Title:
Characterization of some projective special linear groups in dimension four by their orders and degree patterns

Author(s):
M. Sajjadi, M. Bibak and G. R. Rezaeezadeh
CHARACTERIZATION OF SOME PROJECTIVE SPECIAL LINEAR GROUPS IN DIMENSION FOUR BY THEIR ORDERS AND DEGREE PATTERNS

M. SAJJADI, M. BIBAK AND G. R. REZAEEZADEH

(Communicated by Mohammad Reza Darafsheh)

Abstract. Let G be a finite group. The degree pattern of G denoted by $D(G)$ is defined as follows: If $\pi(G) = \{p_1, p_2, \ldots, p_k\}$ such that $p_1 < p_2 < \ldots < p_k$, then $D(G) := (\deg(p_1), \deg(p_2), \ldots, \deg(p_k))$, where $\deg(p_i)$ for $1 \leq i \leq k$, are the degree of vertices p_i in the prime graph of G. In this article, we consider a finite group G under assumptions $|G| = |L_4(2^n)|$ and $D(G) = D(L_4(2^n))$, where $n \in \{5, 6, 7\}$ and we prove that $G \cong L_4(2^n)$.

Keywords: Degree pattern, prime graph, projective special linear group.

MSC(2010): Primary: 20D05; Secondary: 20D06.

1. Introduction

Let G be a finite group and $\omega(G)$ be the set of element orders for G. The set $\omega(G)$ is partially ordered under divisibility and is uniquely determined by a subset $\mu(G)$ of its maximal elements. We put all prime divisors of $|G|$ in $\pi(G)$, and we associate to $\pi(G)$ a simple graph $\Gamma(G)$, called prime graph or Grunberg-Kegel graph, whose vertex set is $\pi(G)$ and every two primes p and q are adjacent iff $pq \in \omega(G)$, in this case we write $p \sim q$, and by $p \not\sim q$ we mean that any element of order pq does not exist in G.

Definition 1.1. Let G be a group with $\pi(G) = \{p_1, p_2, \ldots, p_k\}$. We define degree of p as follows for $p \in \pi(G)$:

$$\deg(p) := |\{q \in \pi(G) | p \sim q\}|.$$

Also $D(G) := (\deg(p_1), \deg(p_2), \ldots, \deg(p_k))$, where $p_1 < p_2 < \ldots < p_k$, which is called degree pattern of G.

©2016 Iranian Mathematical Society
A group G is called k-fold OD-characterizable if there exist just k non-isomorphic finite groups H with $|H| = |G|$ and $D(H) = D(G)$. If $k = 1$, a 1-fold OD-characterizable group is simply called OD-characterizable.

Many articles are devoted to characterize some finite simple groups by their orders and degree patterns. As in the present paper we investigate OD-characterizability of some projective special linear groups, we review only some OD-characterizable groups of this kind that have been obtained up to now.

1. $L_2(2) ≅ S_3$ and $L_2(3) ≅ A_4$ [7].
2. $L_2(2^n)$, where $n \geq 2$ [7].
3. $L_2(q)$, where $q \geq 4$ is an odd prime power and $\pi(L_2(q)) \leq 4$ [12].
4. $L_2(q)$, where $q \geq 4$ is an odd prime power and $\pi(L_2(q)) \geq 5$ [13].
5. $L_2(q)$, where $q = 5, 7, 9, 11, 13, 17$ [1, 2].
6. $L_4(2^n)$, where $n = 2, 3, 4$ [1].
7. $L_3(q)$, with $q = p^n$ and $|\pi((q^{2+n}+q+1)/d)| = 1$ where $d = (3, q-1)$ [8].
8. $L_3(9)$ and $L_9(2)$ [5, 14].
9. $L_n(2)$, where $n = p$ or $p + 1$, for which $2^p - 1$ is a prime [2].

We add another projective special linear groups to the sixth part of the former list. In fact, we prove that $L_4(2^n)$ for $n = 5, 6$ and 7 are OD-characterizable. All groups in this paper are assumed finite.

Throughout this paper, we use the following notations: We denote the socle of G by $\text{Soc}(G)$, which is the subgroup generated by the set of all minimal normal subgroups of G. For $p \in \pi(G)$, we denote by G_p and $\text{Syl}_p(G)$ a Sylow p-subgroup of G and the set of all Sylow p-subgroups of G respectively. All further unexplained notations are standard and and one may refer to [10].

2. Preliminary lemmas

Given a prime $p \geq 5$, we denote by \mathcal{S}_p the set of all finite non-abelian simple groups G such that $p \in \pi(G) \subseteq \{2, 3, ..., p\}$. It is clear that the set of all finite non-abelian simple groups is the disjoint union of the finite sets \mathcal{S}_p for all primes $p \geq 5$.

Lemma 2.1. Let P be a non-abelian simple group belongs to \mathcal{S}_p, where $5 \leq p \leq 997$. Then $\pi(\text{Out}(P)) \subseteq \{2, 3, 5, 7, 11\}$.

Proof. All finite non-abelian simple groups P in \mathcal{S}_p, for $5 \leq p \leq 997$, are collected in Table 4 in [11]. So by computing the order of outer automorphism groups of them, we see that $\pi(\text{Out}(P)) \subseteq \{2, 3, 5, 7, 11\}$. In fact, 11 only divides the order of outer automorphism group of $L_2(2^{11})$, where $L_2(2^{11}) \in \mathcal{S}_{683}$.

To prove the propositions in the next section, we need degree patterns of the special linear groups under study. Since we obtain these degree patterns by a subset μ of these groups, we give following lemma.
Lemma 2.2. Let \(L = L_4(q) \). Then \(\mu(L) = \{(q^2 + 1)(q + 1), (q^3 - 1), 2(q^2 - 1), 4(q - 1)\} \).

Proof. The proof follows from the structure of maximal tori in finite simple classical groups, see \([3, 6]\). \(\square\)

Lemma 2.3. \([4, \text{Theorem 10.3.1}]\) Let \(G \) be a Frobenius group with kernel \(K \) and complement \(H \). Then:

1. \(K \) is a nilpotent group.
2. \(|K| \equiv 1 (\text{mod} |H|) \).

Definition 2.4. \(G \) is said to be completely reducible group if and only if either \(G = 1 \) or \(G \) is the direct product of a finite number of simple groups. A completely reducible group will be called a CR-group.

A CR-group has trivial center if and only if it is a direct product of non-abelian simple groups and in this case, it has been named a centerless CR-group. The following lemma determines the structure of the automorphism group of a centerless CR-group.

Lemma 2.5. \([10, \text{Theorem 3.3.20}]\) Let \(R \) be a finite centerless CR-group and write \(R = R_1 \times R_2 \times \ldots \times R_k \), where \(R_i \) is a direct product of \(n_i \) isomorphic copies of a simple group \(H_i \), and \(H_i \) and \(H_j \) are not isomorphic if \(i \neq j \). Then \(\text{Aut}(R) = \text{Aut}(R_1) \times \text{Aut}(R_2) \times \ldots \times \text{Aut}(R_k) \) and \(\text{Aut}(R_i) \cong \text{Out}(H_i) \wr S_{n_i} \), where in this wreath product \(\text{Aut}(H_i) \) appears in its right regular representation and the symmetric group \(S_{n_i} \) in its natural permutation representation. Moreover, these isomorphisms induce isomorphisms \(\text{Out}(R) \cong \text{Out}(R_1) \times \text{Out}(R_2) \times \ldots \times \text{Out}(R_k) \cong \text{Out}(H_i) \wr S_{n_i} \).

3. Main results

Proposition 3.1. If \(G \) is a finite group such that \(D(G) = D(L_4(2^5)) \) and \(|G| = |L_4(2^5)| \), then \(G \cong L_4(2^5) \).

Proof. We break the proof of all propositions in this section to three steps. In this case, we know that \(|G| = |L_4(2^5)| = 2^{30} \cdot 3^2 \cdot 5^2 \cdot 7 \cdot 11 \cdot 2^3 \cdot 31 \cdot 41 \cdot 151 \), now since \(\mu(L_4(2^5)) = \{(2^{10} + 1)(2^5 + 1), (2^{15} - 1), 2(2^{10} - 1), 4(2^5 - 1)\} \) (by Lemma 2.2), then \(D(L_4(2^5)) = (3, 5, 3, 2, 5, 5, 3, 2) \). So \(D(G) = (3, 5, 3, 2, 5, 5, 3, 2) \).

Step 1. Let \(K \) be the maximal normal solvable subgroup of \(G \). Then \(K \) is a \{151, r\}'-group, where \(r \in \{11, 31, 41\} \). In particular, \(G \) is non-solvable. First, we show that \(K \) is a \{151\}'-group. Assume the contrary and let \(151 \in \pi(K) \). Since \(\text{deg}(151) = 2 \), at least one of the primes in \(\{11, 31, 41\} \) and 151 aren't adjacent, we put it \(r \). Now we claim that \(r \) does not divide the order of \(K \). Otherwise, we may suppose that \(H \) is a Hall \{151, r\}-subgroup of \(K \) of order \(151 \cdot r^i \), where \(i \in \{1, 2, 3\} \). It is seen that \(H \) is a nilpotent subgroup of \(G \), thus \(151 \cdot r \in \omega(K) \subseteq \omega(G) \), a contradiction. Thus, \(\{151\} \subseteq \pi(K) \subseteq \pi(G) - \{r\} \). Let
\[K_{151} \in \text{Syl}_{151}(K), \text{ then by Frattini argument, } G = KN_G(K_{151}). \text{ Therefore, } N_G(K_{151}) \text{ contains an element of order } r, \text{ say } \sigma. \text{ Since } G \text{ has no element of order } 151r, \langle \sigma \rangle \text{ should act fixed point freely on } K_{151}, \text{ implying } \langle \sigma \rangle K_{151} \text{ is a Frobenius group. By Lemma 2.3, } |\langle \sigma \rangle|||K_{151}| - 1|. \text{ It follows that } r|151 - 1, \text{ which is impossible. So } K \text{ is a } \{151\}-\text{group. Next, we show that } K \text{ is a } \{r\}-\text{group. Assume the contrary, let } r|\langle K \rangle \text{ and } K_r \in \text{Syl}_r(K). \text{ Then by Frattini argument } G = KN_G(K_r). \text{ Since } K \text{ is a } \{151\}-\text{group, } 151 \text{ must divide } |N_G(K_r)|, \text{ so suppose } x \in N_G(K_r) \text{ of order } 151. \text{ As } \langle x \rangle \subseteq N_G(K_r), \text{ then } \langle x \rangle K_r \text{ is a subgroup of } G. \text{ Moreover this subgroup is nilpotent and therefore } 151 \sim r, \text{ which is a contradiction by assumption. Therefore, } r \text{ and } 151 \text{ do not divide } |K|. \text{ In addition, since } G \neq K, \text{ } G \text{ is non-solvable.}

\textbf{Step 2.} The quotient } \frac{G}{K} \text{ is an almost simple group (recall that a group } G \text{ is an almost simple group, if } S \subseteq G \subseteq \text{Aut}(S), \text{ for some non-abelian group } S). \text{ In fact, } S \leq \frac{G}{K} \leq \text{Aut}(S), \text{ where } S \text{ is a finite non-abelian simple group isomorphic to } L_4(2^5).

\text{Let } G = \frac{G}{K}. \text{ Then } S := \text{Soc}(G) = P_1 \times P_2 \times \ldots \times P_m, \text{ where } P_i \text{ are finite non-abelian simple groups and } S \leq \frac{G}{K} \leq \text{Aut}(S) \text{ (see [9, Proposition 3.1, Step 2]). First, we show that } m = 1. \text{ Suppose that } m \geq 2. \text{ We consider these separate parts:}

\textbf{Part A.} \text{ Let } 151 \sim 2 \text{ or } 151 \sim 3. \text{ We claim } 151 \text{ does not divide } |S|. \text{ Assume the contrary and let } 151 \mid |S|, \text{ on the other hand by Table 1 in [11], } \{2, 3\} \subseteq \pi(P_i) \text{ for every } i, \text{ hence } 2 \sim 151 \text{ and } 3 \sim 151, \text{ which is a contradiction. Now, by Step 1, we observe that } 151 \in \pi(G) \leq \pi(\text{Aut}(S)). \text{ However, } \text{Aut}(S) = \text{Aut}(S_1) \times \text{Aut}(S_2) \times \ldots \times \text{Aut}(S_t), \text{ where the groups } S_i \text{ are direct products of isomorphic } P_i \text{‘s such that } S = S_1 \times S_2 \times \ldots \times S_t. \text{ Therefore, for some } j, 151 \text{ divides the order of an automorphism group of a direct product } S_j \text{ of } t \text{ isomorphic simple groups } P_i. \text{ Since } P_i \in \mathfrak{S}_p \ (5 \leq p \leq 151), \text{ Lemma 2.1 follows that } |\text{Out}(P_i)| \text{ is not divisible by } 151, \text{ so } 151 \text{ does not divide the order of } \text{Aut}(P_i). \text{ Now, by Lemma 2.5, we obtain } |\text{Aut}(S_j)| = |\text{Aut}(P_i)|^{\alpha_1, \alpha_2, \ldots, \alpha_t}. \text{ Therefore, } t \geq 151 \text{ and so } 2^{302} \text{ must divide the order of } G, \text{ which is a contradiction.}

\textbf{Part B.} \text{ Let } 151 \sim 2 \text{ and } 151 \sim 3. \text{ Since } \text{deg}(151) = 2, \text{ then } 151 \sim \{11, 31, 41\}. \text{ So by Step 1, } K \text{ is a } \{11, 31, 41, 151\}-\text{group. Now since } \text{deg}(2) = 3, 2 \text{ and at least one prime in } \{11, 31, 41\} \text{ are not adjacent, put it } u. \text{ Now we claim } u \text{ does not divide } |S|. \text{ Assume the contrary and let } u \mid |S|. \text{ Therefore, } u \sim 2, \text{ which is impossible. Using similar argument as before, we see that } 3^u \geq 3^{11} \text{ must divide the order of } G, \text{ which is a contradiction.}

\text{Part A and Part B imply that } m = 1 \text{ and hence } S = P_1. \text{ By Table 1 and Step 1, it is evident that } |S| = 2^{\alpha_1, 3^{\alpha_2}, 5^{\alpha_3}, 7^{\alpha_4}, 11^{\alpha_5}, 31^{\alpha_6}, 41^{\alpha_7}}. \text{ 151, where } \alpha_i \text{‘s have the following conditions:}

(1) \ 1 \leq \alpha_1 \leq 30, \ 1 \leq \alpha_2 \leq 2, \ 0 \leq \alpha_3, \alpha_5 \leq 2, \ 0 \leq \alpha_4, \alpha_7 \leq 1 \text{ and } 0 \leq \alpha_6 \leq 3;

(2) \ \alpha_5 = 2, \ \alpha_6 = 3 \text{ or } \alpha_7 = 1.
Finite simple groups

By Lemma 2.3 and 2.2, if r is a prime in $L_2(241)$, then $j(r) = 1$. It follows that G is a finite group such that $D(G) = D(L_4(2^5))$ and $|G| = |L_4(2^5)|$, we deduce $K = 1$, so $G \cong L_4(2^5)$, and the proof is completed.

Proposition 3.2. If G is a finite group such that $D(G) = D(L_4(2^5))$ and $|G| = |L_4(2^5)|$, then $G \cong L_4(2^5)$.

Proof. By Lemma 2.2, $\mu(L_4(2^5)) = \{(2^{12}+1)(2^6+1), (2^{18}-1), 2(2^{12}-1), 4(2^6-1)\}$, then $D(G) = D(L_4(2^5)) = \{4, 6, 6, 6, 3, 3, 3, 3\}$. Also we have $|G| = |L_4(2^5)| = 2^{36} \cdot 3^7 \cdot 5^2 \cdot 7^3 \cdot 13^2 \cdot 17 \cdot 19 \cdot 73 \cdot 241$.

Step 1. Let K be the maximal normal solvable subgroup of G. Then K is a $\{73, 241\}$-group. In particular, G is non-solvable.

First, we show that K is a $\{241\}$-group. Assume the contrary and let $241 \in \pi(K)$. Since $\deg(241) = 3$, at least one of the primes in $\{7, 13, 19, 73\}$ and 241 aren’t adjacent, we put it r. Now we claim that r does not divide the order of K. Otherwise, we may suppose that H is a Hall $\{241, r\}$-subgroup of K of order $241 \cdot r^i$, where $i \in \{1, 2, 3\}$. It is seen that H is a nilpotent subgroup of G, thus $241 \cdot r^i \in \omega(K) \subseteq \omega(G)$, a contradiction. Thus, $\{241\} \subseteq \pi(K) \subseteq \pi(G) - \{r\}$. Let $K_{241} \in \text{Syl}_{241}(K)$, then by Frattini argument, $G = KN_G(K_{241})$. Therefore, $N_G(K_{241})$ contains an element of order r, say σ. Since G has no element of order $241 \cdot r$, $\langle \sigma \rangle$ should act fixed point freely on K_{241}, implying $\langle \sigma \rangle K_{241}$ is a Frobenius group. By Lemma 2.3, $|\langle \sigma \rangle||(|K_{241}| - 1)$, which is impossible. So K is a $\{241\}$-group. Next, we show that K is a $\{73\}$-group. Assume the contrary, let $73 || K$, since $\deg(73) = 3$ then at least one of the primes in $\{13, 17, 19, 241\}$ and 73 aren’t adjacent, we put it r. By similar
way we obtain that \(r|73 - 1 \), which is impossible. Therefore \(K \) is a \(\{73\}'\)-group too. In addition since \(G \neq K \), \(G \) is non-solvable.

Step 2. The quotient \(\frac{G}{K} \) is an almost simple group. In fact, \(S \leq \frac{G}{K} \leq \text{Aut}(S) \), where \(S \) is a finite non-abelian simple group isomorphic to \(L_4(2^p) \) or \(O_8^+(2) \).

Let \(G = \frac{G}{K} \). Then \(S := \text{Soc}(G) = P_1 \times P_2 \times \ldots \times P_m \), where \(P_i \)'s are finite non-abelian simple groups and \(S \leq \frac{G}{K} \leq \text{Aut}(S) \). First, we show that \(m = 1 \).

Suppose that \(m \geq 2 \). We consider these separate parts:

Part A. Let \(241 \sim 2 \) or \(241 \sim 3 \). By the same way in Proposition 3.1 (Step 2, Part A) we get a contradiction, because \(2^{462} \) must divide the order of \(G \), which is impossible.

Part B. Let \(73 \sim 2 \) or \(73 \sim 3 \). Similarly to those in Proposition 3.1 (Step 2, Part A), we can prove that \(2^{466} \) must divide the order of \(G \), which is a contradiction.

Part C. Let \(241 \sim \{2, 3\} \) and \(73 \sim \{2, 3\} \). In this case, we consider the following two subcases:

- **Subcase 1.** \(241 \sim 73 \).

 As \(\text{deg}(241) = 3 \), then \(241 \sim \{13, 17, 19\} \). We easily see that \(K \) is a \(\{13, 17, 19\}'\)-group. For example we investigate this fact for \(13 \). Assume the contrary, let \(13 || K \) and \(K_{13} \in \text{Syl}_{13}(K) \). Then by Frattini argument \(G = KN_G(K_{13}) \). Since \(K \) is a \(\{241\}'\)-group, \(241 \) must divide \(|N_G(K_{13})| \), so suppose \(x \) is an element of \(N_G(K_{13}) \) of order \(241 \). As \(\langle x \rangle \leq N_G(K_{13}) \), then \(\langle x \rangle K_{13} \) is a subgroup of \(G \). Moreover, this subgroup is nilpotent and therefore \(241 \sim 13 \), which is a contradiction by assumption. So \(K \) is a \(\{13\}'\)-group.

 On the other hand \(\text{deg}(2) = 4 \), therefore \(2 \) and at least one of the primes in \(\{13, 17, 19\} \) are not adjacent, put it \(u \). Similarly to Proposition 3.1 (Step 2, Part B), we conclude that \(3^u \geq 3^{13} \) must divide the order of \(G \), which is a contradiction.

- **Subcase 2.** \(241 \sim 73 \).

 (i) Suppose there exists one prime in \(\{13, 17, 19\} \) which is not adjacent to \(241 \) or \(73 \), and also to \(2 \). we put it \(u \). By a similar way in Subcase 1, it is seen that \(K \) is a \(\{u\}'\)-group. Now, we claim \(u \) does not divide \(|S| \). Otherwise we must have \(u \sim 2 \), which is impossible. The same technique in Proposition 3.1 (Step 2, Part B), implies that \(3^u \geq 3^{13} \) must divide the order of \(G \), which is a contradiction.

(1) Suppose that we do not have the conditions in [(i)], i.e., two primes in \(\{13, 17, 19\} := \{u_1, u_2, u_3\} \) are adjacent to \(2 \), we put them \(u_2 \) and \(u_3 \), and the other ones, \(u_1 \), is adjacent to \(73 \) and \(241 \) simultaneously. By a similar way in Proposition 3.1(Step 1), \(K \) is a \(\{u_2\}'\)-group (because \(241 \sim u_2 \)), and after that similar as before as \(K \) is a \(\{u_2\}'\)-group (because \(u_2 \sim u_1 \)). Now similarly to those
Table 2. Finite simple groups $S \in \mathcal{S}_{241}$

| S | $|S|$ |
|--------------|---------------------------|
| $U_3(16)$ | $2^{12}.3.5.17^2.241$ |
| $^{3}D_4(4)$ | $2^{24}.3^4.5^2.7.13^2.241$ |
| $L_2(2^{12})$ | $2^{12}.3^2.5.7.13.17.241$ |
| $G_2(16)$ | $2^{24}.3^3.5^2.7.13.17^2.241$ |
| $S_4(64)$ | $2^{24}.3^3.5^2.7^2.13^2.17.241$ |
| $O_8^+(8)$ | $2^{36}.3^3.5^7.13.17.19.73.241$ |
| $L_4(64)$ | $2^{36}.3^7.5^2.7^2.13^2.17.19.73.241$ |
| $S_8(8)$ | $2^{48}.3^9.5^2.7^2.13^2.17.19.241$ |
| $U_4(64)$ | $2^{36}.3^3.5^3.7^2.13^2.17.37.109.241$ |
| $O_{10}^{-}(8)$ | $2^{60}.3^9.5^2.7^3.13^2.17^2.19.31.73.151.241$ |
| $L_3(2^{12})$ | $2^{36}.3^3.5^2.7^2.13^2.17.19.37.73.109.241$ |
| $S_6(64)$ | $2^{54}.3^6.5^3.7^2.13^2.17.19.37.109.241$ |
| $O_8^{-}(64)$ | $2^{72}.3^7.5^2.7^4.13^4.17^2.37.73.109.241^2$ |
| $F_4(8)$ | $2^{72}.3^{10}.5^2.7^4.13^2.17.37.73^2.109.241$ |
| $L_2(241)$ | $2^{12}.3.5.11^2.241$ |
| A_{241} | $3 \times 4 \times 5 \times ... \times 241$ |
| A_{245} | $3 \times 4 \times 5 \times ... \times 250$ |

in Proposition 3.1 (Step 2, Part B), we can prove $3^{m_1} \geq 3^{13}$ must divide the order of G, which is a contradiction.

Part A, Part B and Part C imply that $m = 1$ and hence $S = P_1$.

By Table 2 and Step 1, it is evident that $|S| = 2^{241}.3^{242}.5^{103}.7^{109}.13^{152}.17^{109}.19^{17}$. 73.241, where α_i’s have the following conditions:

$$1 \leq \alpha_1 \leq 36, \quad 1 \leq \alpha_2 \leq 7, \quad 0 \leq \alpha_3, \alpha_5 \leq 2, \quad 0 \leq \alpha_4 \leq 3 \quad \text{and} \quad 0 \leq \alpha_6, \alpha_7 \leq 1$$

Now, using Table 2 follows that $S \cong L_4(2^6)$ or $O_{8}^{-}(8)$, and this completes the proof of Step 2.

Step 3. G is isomorphic to $\cong L_4(2^6)$.

If $S \cong L_4(2^6)$, as $S \cong G \cong \text{Aut}(S)$ and $|G| = |L_4(2^6)|$, we deduce $K = 1$, so $G \cong L_4(2^6)$.

If $S \cong O_{8}^{-}(8)$, by $S \cong G \cong \text{Aut}(S)$ we have,

$$1 \mid \frac{513}{14} \mid \| \text{Out}(O_{8}^{-}(8)) \| = 6$$
Therefore $|K| = 5 \cdot 13$. Then $K \cong \mathbb{Z}_{5,13}$ and therefore $K \leq C_G(K)$. But $C_G(K) / K \cong O_8^-(8)$, thus simplicity of $O_8^-(8)$ implies that $C_G(K) / K = 1$ or $O_8^-(8)$ is impossible too, because $\langle G \rangle$.

Thus, $O_8^-(8)$ is impossible, because $G = C_G(K)$, so $K \leq Z(G)$, that is, G is a central extension of $\mathbb{Z}_{5,13}$ by $O_8^-(8)$. If G splits over K, then $G \cong \mathbb{Z}_{5,13} \times O_8^-(8)$, which is impossible because $\deg(5) \neq 8$, by assumption. Otherwise $G \cong \mathbb{Z}_{5,13} \times O_8^-(8)$, which is impossible too, because 5.13 must divide the Schur multiplier of $O_8^-(8)$, which is 1. The proof here is

\[\text{Proposition 3.3.} \quad \text{If } G \text{ is a finite group such that } D(G) = D(L_4(2^7)) \text{ and } |G| = |L_4(2^7)|, \text{ then } G \cong L_4(2^7). \]

Proof. As $\mu(L_4(2^7)) = \{(2^{14} + 1)(2^7 + 1), (2^{21} - 1), 2(2^{14} - 1), 4(2^7 - 1)\}$, $D(G) = D(L_4(2^7)) = (3, 6, 4, 2, 4, 6, 4, 5, 2)$. Also $|G| = |L_4(2^7)| = 2^{42}.3^2.5.7^2.29.43.113.127^3.337$.

\textbf{Step 1.} Let K be the maximal normal solvable subgroup of G. Then K is a $\{337, r\}$-group, where $r \in \{43, 113, 127\}$. In particular, G is non-solvable. First, we show that K is a $\{337\}$-group. Assume the contrary and let $337 \in \pi(K)$. Since $\deg(337) = 2$, at least one of the primes in $\{43, 113, 127\}$ and 337 are not adjacent, we put it r. Now, we claim that r does not divide the order of K. Otherwise, we may suppose that H is a Hall $\{337, r\}$-subgroup of K of order $337 \cdot r^i$, where $i \in \{1, 2, 3\}$. It is seen that H is a nilpotent subgroup of G, thus $337 \cdot r \in \omega(K) \subseteq \omega(G)$, a contradiction. Thus, $\{337\} \subseteq \pi(K) \subseteq \pi(G) - \{r\}$. Let $K_{337} \in \text{Syl}_{337}(K)$, then by Frattini argument, $G = KN_G(K_{337})$. Therefore, $N_G(K_{337})$ contains an element of order r, say σ. Since G has no element of order $337 \cdot r$, $\langle \sigma \rangle$ should act fixed point freely on K_{337}, implying $\langle \sigma \rangle K_{337}$ is a Frobenius group. By Lemma 2.3, $|\langle \sigma \rangle||K_{337} - 1|$. It follows that $r|337 - 1$, which is impossible. So K is a $\{337\}$-group. Next, we show that K is a $\{r\}$-group. Assume the contrary, let $r|\bar{K}$ and $K_r \in \text{Syl}_r(K)$. Then by Frattini argument $G = KN_G(K_r)$. Since K is a $\{337\}$-group, 337 must divide $|N_G(K_r)|$, so suppose x is an element of $N_G(K_r)$ of order 337. As $\langle x \rangle \subseteq N_G(K_r)$, then $\langle x \rangle K_r$ is a subgroup of G. Moreover, this subgroup is nilpotent and therefore $337 \sim r$, which is a contradiction by assumption. Therefore r and 337 do not divide $|K|$. In addition since $G \neq K$, G is non-solvable.

\textbf{Step 2.} The quotient G / K is an almost simple group. In fact, $S \leq G / K \leq \text{Aut}(S)$, where S is a finite non-abelian simple group isomorphic to $L_4(2^7)$.

Let $\overline{G} = G / K$. Then $S := \text{Soc}(\overline{G}) = P_1 \times P_2 \times \ldots \times P_m$, where P_i's are finite non-abelian simple groups and $S \leq G / K \leq \text{Aut}(S)$. First, we show that $m = 1$.

Suppose that \(m \geq 2 \). We consider these separate parts:

Part A. Let \(337 \sim 2 \) or \(337 \sim 3 \). Similarly to those in Proposition 3.1 (Step 2, Part A), we obtain \(2^74 \) must divide the order of \(G \), which is a contradiction.

Part B. Let \(337 \sim 2 \) and \(337 \sim 3 \). Since \(deg(2) = 3, 2 \) and at least one prime in \(\{43, 113, 127\} \) are not adjacent, put it \(u \). Since \(deg(337) = 2 \), then \(337 \sim \{43, 113, 127\} \). So by Step 1, \(K \) is a \(\{43, 113, 127, 337\} \)-group. Now we claim \(u \) does not divide \(|S| \). Assume the contrary and let \(u \mid |S| \). By similar way in Proposition 3.1 (Step 2, Part A), we conclude that \(3^a \geq 3^{47} \) must divide the order of \(G \), which is a contradiction.

Part A and Part B imply that \(m = 1 \) and hence \(S = P_1 \).

Table 3. Finite simple groups \(S \in \mathcal{S}_{337} \)

| \(S \) | \(|S| \) |
|------------|--|
| \(L_3(2^7) \) | \(2^{41}.3.7^2.43.127^2.337 \) |
| \(L_2(337^2) \) | \(2^5.3.5.7.13^2.41.277.337 \) |
| \(S_4(337) \) | \(2^{10}.3^2.5.7^2.13^2.41.277.337^4 \) |
| \(L_4(2^7) \) | \(2^{42}.3^2.5.7^2.29.43^2.113.127^3.337 \) |
| \(L_7(8) \) | \(2^{63}.3.7.5.7^2.13.19.31.73.127.151.337 \) |
| \(L_8(8) \) | \(2^{84}.3^3.5^2.7^2.13^2.17.19.31.73.127.151.241.337 \) |
| \(O_4^+(8) \) | \(2^{126}.3^3.5^2.7^2.11.13.19.31.37.73^2.109.127.151.242.331.337 \) |
| \(L_4(337) \) | \(2^{43}.3.7^2.13^2.337 \) |
| \(A_{437} \) | \(3 \times 4 \times 5 \times \ldots \times 337 \) |
| \(A_{438} \) | \(3 \times 4 \times 5 \times \ldots \times 338 \) |

By Table 3 and Step 1, it is evident that \(|S| = 2^{\alpha_1} \cdot 3^{\alpha_2} \cdot 5^{\alpha_3} \cdot 7^{\alpha_4} \cdot 29^{\alpha_5} \cdot 43^{\alpha_6} \cdot 113^{\alpha_7} \cdot 127^{\alpha_8} \cdot 337 \), where \(\alpha_i \)'s have the following conditions:

1. \(1 \leq \alpha_1 \leq 42, \ 1 \leq \alpha_2 \leq 2, \ 0 \leq \alpha_4, \alpha_6 \leq 2, \ 0 \leq \alpha_3, \alpha_5, \alpha_7 \leq 1 \) and \(0 \leq \alpha_8 \leq 3 \).
2. \(\alpha_6 = 2, \ \alpha_7 = 1 \) or \(\alpha_8 = 3 \).

Now, using Table 3 follows that \(S \cong L_4(2^7) \), and this completes the proof of Step 2.

Step 3. \(G \) is isomorphic to \(L_4(2^7) \).

By Step 2, \(L_4(2^7) \leq \overline{G} \leq \text{Aut}(L_4(2^7)) \). As \(|G| = |L_4(2^7)| \), we deduce \(K = 1 \), so \(G \cong L_4(2^7) \), and the proof is completed. \(\Box \)

Acknowledgments

The authors would like to thank the Shahrekord university for the financial support and also the referee because of his/her valuable comments.
REFERENCES

(Masoumeh Sajjadi) DEPARTMENT OF MATHEMATICS, PAYAME NOOR UNIVERSITY, IRAN.
E-mail address: masa.irsh@gmail.com

(Masoumeh Bibak) DEPARTMENT OF MATHEMATICS, PAYAME NOOR UNIVERSITY, IRAN.
E-mail address: m.bibak62@gmail.com

(Gholamreza Rezaeezadeh) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SHAHREKORD, SHAHREKORD, IRAN.
E-mail address: rezaeezadeh@sci.sku.ac.ir