Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 1, pp. 19-25

Title:
Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

> Author(s):

S. M. Robati

Published by Iranian Mathematical Society

SOME CONNECTIONS BETWEEN POWERS OF CONJUGACY CLASSES AND DEGREES OF IRREDUCIBLE CHARACTERS IN SOLVABLE GROUPS

S. M. ROBATI

(Communicated by Ali Reza Ashrafi)

Abstract

Let G be a finite group. We say that the derived covering number of G is finite if and only if there exists a positive integer n such that $C^{n}=G^{\prime}$ for all non-central conjugacy classes C of G. In this paper we characterize solvable groups G in which the derived covering number is finite. Keywords: Conjugacy classes, irreducible characters, solvable groups. MSC(2010): Primary: 20E45, 20C15.

1. Introduction

Let G be a finite group. In this paper $\operatorname{ccl}(G)$ denotes the set of the conjugacy class sizes of $G, \operatorname{cd}(G)$ denotes the set of degrees of the irreducible characters of $G, \operatorname{Irr}(G)$ denotes the set of all the irreducible characters of G, and $\operatorname{Irr}_{1}(G)$ denotes the set of all the non-linear irreducible characters of G.
In [2], the derived covering number of G, denoted by $\operatorname{dcn}(G)$, is defined as the smallest positive integer n such that $C^{n}=G^{\prime}$ for all non-central conjugacy classes C of G. If such integer exists, we say that $\operatorname{dcn}(G)$ is finite, otherwise we set $\operatorname{dcn}(G)=\infty$. The authors also proved the following result:

Theorem 1.1. If a finite non-abelian group G has a finite derived covering number then one of the following holds:
(1) G^{\prime} is a minimal normal subgroup of G,
(2) G is a nilpotent group of class two in which $\operatorname{ccl}(G)=\left\{1,\left|G^{\prime}\right|\right\}$,
(3) G^{\prime} is perfect and $\frac{G^{\prime}}{Z\left(G^{\prime}\right)}$ is a minimal normal subgroup of $\frac{G}{Z\left(G^{\prime}\right)}$, with $Z\left(G^{\prime}\right)=G^{\prime} \cap Z(G)$.

[^0]In Section 2, we characterize finite nilpotent groups G which have a finite derived covering number and show some properties of such groups.

On the other hand, the following theorem is proved in [1], where characterized non-nilpotent groups G with $c d(G)=\{1, m\}$:

Theorem 1.2. Let G be a non-abelian solvable group with the center Z and suppose that G^{\prime} is a minimal normal subgroup of G. Then G^{\prime} is an elementary abelian p-group of order p^{r} for some $p \in \mathbb{P}$ and $r \in \mathbb{N}, c d(G)=\{1, f\}$ for some $f>1$ and one of the following situations occurs:
(1) $G^{\prime} \leq Z$, in which case $\left|G^{\prime}\right|=p, f=p^{u}$ for some $u \in \mathbb{N}, G$ is nilpotent with an abelian p-complement and G / Z is an elementary abelian p group of order f^{2}.
(2) $G^{\prime} \cap Z=1$, in which case G / Z is a Frobenius group with the kernel $G^{\prime} \times Z / Z$ of order p^{r} and a cyclic complement of order f.

In Section 3, we provide an example of a Frobenius group which satisfies the case (2) of Theorem 1.2 and Corollary 2 of [1], but where G^{\prime} is not a minimal normal subgroup of G. Moreover, by Theorem 1.2 and Theorem 1.1, we characterize finite non-nilpotent solvable groups G whose derived covering number is finite.

2. Nilpotent groups

Theorem 2.1. Let G be a finite group. Then $\operatorname{ccl}(G)=\left\{1,\left|G^{\prime}\right|\right\}$ if and only if G is nilpotent with an abelian p-complement and $G / Z(G)$ is an elementary abelian p-group of order $p^{2 r}$ such that $c d(G)=\left\{1, p^{r}\right\}$.

Proof. Assume that $\operatorname{ccl}(G)=\left\{1,\left|G^{\prime}\right|\right\}$ and $a \in G-Z(G)$. Since $a^{G}=a[a, G]$ and $\left|a^{G}\right|=|[a, G]|=\left|G^{\prime}\right|$ then $[a, G]=G^{\prime}$ and $a^{G}=a G^{\prime}$. Now since $\left|a^{G}\right|=$ $\left|G / C_{G}(a)\right|=\left|G^{\prime}\right|$ then $\left|G: G^{\prime}\right|=\left|C_{G}(a)\right|$ and we can write

$$
\begin{aligned}
\left|C_{G}(a)\right| & =\sum_{\chi \in \operatorname{Irr}(G)}|\chi(a)|^{2} \\
& =\sum_{\chi \in \operatorname{Irr}_{1}(G)}|\chi(a)|^{2}+\sum_{\chi \in \operatorname{Lin}(G)}|\chi(a)|^{2} \\
& =\sum_{\chi \in \operatorname{Irr}_{1}(G)}|\chi(a)|^{2}+\left|G: G^{\prime}\right|
\end{aligned}
$$

where $\operatorname{Lin}(G)$ denotes the set of all linear irreducible characters of G. Therefore $\sum_{\chi \in \operatorname{Irr}_{1}(G)}|\chi(a)|^{2}=0$ and so $\chi(a)=0$ for all $\chi \in \operatorname{Irr}_{1}(G)$. By Corollary 2.30 of [4], we have $\chi(1)^{2}=|G: Z(\chi)|$ and since $Z(G) \leq Z(\chi)$ and $0=\chi(b) \neq \chi(1)$ for all $b \in G-Z(G)$, therefore $Z(\chi)=Z(G)$ for all $\chi \in \operatorname{Irr}_{1}(G)$ and $\operatorname{cd}(G)=$
$\left\{1,|G: Z(G)|^{1 / 2}\right\}$.
On the other hand, observe that

$$
0=\sum_{\chi \in \operatorname{Irr}(G)} \chi(1) \chi(a)=\sum_{\lambda \in \operatorname{Lin}(G)} \lambda(1) \lambda(a)
$$

and thus $a \in G-G^{\prime}$. It follows that $G^{\prime} \leq Z(G)$ and so G is a nilpotent group of class 2 . Then $G=P_{1} \times \ldots \times P_{k}$ in which $P_{i} \in S y l_{p_{i}}(G)$ and any irreducible character of G can be written as a product $\chi_{1} \cdots \chi_{k}$ where $\chi_{i} \in \operatorname{Irr}\left(P_{i}\right)$. Thus since $\chi_{1}(1) \ldots \chi_{k}(1) \in c d(G)$ and $|c d(G)|=2$, then G is the direct product of a p-group of class exactly 2 and an abelian p-complement. By Corollary 2.2 of [5], we also have $G / Z(G)$ is an elementary abelian p-group.

Proposition 2.2. Suppose that G satisfies the assumption of Theorem 2.1. Then:
(1) $Z(G)=Z(\chi)$ for all $\chi \in \operatorname{Irr}_{1}(G)$.
(2) $\chi(a)=0$ for all $\chi \in \operatorname{Irr}_{1}(G)$ and $a \in G-Z(G)$.
(3) $a^{G}=a G^{\prime}$ for all $a \in G-Z(G)$.
(4) G^{\prime} is an elementary abelian p-group.
(5) $G^{\prime} \leq \Phi(G) \leq Z(G)$.
(6) $\operatorname{ccl}(G)=\left\{1,\left|G^{\prime}\right|\right\}$, with corresponding frequencies $\left\{|Z(G)|,(|G|-|Z(G)|) /\left|G^{\prime}\right|\right\}$.
(7) $c d(G)=\left\{1,|G: Z(G)|^{1 / 2}\right\}$, with corresponding frequencies $\{\mid G:$ $G^{\prime}\left|,|Z(G)|\left(\left|G^{\prime}\right|-1\right) /\left|G^{\prime}\right|\right\}$.

Proof. (1), (2) and (3) follows from proof of Theorem 2.1.
(4) Assume that $x, y \in G$. Since $G^{\prime}=\langle[x, y] \mid x, y \in G\rangle$ and $G / Z(G)$ is an elementary abelian p-group, then $[x, y]^{p}=\left[x^{p}, y\right]=[z, y]=1$ for some $z \in Z(G)$. Therefore G^{\prime} is an elementary abelian p-group.
(5) Since $G / Z(G)$ is an elementary abelian p-group and $\Phi(G)=G^{\prime} G^{p}$, then $G^{p} \leq Z(G)$ and it follows that $G^{\prime} \leq \Phi(G) \leq Z(G)$.
(6) Clearly, all non-central conjugacy classes are of size $\left|G^{\prime}\right|$ and the number of non-central conjugacy classes is $(|G|-|Z(G)|) /\left|G^{\prime}\right|$.
(7) Observe that

$$
\begin{aligned}
|G| & =\sum_{\chi \in \operatorname{Irr}(G)} \chi(1)^{2} \\
& =\sum_{\chi \in \operatorname{Irr}_{1}(G)} \chi(1)^{2}+\sum_{\chi \in \operatorname{Lin}(G)} \chi(1)^{2} \\
& =t \frac{|G|}{|Z(G)|}+\frac{|G|}{\left|G^{\prime}\right|} \\
& =|G| \frac{t\left|G^{\prime}\right|+|Z(G)|}{|Z(G)|\left|G^{\prime}\right|}
\end{aligned}
$$

therefore G has $t=|Z(G)|\left(\left|G^{\prime}\right|-1\right) /\left|G^{\prime}\right|$ non-linear irreducible characters.

Corollary 2.3. Let G be finite group such that $\operatorname{ccl}(G)=\left\{1,\left|G^{\prime}\right|\right\}$. Then G is an extra-special group if and only if $|Z(G)|=p$.

Proof. By Proposition 2.2, we have $G^{\prime} \leq \Phi(G) \leq Z(G)$. Since $G^{\prime} \neq\{1\}$, if $|Z(G)|=p$ then $G^{\prime}=\Phi(G)=Z(G)$.

Example 2.1. Let Q_{8} be the quaternion group. We can check that $a^{Q_{8}}=$ $a Z\left(Q_{8}\right), a^{Q_{8}} a^{Q_{8}}=Z\left(Q_{8}\right)=Q_{8}^{\prime}$, and so $d c n\left(Q_{8}\right)=2$.
Theorem 2.4. A finite nilpotent group G has a finite derived covering number if and only if G is nilpotent with an abelian p-complement and $G / Z(G)$ is an elementary abelian p-group of order $p^{2 r}$ such that $c d(G)=\left\{1, p^{r}\right\}$.

Proof. Suppose that a finite nilpotent group G has a finite derived covering number. Then the claim follows from Theorem 2.1 and Proposition 2.4 of [2]. Conversely, suppose that $\chi(1)^{2}=|G: Z(G)|$ for all $\chi \in \operatorname{Irr}_{1}(G)$, by Theorem 2.1, we can write $a^{G}=a G^{\prime}$ for all $a \in G-Z(G)$. Hence $\left(a^{G}\right)^{m}=\left(a G^{\prime}\right)^{m}=$ $a^{m} G^{\prime}=G^{\prime}$ in which $m=\left|G: G^{\prime}\right|$ and therefore the derived covering number is finite.

In the following Example, we provide a finite group which satisfies Theorem 2.4 such that $\left|G^{\prime}\right| \geq p$

Example 2.2. The finite Symplectic group $S p_{4}(q)$ of dimension 4 over the field F with $q=p^{m}$ (where p is an odd prime number) elements is the set of all non-singular 4×4 matrices A satisfying $A J A^{t}=J$, where
$J=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0\end{array}\right]$. By [6], a Sylow p-subgroup P of $S p_{4}(q)$ consists of matrices of the form $\left[\begin{array}{cccc}1 & \lambda & 0 & \lambda \alpha+\beta \\ 0 & 1 & 0 & \alpha \\ -\alpha & \beta & 1 & \mu \\ 0 & 0 & 0 & 1\end{array}\right]$ which is denoted by $A(\lambda, \alpha, \mu, \beta)$.
We now define

$$
Q=\left\{\left.A(\alpha, \alpha, \mu, \beta)=\left[\begin{array}{cccc}
1 & \alpha & 0 & \alpha^{2}+\beta \\
0 & 1 & 0 & \alpha \\
-\alpha & \beta & 1 & \mu \\
0 & 0 & 0 & 1
\end{array}\right] \right\rvert\, \alpha, \beta, \mu \in F\right\}
$$

We can easily check that Q is a p-group and
$A^{-1}(a, a, c, b) A(\alpha, \alpha, \mu, \beta) A(a, a, c, b)=A(\alpha, \alpha, 2(\beta a-\alpha b)+\alpha a(\alpha-a)+\mu, \beta)$.

Therefore, the element $A(\alpha, \alpha, \mu, \beta)$ is conjugate to $A(\alpha, \alpha, x, \beta)$ for any $x \in F$ if $(\alpha, \beta) \neq(0,0)$, hence Q has $q^{2}-1$ non-central conjugacy classes of order q and we can show that

$$
\left.Q^{\prime}=\bigcup_{\alpha, \beta, \mu \in F} A^{-1}(\alpha, \alpha, \mu, \beta) A^{Q}(\alpha, \alpha, \mu, \beta)\right)=\{A(0,0, \mu, 0) \mid \mu \in F\}=Z(Q)
$$

and $A^{Q}(\alpha, \alpha, \mu, \beta)=A(\alpha, \alpha, \mu, \beta) Q^{\prime}$. Furthermore, we can check by induction on k that

$$
A^{2 k}(\alpha, \alpha, \mu, \beta)=A\left(2 k \alpha, 2 k \alpha, \delta, 2 k \beta-k(2 k-1) \alpha^{2}\right)
$$

for any integer $k \geq 1$ and some $\delta \in F$. Therefore

$$
\begin{aligned}
A^{2 k+1}(\alpha, \alpha, \mu, \beta) & =A^{2 k}(\alpha, \alpha, \mu, \beta) A(\alpha, \alpha, \mu, \beta) \\
& =A\left((2 k+1) \alpha,(2 k+1) \alpha, \delta,(2 k+1) \beta-k(2 k+1) \alpha^{2}\right)
\end{aligned}
$$

Thus for $p \neq 2$, we can write

$$
A^{p}(\alpha, \alpha, \mu, \beta)=A\left(p \alpha, p \alpha, \delta, p \beta-n p \alpha^{2}\right)=A(0,0, \delta, 0) \in Z(Q)
$$

for some $n \in \mathbb{N}$ and some $\delta \in F$. Then $Q / Z(Q)$ is an elementary abelian p-group and $Q^{\prime}=\Phi(Q)=Z(Q)$ because $\Phi(Q)=Q^{\prime} Q^{p}$. Now assume that $G=Q \times A$ in which A is an abelian group. Then G satisfies Theorem 2.1 such that $G^{\prime} \subsetneq Z(G)$.

3. Solvable groups

In the next example, we show the existence of a Frobenius group that satisfies case (2) of Theorem 1.2, but whose derived subgroup is not a minimal subgroup.

Example 3.1. Let p be a prime number and $q=p^{m}$. Let F be the field with q elements. We define

$$
E=\left\{\left.A(a, b, c)=\left[\begin{array}{ccc}
a & b & c \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \right\rvert\, a \neq 0 \text { and } a, b, c \in F\right\}
$$

We can check that E is a group of order $(q-1) q^{2}$ and

$$
A^{-1}(\alpha, \beta, \gamma) A(a, b, c) A(\alpha, \beta, \gamma)=A(a,((a \beta-\beta)+b) / \alpha,((a \gamma-\gamma)+c) / \alpha)
$$

Hence $A(a, b, c)$ belongs to $Z(E)$ if and only if $a=1$ and $b, c=0$ and so $Z(E)=I_{3 \times 3}$. Moreover, we obtain the conjugacy classes of E and tabulate them. There are $2 q$ conjugacy classes of E.

Table I : Conjugacy classes of E

Type	Class representative	Number	Size	Elements
1	$A(1,0,0)$	1	1	$A(1,0,0)$
2	$A(a, b, c), a \neq 0,1$	$q-2$	q^{2}	$\{A(a, \beta, \gamma) \mid \beta, \gamma \in F\}$
3	$A(1, b, c)$	$q+1$	$q-1$	$\{A(1, b / \alpha, c / \alpha) \mid \alpha \in F\}$

We also have

$$
E^{\prime}=\bigcup_{a, b, c \in F} A^{-1}(a, b, c) A^{E}(a, b, c)=\{A(1, \sigma, \zeta) \mid \sigma, \zeta \in F\}
$$

thus $\left|E^{\prime}\right|=q^{2}$ and E^{\prime} is an elementary abelian p-group because

$$
A^{p}(1, b, c)=A(1, p b, p c)=A(1,0,0)=I_{3 \times 3}
$$

Furthermore, we define

$$
T=\left\{\left.A(a, 0,0)=\left[\begin{array}{lll}
a & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \right\rvert\, a \neq 0 \text { and } a \in F\right\}
$$

and we can easily check that $E^{\prime} \cap T=I_{3 \times 3}, E=E^{\prime} T$, and $T^{g} \cap T=I$ for all $g \in E-T$. It follows that E is a Frobenius group with kernel E^{\prime} and the cyclic complement T of order $q-1$. By Theorem 13.8 of [3] E has exactly $\frac{\left|E^{\prime}\right|-1}{|T|}=\frac{q^{2}-1}{q-1}=q+1$ non-linear irreducible character of degree $\left[E: E^{\prime}\right]=q-1$ and hence $c d(E)=\{1, q-1\}$. Therefore, this example satisfies Theorem 2.1 and Corollary 2 of [1]. On the other hand, we have that

$$
\left(A^{G}(1, b, 0)\right)^{n}=(\{A(1, b / \alpha, 0) \mid \alpha \in F\})^{n}=M
$$

in which

$$
M=\left\{\left.A(1, b, 0)=\left[\begin{array}{lll}
1 & b & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \right\rvert\, b \in F\right\}
$$

is a subgroup of E and $M \nsubseteq E^{\prime}$. Thus $d c n(E)$ is not finite and it follows that G is not a minimal normal subgroup of G.

Theorem 3.1. A finite non-nilpotent solvable group G has a finite derived covering number if and only if G^{\prime} is minimal normal subgroup and $G / Z(G)$ is a Frobenius group with the kernel $\left(G^{\prime} \times Z(G)\right) / Z(G)$ of order p^{r} and a cyclic complement of order f where $\operatorname{cd}(G)=\{1, f\}$.

Proof. It follows from the case (1) of Theorem 1.1 and the case (2) of Theorem 1.2. Conversely, by Theorem 2.2 of [2], since G^{\prime} is a minimal normal subgroup then the derived covering number is finite.

Example 3.2. Let S_{3} be the symmetric group of degree 3. We can check $\left((123)^{S_{3}}\right)^{2}=\left((12)^{S_{3}}\right)^{2}=A_{3}$ and $S_{3}=A_{3} H$ where $H=\langle(12)\rangle, H \cap A_{3}=1$, and $H \cap H^{g}=\{1\}$ for all $g \in S_{3}-H$ because $(12)^{(123)}=(23)$ and $(12)^{(132)}=(13)$. Therefore, S_{3} satisfies Theorem 3.1 such that $c d(G)=\{1,|H|\}=\{1,2\}$.

Proposition 3.2. Let G be a finite group that admits a unique conjugacy class C of size k. Then $Z(G)=\{1\}$.

Proof. Assume that $C=a^{G}$ is the unique conjugacy class of size k of G and $z \in Z(G)$. Since, $(a z)^{G}=a^{G} z$ and $\left|a^{G}\right|=\left|(a z)^{G}\right|$, then $a z \in a^{G}$. By Problem 3.12 of [4], we can write

$$
\begin{aligned}
\chi(a) \chi(z) & =\frac{\chi(1)}{|G|} \sum_{h \in G} \chi\left(a z^{h}\right) \\
& =\frac{\chi(1)}{|G|} \sum_{h \in G} \chi(a) \\
& =\chi(1) \chi(a)
\end{aligned}
$$

Therefore, $\chi(1)=\chi(z)$ for all $\chi \in \operatorname{Irr}(G)$. Thus $z \in \bigcap_{\chi \in \operatorname{Irr}(G)}$ ker $\chi=\{1\}$ and so $Z(G)=\{1\}$.
Corollary 3.3. A finite non-nilpotent solvable group G has a finite derived covering number and non-central conjugacy classes of distinct sizes if and only if $G \simeq S_{3}$
Proof. By Corollary 2 of [5], observe that $\operatorname{ccl}(G)=\left\{1, \frac{p^{r}-1}{s}, p^{r}\right\}$, with corresponding frequencies $\left\{|Z(G)|, s|Z(G)|,\left(\frac{p^{r}-1}{s}-1\right)|Z(G)|\right\}$ where s is the number of conjugacy classes of G contained in $G^{\prime}-1$. Thus by Proposition 3, we have $|Z(G)|=1$, $s=1$, and $\frac{p^{r}-1}{s}-1=1$. Therefore $r=1, p=3$, and $\operatorname{ccl}(G)=\{1,2,3\}$ and it follows that $G \simeq S_{3}$

References

[1] M. Bianchi, A. G. B. Mauri, M. Herzog, G. Qian and W. Shi, Characterization of nonnilpotent groups with two irreducible character degrees, J. Algebra 284 (2005), no. 1, 326-332.
[2] M. R. Darafsheh and S. M. Robati, Powers of irreducible characters and conjugacy classes in finite groups, J. Algebra Appl. 13 (2014), no. 8, 9 pages.
[3] L. Dornhoff, Group representation theory, Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971.
[4] I. M. Isaacs, Character theory of finite groups, Academic Press, New York-San FranciscoLondon, 1976.
[5] K. Ishikawa, On finite p-groups which have only two conjugacy lengths, Israel J. Math. 129 (2002) 119-123.
[6] B. Srinivasan, The characters of the finite symplectic group $\operatorname{Sp}(4, q)$, Trans. Amer. Math. Soc. 131 (1968) 488-525.
(S. M. Robati) Department of Mathematics, Faculty of Science, Imam Khomeini International University, Qazvin, Iran.

E-mail address: sajjad.robati@gmail.com; mahmoodrobati@sci.ikiu.ac.ir

[^0]: Article electronically published on February 22, 2016.
 Received: 5 May 2014, Accepted: 9 October 2014.

