Equivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension

Document Type : Research Paper


School of Science‎, ‎Jimei University‎, ‎361021 Xiamen‎, ‎China.


‎In this paper‎, ‎we study spectral element approximation for a constrained‎ ‎optimal control problem in one dimension‎. ‎The equivalent a posteriori error estimators are derived for‎ ‎the control‎, ‎the state and the adjoint state approximation‎. ‎Such estimators can be used to‎ ‎construct adaptive spectral elements for the control problems.


Main Subjects

M. Ainsworth and J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Engrg. 142 (1997), no. 1-2, 1--88.
I. Babuska and W. C. Rheinboldt, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12, no. 10, 1597--1615, 1978.
I. Babuska and W. C. Rheinboldt, Error estimates for adaptive finite element computa- tions, SIAM J. Numer. Anal. 15 (1978), no. 4, 736--754.
I. Babuska and T. Strouboulis, The Finite Element Method and its Reliability, The Clarendon Press, Oxford University Press, New York, 2001.
I. Babuska and G. N. Gatica, A residual-based a posteriori error estimator for the Stokes-Darcy coupled problem, SIAM J. Numer. Anal. 48 (2010), no. 2, 498--523.
R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: Basic concept, SIAM J. Control Optim. 39 (2000), no. 1, 113--132.
C. Bernardi and Y. Maday, Spectral Methods, Handbook of Numerical Analysis, 209-- 485, Handb. Numer. Anal., V, North-Holland, Amsterdam, 1997.
C. Bernardi, N. Fietier and G. R. Owens, An error indicator for mortar element solutions to the Stokes problem, IMA J. Numer. Anal. (2001), no. 4, 857--886.
C. Bernardi, Indicateurs d'erreur en h-N version des elements spectraux, RAIRO Model. Math. Anal. Numer 30 (1996), no. 1, 1--38.
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral methods. Funda-mentals in single domains. Scientific Computation, Springer-Verlag, Berlin, 2006.
Y. Chen, N. Yi and W. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by elliptic equations, SIAM J. Numer. Anal. 46 (2008), no. 5, 2254--2275.
Y. P. Chen, F. L. Huang, N. Y. Yi and W. B. Liu, A Legendre-Galerkin spectral method for optimal control problems governed by Stokes Equations, SIAM J. Numer. Anal. 49 (2011), no. 4, 1625--1648.
Y. P. Chen and Y. J. Lin, A posteriori error estimates for hp finite element solutions of convex optimal control problems, J. Comput. Appl. Math. 235 (2011), no. 12, 3435--3454.
Q. Du, L. Ju, L. Tian and K. Zhou, A posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models, Math. Comp. 82 (2013), no. 284, 1889--1922.
L. Ge, W. Liu and D. Yang, Adaptive finite element approximation for a constrained optimal control problem via multi-meshes, J. Sci. Comput. 41 (2009), no. 2, 238--255.
R. Ghanem and H. Sissaoui, A posteriori error estimate by a spectral method of an elliptic optimal control problem, J. Comput. Math. Optim. 2 (2006), no. 2, 111--125.
W. Gong, W. B. Liu and N. N. Yan, A posteriori error estimates of hp-FEM for optimal control problems, Int. J. Numer. Anal. Model. 8 (2011), no. 1, 48--69.
B. Guo, Recent progress on a-posteriori error analysis for the p and h-p finite element methods, Contemporary Mathematics 383 (2005) 47--62.
K. Kohls, A. Rosch and K. G. Siebert, A posteriori error analysis of optimal control problems with control constraints, SIAM J. Control Optim. 52 (2014), no. 3, 1832--1861.
J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, New York-Berlin, 1971.
R. Li, W. Liu, H. Ma and T. Tang, Adaptive finite element approximation for distributed elliptic optimal control problems, SIAM J. Control Optim., 41 (2002), no. 5, 1321--1349.
W. Liu and N. Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 73--99.
J. M. Melenk and B. I. Wohlmuth, On residual-based a posteriori error estimation in hp-FEM, Adv. Comput. Math. 15 (2001), no. 1-4, 311--331.
C. Schwab, p-and hp-Finite Element Methods, Oxford Univ. Press, New York, 1998.
A. Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 146--167.