algebraic linear transformations
such that,
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(1) For every prime p ∈ F [x] dimEp (S) and dimEp (T ) are countable,
(2) For every prime p ∈ F [x] , the Ulm invariants for S|Ep(S) and T |Ep(T )

are the same.

Then S and T are similar.

It was pointed out by Kaplansky [5, p. 27] that the Ulm invariants prove
that when a locally algebraic transformation is the direct sum of cyclic trans-
formations, the decomposition is unique.

8. Summary

Suppose T is an arbitrary linear transformation. We can first use Theorem
6.4 to write T = D ⊕ A where MD is divisible and MA has no divisible
summands. We know from Theorem 6.3 that D is (uniquely) similar to a
direct sum of transformations of the form DQ or Dp∞ (p a monic prime in
F [x]).

If we are lucky (we might not be), Tor (MA) is a summand of MA, and A
can be written as a direct sum B⊕S where B is locally algebraic and S has the
property that ker f (S) = 0 for every nonzero polynomial f ∈ F [x]. One such
example is when MT /Tor (MT ) is a free F [x]-module, then T = B ⊕ U (m)

for some locally algebraic transformation S and some cardinal m. Another
case is when T |Tor(MT ) is a direct sum of cyclic transformations, then the
decomposition T = B ⊕ S exists.

We can decompose B as a direct sum
∑

p∈F[x], p prime Bp relative to the direct

sum MB =
∑

p∈F[x], p prime Ep (B) . If some Bp is algebraic, it can be uniquely

written as a direct sum of cyclic transformations of the form Cpn for some
prime p ∈ F [x] and some n ≥ 1. Otherwise, if dimEp (B) is countable, we can
use the Ulm invariants to characterize Bp. If dimEp (B) is uncountable, the
Ulm invariants are still invariants, but they may not completely characterize
Bp up to similarity. If MS is free, we can write S as a direct sum of copies
of the unilateral shift matrix. In general, little seems to be known about S
and Bp (dimEp (B) uncountable). Whatever answers exist, they are probably
written as theorems about abelian groups and not as theorems about linear
transformations.

Since we seem to know the most about algebraic transformations, it is useful
to note that every linear can be “approximated” by algebraic ones.

Proposition 8.1. Suppose V is an infinite-dimensional vector space over the
field F. Then the set of algebraic linear transformations is strictly dense in the
set of all linear transformations.

Proof. Suppose T is a linear transformation on V and E = {x1, . . . , xn} ⊂ V
is finite. Let W be the set of all vectors of the form

p1 (T )x1 + · · ·+ pn (T )xn.
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If we view V as an F [x]-module, then W is a finitely generated submodule.
Hence the restriction T |W is a direct sum of cyclic transformations. This means
T |W = A⊕ U (k) relative to a decomposition W = WA ⊕H1 ⊕ · · · ⊕Hs where
A is algebraic and 0 ≤ s < ∞. We focus on the case where s > 0. In this
case each Hm has a basis {em,k : k ∈ N} with Tem,k = em,k+1 for k ∈ N and
1 ≤ m ≤ s. Then there is an N ∈ N such that x1, . . . , xn is in the linear span
X of

WA ∪ {em,k : 1 ≤ k < N, 1 ≤ m ≤ s} .
We can choose a linear subspace Y of V containing {em,k : k ≥ N, 1 ≤ m ≤ s}
such that V = X⊕Y . We define a linear transformation S on V by S|X = T |X
and S|Y = 0. Since SNem,k = 0, we see that S is algebraic. More precisely, if
f is the minimal polynomial for A, then f (x)xN kills S. Moreover, S|E = TE .
Hence every strict neighborhood of T contains an algebraic transformation. □

9. Hyporeflexivity

Suppose R is a PID and M is an R-module. Let EndR (M) denote the set
of all R-module homomorphisms from M to M. There is a natural topology
on EndR (M) called the strict topology. A basic strict neighborhood of an
endomorphism T is given by a finite subset F of M and is defined by

UF (T ) = {S ∈ EndR (M) : Sx = Tx for every x ∈ F} .

A net {Tλ} converges strictly to T if and only if, for every x ∈ M there is a
λ0 such that, whenever λ ≥ λ0 we have Tλx = Tx. In other words the strict
topology is the topology of pointwise convergence with the discrete topology
on M.

It is an easy exercise to show that a linear transformation on a vector space
leaves every linear subspace invariant if and only if it is a scalar multiple of
the identity. (Hint: Consider a linear basis.) This is no longer true when the
field is replaced with a ring R and the vector space is replaced with a module.
Suppose M is a module over a PID R and T ∈ EndR (M) leaves invariant
every submodule. Since v ∈ R · v is a submodule, we see that there is an
rv ∈ R such that Tv = rv · v, i.e., every vector is an eigenvector. We call such
an endomorphism locally scalar. We call an endomorphism scalar if there is an
r ∈ R such that Tv = r · v for every v ∈ M.

We call the moduleM scalar reflexive if every locally scalarR-endomorphism
on M is scalar. It is easily shown that the set of all locally scalar endomor-
phisms is strictly closed and thus contains the strict closure of the set of scalar
endomorphisms. It follows that if the set of all scalar endomorphisms on M is
not strictly closed, then M is not scalar reflexive. We call the ring R scalar-
reflexive if every finitely generated R-module is scalar-reflexive, and we call R
strongly scalar-reflexive if every R-module is scalar-reflexive. Scalar-reflexivity
was studied in [3, 4, 10], and [11].
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In [4] it was shown for a ring R the following are equivalent

(1) R is strongly scalar reflexive.
(2) R is a finite direct sum of maximal valuation rings.
(3) For every R-module M, the set of scalar endomorphisms is strictly

closed.
(4) For every family {Jλ : λ ∈ Λ} of ideals in R and family {rλ : λ ∈ Λ} in

R, if for every finite nonempty subset E ⊂ Λ, the family of congruences

x = rλ mod Jλ, λ ∈ Λ

has a solution x, then there is a solution for the entire collection of
congruences.

It is clear from (1) ⇔ (4) above that if R has only finitely many ideals, then
R is strongly scalar-reflexive. Hence if R is a PID and 0 ̸= r is not a unit in R,
then R/rR is a finite direct sum of rings of the form R/pnR with p prime and
n ≥ 1, whose only ideals are pkR/pnR for 1 ≤ k ≤ n. Hence R/rR is strongly
scalar-reflexive when 0 ̸= r is not a unit.

Suppose M is an R-module. We let AnnR (M) = {r ∈ R : r · M = 0} be
the annihilator of M in R. Since R is commutative, AnnR (M) is an ideal
in R. It is clear that M is a scalar-reflexive R module if and only if M is a
scalar-reflexive R/AnnR (M) module. We say that a submodule N of M is
separating if AnnR (N ) = AnnR (M) .

Proposition 9.1. Suppose R is a scalar-reflexive ring and M is an R-module.
Then the set of all locally scalar endomorphisms is the strict closure of the set
of all scalar endomorphisms.

Proof. Suppose T ∈ EndR (M) is locally scalar and suppose U is a strict
neighborhood of T . Then there is a finite subset E ⊂ M such that

{A ∈ EndR (M) : A|E = T |E} ⊂ U.

Since R is scalar-reflexive, the R-module N generated by E is scalar-reflexive,
and since T is locally scalar, we see that there is a scalar endomorphism SE

such that SE = T on E. Thus, SE ∈ U. Since every strictly open neighborhood
of T contains a scalar endomorphism, we see that T is the strict closure of the
scalar endomorphisms.

Next suppose M has a torsion-free summand and suppose T ∈ EndR (M) is
locally scalar. Hence we can write M = K⊕R. Let e = 0⊕1. Then there is an
r ∈ R such that Te = re. It follows for each x ∈ K that T (x⊕ 1) = γ (x⊕ 1)
for some γ ∈ R and T (x⊕ 0) = β (x⊕ 0) for some β ∈ R. However, we have

γ (x⊕ 1) = T (x⊕ 1) = T (x⊕ 0 + 0⊕ 1) = βx⊕ r.

It follows that γ = r and that

T (x⊕ 0) = βx⊕ 0 = rx⊕ 0 = r (x⊕ 0) .

It follows that Tv = rv for every v ∈ M. □
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Suppose T is a linear transformation on a vector space MT over F. The
set of all F [x]-submodules of MT is precisely Lat0T , the set of all T -invariant
linear subspaces of MT . The set of all F [x]-endomorphisms is precisely the
commutant {T}′ of T consisting of all linear transformations S on MT such
that ST = TS. The set of all linear transformations on MT that leave invari-
ant every T -invariant linear subspace is called AlgLat0 (T ) (see [2]). Hence
the locally scalar F [x]-endomorphisms are precisely the linear transformations
commuting with T and in AlgLat0 (T ).

Proposition 9.2. Suppose T is a linear transformation on MT . Then

{T}′ ∩AlgLat0 (T ) = {f (T ) : f ∈ F [x]}−(strict)
.

We call a transformation algebraically reflexive if

AlgLat0 (T ) = {f (T ) : f ∈ F [x]} .

and algebraically hyporeflexive if

{T}′ ∩AlgLat0 (T ) = {f (T ) : f ∈ F [x]} .

We see from Proposition 9.2 that T is algebraically hyporeflexive if and only
if MT is a scalar-reflexive F [x]-module.

In [4, Theorem 8] the scalar-reflexive modules over a PID were completely
characterized. In the case when R = F [x], this characterization translates to
the following characterization of algebraically hyporeflexive linear transforma-
tions.

Theorem 9.3. A linear transformation T is algebraically hyporeflexive if and
only if T is algebraic or not locally algebraic.

Suppose the linear transformation T is locally algebraic but not algebraic.

What is {f (T ) : f ∈ F [x]}−(strict)
? We know that MT is the direct sum of

Ep (T ), taken over all of the primes p ∈ F [x].
Claim 1: For each prime p ∈ F [x], the projection Qp of MT onto Ep (T )

is in {f (T ) : f ∈ F [x]}−(strict)
. To see this, suppose W ⊂ MT is finite. Then

there are finitely many distinct primes p, p1, . . . , pn such that W ⊂ Ep (T ) ⊕
Ep1 (T ) ⊕ · · · ⊕ Epn (T ). There is also a positive integer N such that if f =
pNpN1 · · · pNn , then W ⊂ ker f (T ). Choose polynomials u, v ∈ F [x] such that
upN + vpN1 · · · pNn = 1. If g = vpN1 · · · pNn , then g (T )x = Qpx for every x ∈
W . Hence every strict neighborhood of Qp intersects {f (T ) : f ∈ F [x]}, which
shows Qp ∈ {f (T ) : f ∈ F [x]}−(strict)

.
It easily follows from Claim 1 that

{f (T ) : f ∈ F [x]}−(strict)
=

∏
p∈F[x], p prime

[{
h
(
T |Ep(T )

)
: h ∈ F [x]

}−(strict)
]
.
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Claim 2: If p ∈ F [x] is prime and T |Ep(T ) is algebraic, then{
h
(
T |Ep(T )

)
: h ∈ F [x]

}−(strict)
=

{
h
(
T |Ep(T )

)
: h ∈ F [x]

}
.

This is because T |Ep(T ) is hyporeflexive.
Claim 3: If p ∈ F [x] is prime, d = deg p, and T |Ep(T ) is not algebraic, then{

h
(
T |Ep(T )

)
: h ∈ F [x]

}−(strict)
=

(9.1){ ∞∑
k=0

ak
(
T |Ep(T )

)
pk

(
T |Ep(T )

)
: a0, a1, . . . ∈ F [x] , deg ak (x) < d for k ≥ 0

}
.

It is clear that each such series converges in the strict topology, since Ep (T ) =
∪∞
n=1 ker p (T )

n
. On the other hand, T |ker p(T )n is algebraic, so T |ker p(T )n is

hyporeflexive. This means that the strict closure of the polynomials in T ,
restricted to ker p (T )

n
must be a polynomial in T, restricted to ker p (T )

n
.

Every such polynomial can be written in the form
∑n

k=0 ak (T ) p
k (T ). This

shows that any element in {f (T ) : f ∈ F [x]}−(strict)
, restricted to Ep (T ), must

have the form as in (2) above.

Proposition 9.4. If T is locally algebraic but not algebraic, then

{T}′ ∩AlgLat0 (T ) = {f (T ) : f ∈ F [x]}−(strict)

is the set of all linear transformations S on MT such that, for each prime
p ∈ F [x],

(1) S|Ep(T ) = h (T ) |Ep(T ) for some polynomial h if T |Ep(T ) is algebraic,
and

(2) S|Ep(T ) =
∑∞

k=0 ak (T ) p
k (T ) |Ep(T ) for a0, a1, . . . ∈ F [x] , deg ak (x) <

d for k ≥ 0 if T |Ep(T ) is not algebraic.
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