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1. Introduction

Optimal control problems can be found in many scientific and engineering
applications, and it has become a very active and successful research area in
recent years. The literature on this field is huge, and it is impossible to give
even a very brief review here. Beginning with the papers by Babuška and
Rheinboldt in 1978 [2,3], the study of a posteriori error estimates for the finite
element solution of partial differential equations has attracted great interest
and resulted in an enormous body of literature on the subject. We refer the
interested reader in posteriori error estimates to see [1, 4] for an overview,
and [5, 14, 18, 23] for some recent works in the subject. In the recent years,
there has been intensive research in adaptive finite element methods (FEMs) for
optimal control problems, see, for example, [6,19,21,22,25], and the references
cited therein.

To the best of the authors’ knowledge, most research concerning adaptive
finite element methods for optimal control problems are all related to low or-
der FEM, i.e., h-FEM, there are not many published works related to the use
of high order methods, such as the p and hp-version FEMs, spectral methods,
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A posteriori error estimates for the optimal control problem 2

and spectral element methods, which have been applied to many practical prob-
lems. In recent years, the spectral method has been extended to approximate
unconstrained optimal control problems and a posteriori error estimate was
obtained in [16]. Later, Chen et al in [11, 12] respectively derived a priori and
a posteriori error estimates for the spectral approximation of optimal control
problems governed by elliptic equations and Stokes equations. Very recently,
a posteriori error estimates of the hp FEM for optimal control problems was
investigated in [13, 17], both reliability and efficiency of the estimators were
analyzed. In [11], the spectral element method was also applied in the analysis
of the optimal control problems, but only a posteriori upper error estimates
was obtained.

The purpose of this paper is to derive sharp a posteriori error estimates
for the spectral element approximation of an optimal control problem in one
dimension to partially improve the above mentioned result in [11]. In our work,
we use some techniques that have been used for a posteriori error estimates of
the hp-version FEM for optimal control problems (see, e.g., [13, 17] for more
details). We also use some polynomial inverse estimates and the weighted
techniques in [9], where a posteriori error estimates was obtained for spectral
element method of the elliptic partial differential equations.

The outline of the paper is as follows: In the next section we formulate
the optimal control problem under consideration and give the spectral element
discretization of the control problem. In Section 3, some technical lemmas are
introduced, which are used for the later a posteriori error analysis. Section 4 is
devoted to deriving sharp a posteriori error estimators for the control problem.
We carry out, in Section 5, some numerical tests to verify the theoretical results.
Some concluding remarks are given at the end of the paper.

2. Optimization problem and spectral element approximation

2.1. Notations and problem description. We first introduce some nota-
tions that will be used throughout the paper. Let c or C be a generic positive
constant independent of any functions and of any discretization parameters.
We use the expression A ≲ B to mean that A ≤ cB, and use the expression
A ∼= B to mean that A ≲ B ≲ A. Let Λ = (a, b), we use L2(Λ), H1(Λ), and
H1

0 (Λ) to denote the usual Sobolev spaces, equipped with the norms ∥·∥0,Λ
and ∥·∥1,Λ respectively. Hereafter, in cases where no confusion would arise, the
domain symbols Λ may be dropped from the notations.

Throughout this paper, we mainly concentrate on the following one-dimensio-
nal optimal control problem for the state variable u and the control variable q
with an integral constraint:

(2.1) min
q

{
1

2

∫
Λ

(u− ū)2dx+
λ

2

∫
Λ

q2dx

}
,
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where λ and ū are given, u is governed by the state equation

(2.2)
−u′′ = f + q in Λ,
u = 0 on ∂Λ,

and q satisfying

(2.3)

∫
Λ

qdx ≥ 0.

We take the state space V = H1
0 (Λ), then the standard weak formulation of

the state equation (2.2) reads: given q, f ∈ L2(Λ), find u ∈ V such that

(2.4) a(u, v) = (f + q, v), ∀v ∈ V,

where the bilinear form a(·, ·) is defined by

a(u, v) =

∫
Λ

u′v′dx.(2.5)

It is well known that the following continuity and coercivity hold

a(u, v) ≲ ∥u∥1 ∥v∥1 , a(u, u) ≳ ∥u∥21 , ∀u, v ∈ V,

and the problem (2.4) is well-posed.
To formulate the optimal control problem we introduce the admissible set

K associated to the constraints (2.3) as

K :=

{
q ∈ L2(Λ) :

∫
Λ

qdx ≥ 0

}
,

and define the cost functional

J (q, u) :=
1

2
∥u− ū∥20,Λ +

λ

2
∥q∥20,Λ , (q, u) ∈ K × V,(2.6)

where the given desired state ū ∈ L2(Λ).
Then the optimal control problem reads: find (q∗, u(q∗)) ∈ K×V , such that

J (q∗, u(q∗)) = min
(q,u)∈K×V

J (q, u) subject to (2.4).(2.7)

Proposition 2.1. For given f, ū ∈ L2(Λ) and λ > 0, the optimal control
problem (2.7) admits a unique solution (q∗, u(q∗)) ∈ K × V.

Proof. The existence follows from weak sequential limit arguments, see e.g. [20].
The uniqueness relies on the convexity of Λ and on the strict convexity of the
cost functional J (q, u). □

The above proposition ensures the unique existence of a control-to-state
mapping q 7→ u = u(q) defined through (2.4). By means of this mapping we
introduce the reduced cost functional J : L2(Λ) → R :

J(q) := J (q, u(q)).
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Then the optimal control problem (2.7) can be equivalently reformulated as:
find q∗ ∈ K, such that

(2.8) J(q∗) = min
q∈K

J(q).

The first order necessary optimality condition for (2.8) reads as

(2.9) J ′(q∗)(δq − q∗) ≥ 0, ∀δq ∈ K.
It is known that the convexity of the quadratic functional implies that (2.9) is
also sufficient for optimality.

Utilizing the adjoint state equation for z ∈ V given by

(2.10) a(φ, z) = (u− ū, φ), ∀φ ∈ V,

and the mapping q → u(q) → z(q), where for any given q, u(q) is defined by
(2.4), and once u(q) is known z(q) is defined by (2.10), then the first derivative
of the reduced cost functional can be expressed as

(2.11) J ′(q)(δq) = (λq + z(q), δq).

2.2. Spectral element discretization. To proceed with the spectral element
discretization of the proposed optimal control problem, we partition the domain
Λ into a set of K ≥ 2 disjoint subintervals so that

Λ̄ =
K∪

k=1

Λ̄k, Λk ∩ Λl = ∅, if k ̸= l,

where Λk = (xk−1, xk), k = 1, · · · ,K, with a = x0 < x1 < · · · < xK−1 < xK =

b. Let hk = xk − xk−1 be length of the k-th interval. Let Λ̂ = (−1, 1) be the

reference element, then there exists the affine map Fk : Λ̂ → Λk

(2.12) x = Fk(x̂) =
hk
2
x̂+

xk + xk−1

2
, x̂ ∈ Λ̂

that maps (−1, 1) into Λk.
We then introduce the piecewise polynomial spaces as follows:

VM =
{
v ∈ C0(Λ) : v|Λk

∈ PMk
(Λk), k = 1, · · · ,K

}
,

QN =
{
v ∈ L2(Λ) : v|Λk

∈ PNk
(Λk), k = 1, · · · ,K

}
,

where PMk
(Λk) (respectively, PNk

(Λk)) denotes the space of all polynomials on
Λk of degree less than or equal to Mk (resp.Nk), M and N respectively collect
the positive integers Mk (k = 1, · · · ,K) and Nk (k = 1, · · · ,K).

Let QN be the spectral element space for the control variable, and VM be
the spectral element space for the state and costate, then a spectral element
approximation of the state equation (2.4) reads: find a state uM(qN ) ∈ VM
such that

(2.13) a(uM(qN ), vM) = (f + qN , vM), ∀vM ∈ VM,
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where qN ∈ QN .
Similar to the continuous case, we introduce the discrete reduced cost func-

tional JM,N : QN → R :

JM,N (qN ) := J (qN , uM(qN )),

where uM(qN ) is given by (2.13). Let KN = K∩QN , then the spectral element
approximation for the optimal control problem (2.8) reads as: find q∗N ∈ KN ,
such that

(2.14) JM,N (q∗N ) = min
qN∈KN

JM,N (qN ).

The unique solution of (2.14), q∗N , satisfies the following optimality condition:

(2.15) J ′
M,N (q∗N )(δq − q∗N ) ≥ 0, ∀δq ∈ KN ,

where

(2.16) J ′
M,N (qN )(δq) = (λqN + zM(qN ), δq), ∀qN , δq ∈ KN ,

with zM(qN ) ∈ VM being the solution of the discrete adjoint state equation

(2.17) a(φM, zM(qN )) = (uM(qN )− ū, φM), ∀φM ∈ VM.

3. Some preliminary properties

In this section, we recall some results which will be used in what follows.
The first lemma shows that the functional J(·) defined in previous section is
uniformly convex.

Lemma 3.1. [17] For all p, q ∈ L2(Λ), it holds

J ′(p)(p− q)− J ′(q)(p− q) ≥ λ ∥p− q∥2 .

In the following, we state two lemmas, which give a relationship between the
control variable and the adjoint state variable. The readers can refer to [11]
and [15] for the details.

Lemma 3.2. [11] Let (q∗, u(q∗)) be the solution of the continuous optimal
control problem (2.7) and z(q∗) be the corresponding adjoint state. Then we
have

q∗ =
1

λ
max{0, z(q∗)} − 1

λ
z(q∗),

where z(q∗) =
∫
Λ
z(q∗)/

∫
Λ
1.

Lemma 3.3. [15] Let q∗N be the solution of the discrete optimal control problem
(2.14), and zM(q∗N ) be the corresponding adjoint state. Then it holds

(3.1) q∗N =
1

λ
ΠN

(
−zM(q∗N ) + max{0, zM(q∗N )}

)
,

where ΠN is L2-projection from L2(Λ) onto QN .
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The following polynomial inverse estimates, which can be found in [7, 8],
play an important part in the analysis of the a posteriori error estimators.

Lemma 3.4. For all polynomials ϕN ∈ PN (−1, 1), it holds

∫ 1

−1

ϕ′2N (x)(1− x2)2dx ≤ cN2

∫ 1

−1

ϕ2N (x)(1− x2)dx,(3.2) ∫ 1

−1

ϕ2N (x)dx ≤ cN2

∫ 1

−1

ϕ2N (x)(1− x2)dx.(3.3)

4. Equivalent a posteriori error estimators

We aim in this section at deriving a sharp estimates of the error between
continuous solution and its spectral element approximation in terms of known
and computable quantities, i.e, a posteriori error estimates. We will confine
ourselves to the so-called residual-based estimates [10].

Throughout this section, for arbitrary variable O, we shall denote by O(k)

the restriction of O to the k-th element Λk. In order to define a posteriori error
indicator, let us introduce the L2 orthogonal projection of ū(k) upon the space
PMk

(Λk), which we denote by ūMk
, i.e. ūMk

= ΠMk
ū(k). Let fMk

be defined
similarly. Next, we introduce the weight function

wk(x) = (xk − x)(x− xk−1)

vanishing at the endpoints of the interval, and the associated weighted L2-norm

∥g∥0,wk
=

(∫
Λk

g2(x)wk(x)dx

) 1
2

.

We now define some a posteriori error estimators:

ζ2 =
K∑

k=1

ζ2k ,(4.1)

ξ2 =
K∑

k=1

(
ξ2k +

1

Mk(Mk + 1)

∥∥∥ū(k) − ū
(k)
Mk

∥∥∥2
0,wk

)
,(4.2)

η2 =
K∑

k=1

(
η2k +

1

Mk(Mk + 1)

∥∥∥f (k) − f
(k)
Mk

∥∥∥2
0,wk

)
,(4.3)
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where

ζ2k =
∥∥∥z(k)M (q∗N )−ΠNk

z
(k)
M (q∗N )

∥∥∥2
0,Λk

,(4.4)

ξ2k =
1

Mk(Mk + 1)

∥∥∥∥(z(k)M (q∗N )
)′′

+ u
(k)
M (q∗N )− ū

(k)
Mk

∥∥∥∥2
0,wk

,(4.5)

η2k =
1

Mk(Mk + 1)

∥∥∥∥(u(k)M (q∗N )
)′′

+ q
∗(k)
N + f

(k)
Mk

∥∥∥∥2
0,wk

,(4.6)

with ΠNk
being the standard L2-projection onto PNk

(Λk).
In the following two subsections, we will prove the efficiency and reliabil-

ity of these a posteriori error indicators. In addition, just for simplicity of
presentation, the symbols (k) in O(k) may be dropped if there is no confusion.

4.1. A posteriori upper error estimates. We are now in a position to
discuss the reliability of the above mentioned error indicators, which gives the
upper bound of the error between the exact solution and its spectral element
approximation. To this end, we need to introduce some auxiliary problems:

a(u(qN ), v) = (f + qN , v), ∀v ∈ V,(4.7)

a(φ, z(qN )) = (u(qN )− ū, φ), ∀φ ∈ V.(4.8)

Lemma 4.1. Let q∗ be the solution of the continuous optimal control problem
(2.8), q∗N be the solution of the discrete optimization problem (2.14), then it
holds

∥q∗ − q∗N ∥0 ≤ 1

λ
∥zM(q∗N )−ΠN zM(q∗N )∥0 +

1

λ
∥zM(q∗N )− z(q∗N )∥0 ,

where zM(q∗N ) and z(q∗N ) are respectively the solutions of (2.17) and (4.8)
associated to q∗N .

Proof. It follows from Lemma 3.1, (2.9), (2.11), (2.15) and (2.16) that for
arbitrary pN ∈ KN ,

λ ∥q∗ − q∗N ∥20 ≤J ′(q∗)(q∗ − q∗N )− J ′(q∗N )(q∗ − q∗N )

(4.9)

≤− J ′(q∗N )(q∗ − q∗N )

=J ′
M,N (q∗N )(q∗N − q∗)− J ′(q∗N )(q∗ − q∗N ) + J ′

M,N (q∗N )(q∗ − q∗N )

=J ′
M,N (q∗N )(q∗N − pN ) + J ′

M,N (q∗N )(pN − q∗)

+ (zM(q∗N )− z(q∗N ), q∗ − q∗N )

≤J ′
M,N (q∗N )(pN − q∗) + (zM(q∗N )− z(q∗N ), q∗ − q∗N )

=(λq∗N + zM(q∗N ), pN − q∗) + (zM(q∗N )− z(q∗N ), q∗ − q∗N ).
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Let ΠN be the L2 orthogonal projection operator defined in Lemma 3.3, then
it holds ∫

Λ

(q∗ −ΠN q
∗)rNdx = 0, ∀rN ∈ QN ,

and in particular ∫
Λ

(q∗ −ΠN q
∗)dx = 0,

that is ∫
Λ

ΠN q
∗dx =

∫
Λ

q∗dx ≥ 0.

This means ΠN q
∗ ∈ KN . Thus, by taking pN = ΠN q

∗ in the first term of the
estimate (4.9), we get

(λq∗N + zM(q∗N ), pN − q∗)

(4.10)

=(λq∗N + zM(q∗N )−ΠN zM(q∗N ) + ΠN zM(q∗N ),ΠN q
∗ − q∗)

=(λq∗N +ΠN zM(q∗N ),ΠN q
∗ − q∗) + (zM(q∗N )−ΠN zM(q∗N ),ΠN q

∗ − q∗)

=(zM(q∗N )−ΠN zM(q∗N ),ΠN q
∗ − q∗).

Now let Id denote the identity operator, combining (4.9) and (4.10), and noting
ΠN q

∗
N = q∗N , we claim that

λ ∥q∗ − q∗N ∥20
≤ (zM(q∗N )−ΠN zM(q∗N ),ΠN q

∗ − q∗) + (zM(q∗N )− z(q∗N ), q∗ − q∗N )

= (zM(q∗N )−ΠN zM(q∗N ), (ΠN − Id)(q
∗ − q∗N ))

+(zM(q∗N )− z(q∗N ), q∗ − q∗N )

≤ ∥zM(q∗N )−ΠN zM(q∗N )∥0 ∥(ΠN − Id)(q
∗ − q∗N )∥0

+ ∥zM(q∗N )− z(q∗N )∥0 ∥q
∗ − q∗N ∥0

≤ ∥zM(q∗N )−ΠN zM(q∗N )∥0 ∥q
∗ − q∗N ∥0

+ ∥zM(q∗N )− z(q∗N )∥0 ∥q
∗ − q∗N ∥0 ,

which immediately leads to the desired result. □

Lemma 4.2. Suppose q∗ and q∗N are respectively the solutions of the contin-
uous optimal control problem (2.8) and its discrete counterpart (2.14), u(q∗)
and uM(q∗N ) are the state solutions of (2.4) and (2.13) associated to q∗ and
q∗N , z(q∗) and zM(q∗N ) are the associated solutions of (2.10) and (2.17), re-
spectively. Then, it holds:

(4.11) ∥uM(q∗N )− u(q∗N )∥1 ≲ η, ∥zM(q∗N )− z(q∗N )∥1 ≲ ξ + η,

where ξ, η are defined by (4.1)-(4.3).



9 Ye

Proof. Let ez = zM(q∗N ) − z(q∗N ), by (2.17), (4.8) and the coercivity of the
bilinear form a defined in (2.5), we have for all ϕM ∈ VM

∥zM(q∗N )− z(q∗N )∥21(4.12)

≲a(ez, ez) = a(ez − ϕM, ez) + a(ϕM, ez)

=a(ez − ϕM, ez) + (uM(q∗N )− u(q∗N ), ϕM).

Assume that ϕM is chosen to satisfy ϕM(xk) = ez(xk) for k = 1, · · · ,K − 1.
Counter-integrating by parts in each element and using (4.8) we have

a(ez − ϕM, ez) + (uM(q∗N )− u(q∗N ), ϕM)

(4.13)

=

K∑
k=1

∫
Λk

(
−(z

(k)
M (q∗N ))′′ − u

(k)
M (q∗N ) + ū(k)

)(
e(k)z − ϕ

(k)
M

)
dx

+ (uM(q∗N )− u(q∗N ), ez)

=

K∑
k=1

∫
Λk

(
−(z

(k)
M (q∗N ))′′ − u

(k)
M (q∗N ) + ū

(k)
Mk

)√
wk

e
(k)
z − ϕ

(k)
M√

wk
dx

+

K∑
k=1

∫
Λk

(
ū(k) − ū

(k)
Mk

)√
wk

e
(k)
z − ϕ

(k)
M√

wk
dx+ (uM(q∗N )− u(q∗N ), ez)

≲
K∑

k=1

(∥∥∥−(z
(k)
M (q∗N ))′′ − u

(k)
M (q∗N ) + ū

(k)
Mk

∥∥∥
0,wk

+
∥∥∥ū(k) − ū

(k)
Mk

∥∥∥
0,wk

)∥∥∥∥∥e(k)z − ϕ
(k)
M√

wk

∥∥∥∥∥
0,Λk

+ ∥uM(q∗N )− u(q∗N )∥0,Λ ∥ez∥0,Λ .

Let us now define ϕ
(k)
M . Given a function v̂ ∈ H1(−1, 1), define

v̂M (x̂) = v̂(−1) +

∫ x̂

−1

(ΠM−1v̂
′)(s)ds,

where ΠM−1 denotes the L2- orthogonal projection upon PM−1(−1, 1). It is
easy to check that v̂M (±1) = v̂(±1). Moreover, it has been proved by Schwab
[24] that ∫ 1

−1

(v̂ − v̂M )2(x̂)

1− x̂2
dx̂ ≤ 1

M(M + 1)

∫ x̂

−1

(v̂′)2(x̂)dx̂.(4.14)

Set v̂(x̂) = e
(k)
z (Fk(x̂)), where Fk is the affine mapping (2.12), and define

ϕ
(k)
M = v̂Mk

(F−1
k (x)).

Then, the previous inequality (4.14) yields∥∥∥∥∥e(k)z − ϕ
(k)
M√

wk

∥∥∥∥∥
0,Λk

≤ 1√
Mk(Mk + 1)

∥∥∥e(k)z

∥∥∥
1,Λk

.(4.15)
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Thus, plugging (4.15) into (4.13), and by the Cauchy-Schwarz inequality we
get

a(ez − ϕM, ez) + (uM(q∗N )− u(q∗N ), ϕM)(4.16)

≲
(

K∑
k=1

ξ2k

) 1
2

∥ez∥1 +

(
K∑

k=1

1

Mk(Mk + 1)

∥∥∥ū(k) − ū
(k)
Mk

∥∥∥2
0,wk

) 1
2

∥ez∥1

+ ∥uM(q∗N )− u(q∗N )∥0 ∥ez∥1 ,
where ξk is defined in (4.5). Thus, (4.16) together with (4.12) leads to

(4.17) ∥zM(q∗N )− z(q∗N )∥1 ≲ ξ + ∥uM(q∗N )− u(q∗N )∥0 .
Similarly, let eu = uM(q∗N ) − u(q∗N ), and ψM ∈ VM be defined similar to

ϕM except that ψM is chosen to satisfy ψM(xk) = eu(xk) for k = 1, · · · ,K−1.
Then it follows from (2.4) and (2.13) that a(eu, ψM) = 0, and thus

∥uM(q∗N )− u(q∗N )∥21(4.18)

≲a(eu, eu) = a(eu, eu − ψM)

=
K∑

k=1

∫
Λk

(u
(k)
M (q∗N ))′(e(k)u − ψ

(k)
M )′dx− (f + q∗N , eu − ψM)

=
K∑

k=1

∫
Λk

(
−(u

(k)
M (q∗N ))′′ − q

∗(k)
N − f

(k)
Mk

)√
wk

e
(k)
u − ψ

(k)
M√

wk
dx

+
K∑

k=1

∫
Λk

(
f
(k)
Mk

− f (k)
)√

wk
e
(k)
u − ψ

(k)
M√

wk
dx

≲
(

K∑
k=1

η2k

) 1
2

∥eu∥1 +

(
K∑

k=1

1

Mk(Mk + 1)

∥∥∥f (k) − f
(k)
Mk

∥∥∥2
0,wk

) 1
2

∥eu∥1 ,

where ηk is defined by (4.6). This leads to

(4.19) ∥uM(q∗N )− u(q∗N )∥1 ≲ η.

Consequently, (4.17) and (4.19) imply that

(4.20) ∥zM(q∗N )− z(q∗N )∥1 ≲ ξ + η.

□
Theorem 4.3. Suppose q∗ and q∗N are respectively the solutions of the contin-
uous optimal control problem (2.8) and its discrete counterpart (2.14), u(q∗)
and uM(q∗N ) are the state solutions of (2.4) and (2.13) associated to q∗ and
q∗N , z(q∗) and zM(q∗N ) are the associated solutions of (2.10) and (2.17), re-
spectively. Then, the following estimate holds:

∥q∗ − q∗N ∥0 + ∥u(q∗)− uM(q∗N )∥1 + ∥z(q∗)− zM(q∗N )∥1 ≲ ζ + ξ + η,(4.21)
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where ζ, ξ, η are defined by (4.1)-(4.3).

Proof. In virtue of Lemmas 4.1 and 4.2, we get

(4.22) ∥q∗ − q∗N ∥0 ≲ ξ + η + ζ.

Furthermore, using the triangle inequalities

∥zM(q∗N )− z(q∗)∥1 ≤ ∥zM(q∗N )− z(q∗N )∥1 + ∥z(q∗N )− z(q∗)∥1 ,
∥uM(q∗N )− u(q∗)∥1 ≤ ∥uM(q∗N )− u(q∗N )∥1 + ∥u(q∗N )− u(q∗)∥1 ,

and the following obvious estimates

∥u(q∗N )− u(q∗)∥1 ≲ ∥q∗N − q∗∥0 ,

∥z(q∗N )− z(q∗)∥1 ≲ ∥u(q∗N )− u(q∗)∥0 ≲ ∥q∗N − q∗∥0 ,

we obtain

(4.23) ∥uM(q∗N )− u(q∗)∥1 + ∥zM(q∗N )− z(q∗)∥1 ≲ ξ + η + ζ.

Thus (4.21) follows from (4.22) and (4.23). □

4.2. A posteriori lower error estimates. We now turn our attention to-
wards lower a posteriori bounds, i.e., the efficiency of the error estimators
provided in Theorem 4.3. The proof of the main result in this subsection will
be accomplished with a series of lemmas for the estimating ζ, ξ and η, which
we present below.

Lemma 4.4. Let q∗ be the solution of the continuous optimal control problem
(2.8), z(q∗) be the corresponding adjoint state. Let q∗N be the solution of the
discrete optimal control problem (2.14) with the corresponding discrete adjoint
state zM(q∗N ). Then, the following estimate holds:

ζ2 ≲ ∥q∗ − q∗N ∥20 + ∥z(q∗)− zM(q∗N )∥20 ,

where ζ is defined by (4.1).
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Proof. It is clear that

K∑
k=1

ζ2k =
K∑

k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N ))
2
dx

=

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N ))

(zM(q∗N )− z(q∗) + z(q∗)−ΠNkz(q
∗) + ΠNkz(q

∗)−ΠNkzM(q∗N )) dx

≤ 1

2

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N ))
2
dx

+C

{
K∑

k=1

∥zM(q∗N )− z(q∗)∥20 +
K∑

k=1

∥ΠNk (z(q∗)− zM(q∗N ))∥20

}

+

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N )) (z(q∗)−ΠNkz(q
∗)) dx,

such that

K∑
k=1

ζ2k ≤C
{
∥zM(q∗N )− z(q∗)∥20(4.24)

+

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N )) (z(q∗)−ΠNkz(q
∗)) dx

}
.

By Lemma 3.2, we know λq∗ + z(q∗) = const such that

ΠNk
(λq∗ + z(q∗)) = λq∗ + z(q∗).

Hence,

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N )) (z(q∗)−ΠNkz(q
∗)) dx(4.25)

=

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N ))

(z(q∗) + λq∗ −ΠNk(z(q
∗) + λq∗)− λq∗ +ΠNk (λq

∗)) dx

=

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N )) (ΠNk(λq
∗)− λq∗) dx

=
K∑

k=1

∫
Λk

λ (zM(q∗N )−ΠNkzM(q∗N )) (ΠNk(q
∗ − q∗N )− (q∗ − q∗N )) dx

≤λ

2

K∑
k=1

∫
Λk

(zM(q∗N )−ΠNkzM(q∗N ))
2
dx+ C ∥q∗ − q∗N ∥20 .
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Therefore, by combining (4.24) and (4.25) we obtain

K∑
k=1

ζ2k ≲ ∥q∗ − q∗N ∥20 + ∥z(q∗)− zM(q∗N )∥20 .

The proof of Lemma 4.4 is completed. □

Lemma 4.5. Let q∗ be the solution of the continuous optimal control problem
(2.8), u(q∗) and z(q∗) be the corresponding state and adjoint state, respectively.
Let, moreover, q∗N be the solution of the discrete optimal control problem (2.14)
with the corresponding discrete state uM(q∗N ) and adjoint state zM(q∗N ). Then
we have

ξ2 ≲ ∥z(q∗)− zM(q∗N )∥21 + ∥u(q∗)− uM(q∗N )∥21 +
K∑

k=1

4

Mk(Mk + 1)

∥∥∥ū− ū
(k)
Mk

∥∥∥2

0,wk

,

(4.26)

where ξ is defined by (4.2).

Proof. Let rk =
(
(z

(k)
M (q∗N ))′′ + u

(k)
M (q∗N )− ū

(k)
Mk

)
wk, aΛk

(·, ·) be the restriction
of a(·, ·) upon Λk, then we have

∥∥∥∥rk 1√
wk

∥∥∥∥2

0,Λk

=

∫
Λk

r2k
1

wk
dx(4.27)

=

∫
Λk

(
(zM(q∗N ))′′ + uM(q∗N )− ūMk

)
rkdx

=−
∫
Λk

(zM(q∗N ))′r′kdx+

∫
Λk

(u(q∗)− ū)rkdx+

∫
Λk

(ū− ūMk)rkdx

+

∫
Λk

(uM(q∗N )− u(q∗))rkdx

=aΛk(rk, z(q
∗)− zM(q∗N )) +

∫
Λk

(ū− ūMk)wk
rk
wk

dx

+

∫
Λk

(uM(q∗N )− u(q∗))rkdx

≲ ∥z(q∗)− zM(q∗N )∥1,Λk
∥rk∥1,Λk

+ ∥u(q∗)− uM(q∗N )∥1,Λk
∥rk∥1,Λk

+ ∥ū− ūMk∥0,wk

∥∥∥∥rk 1√
wk

∥∥∥∥
0,Λk

.
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Now we compute ∥rk∥1 . Denote sk = (z
(k)
M (q∗N ))′′+u

(k)
M (q∗N )−ū(k)Mk

.We observe
that

∥rk∥21,Λk
= ∥rk∥20,Λk

+
∥∥r′k∥∥2

1,Λk
(4.28)

=

∫
Λk

s2kw
2
kdx+

∫
Λk

(s′kwk + skw
′
k)

2dx

≤h2
k

4

∫
Λk

s2kwkdx+ 2

∫
Λk

(s′k)
2w2

kdx+ 2h2
k

∫
Λk

s2kdx.

We now invoke that the inverse inequalities (3.2) and (3.3) on the reference
interval hold for all polynomials r ∈ PN . Translating these inequalities on the
element Λk via the affine mapping Fk defined by (2.12), we get∫

Λk

(r′k)
2w2

kdx ≤ cM2
k

∫
Λk

r2kwkdx,∫
Λk

r2kdx ≤ CM2
kh

−2
k

∫
Λk

r2kwkdx,

whence,

∥rk∥21,Λk
≤ h2k

4

∫
Λk

s2kwkdx+ 2cM2
k

∫
Λk

s2kwkdx+ 2Ch2kM
2
kh

−2
k

∫
Λk

s2kwkdx

≲ M2
k

∫
Λk

s2kwkdx,

which implies

(4.29) ∥rk∥1,Λk
≲Mk ∥sk

√
wk∥0,Λk

=Mk

∥∥∥∥rk 1
√
wk

∥∥∥∥
0,Λk

.

Now combining (4.27) and (4.29) we obtain∥∥∥∥rk 1
√
wk

∥∥∥∥
0,Λk

≲Mk ∥z(q∗)− zM(q∗N )∥1,Λk
+Mk ∥u(q∗)− uM(q∗N )∥1,Λk

+ ∥ū− ūMk
∥0,wk

.

As a result, we get

ξ2k =
1

Mk(Mk + 1)

∥∥∥∥rk 1
√
wk

∥∥∥∥2
0,Λk

≲ ∥z(q∗)− zM(q∗N )∥21,Λk
+ ∥u(q∗)− uM(q∗N )∥21,Λk

+
3

Mk(Mk + 1)

∥∥∥ū− ū
(k)
Mk

∥∥∥2
0,wk

,

which leads to (4.26). □

Similarly, we can have the following estimation for η.
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Lemma 4.6. Let q∗ be the solution of the continuous optimal control problem
(2.8), u(q∗) and z(q∗) be the corresponding state and adjoint state, respectively.
Let, moreover, q∗N be the solution of the discrete optimal control problem (2.14)
with the corresponding discrete state uM(q∗N ) and adjoint state zM(q∗N ). Then
it holds that

η2 ≲ ∥u(q∗)− uM(q∗N )∥21 + ∥q∗ − q∗N ∥20 +
K∑

k=1

4

Mk(Mk + 1)

∥∥∥f − f
(k)
Mk

∥∥∥2
0,wk

,

where η is defined by (4.3).

Summing up, we can immediately arrive at the main result of this subsection
by combining the foregoing results Lemmas 4.4-4.6 into the following theorem.

Theorem 4.7. Let q∗ be the solution of the continuous optimal control problem
(2.8), u(q∗) and z(q∗) be the corresponding state and adjoint state respectively.
Let, moreover, q∗N be the solution of the discrete optimal control problem (2.14)
with the corresponding discrete state uM(q∗N ) and adjoint state zM(q∗N ). Then
we have

ζ2 + ξ2 + η2 ≲ ∥q∗ − q∗N ∥20 + ∥u(q∗)− uM(q∗N )∥21 + ∥z(q∗)− zM(q∗N )∥21 + ϵ21 + ϵ22,

where ζ, ξ, η are defined by (4.1)-(4.3), and

ϵ21 =
K∑

k=1

4

Mk(Mk + 1)

∥∥∥ū(k) − ū
(k)
Mk

∥∥∥2
0,wk

,

ϵ22 =
K∑

k=1

4

Mk(Mk + 1)

∥∥∥f (k) − f
(k)
Mk

∥∥∥2
0,wk

.

Remark 4.8. It follows from Theorems 4.3 and 4.7 that the estimators defined
in (4.1)-(4.3) are in fact equivalent in the sense that there are two constants
c, C > 0 such that

c(ζ2 + ξ2 + η2)− c(ϵ21 + ϵ22)

≤ ∥q∗ − q∗N ∥20 + ∥u(q∗)− uM(q∗N )∥21 + ∥z(q∗)− zM(q∗N )∥21
≤ C(ζ2 + ξ2 + η2)

where ϵ1 and ϵ2 are defined in Theorem 4.7, which are all higher order terms.

5. Numerical results

In this section, we carry out some numerical experiments to demonstrate
the error estimators developed in Section 4. In all our calculations, the control,
state and adjoint state are all approximated by the piecewise polynomials of
degree N . Let λ = 1, we consider problem (2.7) on Λ = (−1, 1) with the exact
solutions:

u(q∗) = π2 sinπx, z(q∗) = sinπx, q∗ = − sinπx.
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The main purpose is to validate the a posteriori error estimators. This is done
by comparing the error indicator

E := ζ + ξ + η

with ζ, ξ, η defined in (4.1)-(4.3), and the true error of the numerical solution
measured by:

e := ∥q∗ − q∗N ∥0 + ∥u(q∗)− uM(q∗N )∥1 + ∥z(q∗)− zM(q∗N )∥1 .

On a fixed mesh with 4 elements, we study these two errors in Table 1. It
is shown that the error of the spectral element method between the numerical
and exact solutions has the same order of accuracy as the a posteriori error
indicators, which coincide with the predicted theoretical results.

Table 1. The true error and the posteriori error estimators
for varying N .

N 4 6 8 10 12
e 4.3091E-3 1.0661E-5 1.7327E-8 1.9537E-11 2.6331E-13
E 4.5289E-3 1.1109E-5 1.7681E-8 1.9723E-11 2.6444E-13

6. Concluding remarks

In this paper, we discussed a posteriori error estimates of the spectral el-
ement method for a distributed convex optimal control problem governed by
the two-point boundary value problem. It is shown that a posteriori error es-
timators derived in this paper provide both upper and lower bounds for the
approximation errors, and such a posteriori error estimators is sharp.

There are many important issues that still need to be addressed. First,
studies for more complicated control problems and constraint sets are needed.
Secondly, a posteriori error analysis for high order methods, such as the spectral
method and the spectral element method in two or higher dimensional optimal
contro problem is needed. Thirdly, many computational issues have to be
addressed. For example, adaptive strategy should be investigated for efficiently
implementing adaptive spectral element method for optimal control problems.
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