Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 1, pp. 49-52

Title:
Erratum: Coupled fixed point results for weakly related mappings in partially ordered metric spaces

Author(s):
M. Jain, N. Gupta, and S. Kumar

Published by Iranian Mathematical Society
http://bims.ims.ir

ERRATUM: COUPLED FIXED POINT RESULTS FOR WEAKLY RELATED MAPPINGS IN PARTIALLY ORDERED METRIC SPACES

M. JAIN*, N. GUPTA, AND S. KUMAR
(Communicated by Hamid Reza Ebrahimi Vishki)

Abstract

In this note we point out and rectify some errors in a recently published paper "N. Singh, R. Jain: Coupled Fixed Point Results For Weakly Related Mappings in Partially Ordered Metric Spaces, Bull. Iranian Math. Soc. 40 (2014), no. 1, 29-40". Keywords: Coupled fixed point, common coupled fixed point, partially ordered space, weakly related mappings. MSC(2010): Primary: 47H10; Secondary: 54H25.

In [1], the authors showed the existence of coupled fixed points for the nondecreasing mappings in partially ordered complete metric space using a partial order induced by an appropriate function ϕ. The reader should consult [1] for terms not specifically defined in this note.

Remark 1. The authors in [1] claimed that Example 2.4 supports Theorem 2.3. In Theorem 2.3, the function ϕ is considered to be bounded from above but in Example 2.4, the function $\phi: X(=[0,+\infty)) \rightarrow R$ defined by $\phi(x)=2 x$ for $x \in X$ is not bounded from above. Further, the order relation " \preccurlyeq ' must be induced by ϕ but in Example 2.4 it is considered to be the usual ordering.

We now rectify Example 2.4 as follows:
Example 2. Let $X=[0,1]$ and $d(x, y)=|x-y|$, then (X, d) is a complete metric space. Let $\phi: X \rightarrow R$ be the mapping defined by $\phi(x)=-2 x$ for all $x \in X$. Define the relation "々" on X as follows:

$$
x \preccurlyeq y \quad \text { iff } \quad d(x, y) \leq \phi(y)-\phi(x) .
$$

Then " \preccurlyeq " is partial order induced by ϕ.
Clearly, ϕ is bounded from above on X.

[^0]Define $F: X \times X \rightarrow X$ by $F(x, y)=\frac{x(1+y)}{2}$ for all $x, y \in X$.
Then F is non-decreasing function on X.
Let $x_{0}=0, y_{0}=1$, then $F\left(x_{0}, y_{0}\right)=\frac{x_{0}\left(1+y_{0}\right)}{2}=0$ and
$F\left(y_{0}, x_{0}\right)=\frac{y_{0}\left(1+x_{0}\right)}{2}=\frac{1}{2}$.
Finally, we check that $x_{0} \preccurlyeq F\left(x_{0}, y_{0}\right)$ and $y_{0} \preccurlyeq F\left(y_{0}, x_{0}\right)$.
Now,

$$
\begin{aligned}
x_{0} \preccurlyeq F\left(x_{0}, y_{0}\right) & \text { iff } d\left(x_{0}, F\left(x_{0}, y_{0}\right)\right) \leq \phi\left(F\left(x_{0}, y_{0}\right)\right)-\phi\left(x_{0}\right) \\
& \text { iff } d(0,0)=0 \leq \phi(0)-\phi(0)=0, \text { which is true. }
\end{aligned}
$$

Also,

$$
\begin{aligned}
y_{0} \preccurlyeq F\left(y_{0}, x_{0}\right) & \text { iff } d\left(y_{0}, F\left(y_{0}, x_{0}\right)\right) \leq \phi\left(F\left(y_{0}, x_{0}\right)\right)-\phi\left(y_{0}\right) \\
& \text { iff } d\left(1, \frac{1}{2}\right) \leq \phi\left(\frac{1}{2}\right)-\phi(1) \\
& \text { iff } \frac{1}{2} \leq(-2)\left(\frac{1}{2}\right)-(-2)(1)=1, \text { which is again true. }
\end{aligned}
$$

Hence all the conditions of Theorem 2.3 are satisfied. Applying Theorem 2.3, $(0,0)$ is the coupled fixed point of F.

Remark 3. (i) In Example 2, the partial order "々" induced by ϕ is not the usual ordering " \leq ". Clearly, $1 \preccurlyeq \frac{1}{2}$ but $1 \not \leq \frac{1}{2}$.
(ii) Again, the authors in [1] claimed that Example 3.3 supports Theorem 3.2. In Theorem 3.2, the function ϕ is considered to be bounded from above but in Example 3.3, the function $\phi: X(=[0, \infty)) \rightarrow R$ defined by $\phi(x)=2 x$ for $x \in X$ is not bounded from above. Further, the order relation "々" must be induced by ϕ but in Example 3.3 it is considered to be the usual ordering.
We now rectify Example 3.3 as follows:
Example 4. Let $X=[0,1]$ and $d(x, y)=|x-y|$, then (X, d) is a complete metric space. Let $\phi: X \rightarrow R$ be the mapping defined by $\phi(x)=-2 x$ for all $x \in X$. Define the relation "ъ" on X as follows:

$$
x \preccurlyeq y \quad \text { iff } \quad d(x, y) \leq \phi(y)-\phi(x) .
$$

Then "ฬ" is partial order induced by ϕ.
Since $1 \preccurlyeq \frac{1}{2}$, so "ß" is not the usual order " \leq ".
Clearly, ϕ is bounded from above on X.

Define $F: X \times X \rightarrow X$ by $F(x, y)=\frac{x(1+y)}{4}$ for all $x, y \in X$ and $G: X \rightarrow X$ by $G(x)=\frac{x}{2}$ for $x \in X$.
Now, $G F(x, y)=\frac{x(1+y)}{8}, F(G x, G y)=F\left(\frac{x}{2}, \frac{y}{2}\right)=\frac{x(2+y)}{16}$,
$G F(y, x)=\frac{y(1+x)}{8}, F(G y, G x)=F\left(\frac{y}{2}, \frac{x}{2}\right)=\frac{y(2+x)}{16}$ for $x, y \in X$.
We first show that the pair $\{F, G\}$ is weakly related.
We consider the following:
(i) $F(x, y) \preccurlyeq G F(x, y)$

$$
\begin{aligned}
& \text { iff } \quad d(F(x, y), G F(x, y)) \leq \phi(G F(x, y))-\phi(F(x, y)) \\
& \text { iff } \quad\left|\frac{x(1+y)}{4}-\frac{x(1+y)}{8}\right| \leq \phi\left(\frac{x(1+y)}{8}\right)-\phi\left(\frac{x(1+y)}{4}\right) \\
& \text { iff } \quad \frac{x(1+y)}{8} \leq \frac{-x(1+y)}{4}+\frac{x(1+y)}{2} \\
& \text { iff } \quad \frac{x(1+y)}{8} \leq \frac{x(1+y)}{4}, \text { which is true for } x, y \in X .
\end{aligned}
$$

(ii) $G x \preccurlyeq F(G x, G y)$

$$
\begin{aligned}
& \text { iff } d(G x, F(G x, G y)) \leq \phi(F(G x, G y))-\phi(G x) \\
& \text { iff }\left|\frac{x}{2}-\frac{x(2+y)}{16}\right| \leq \phi\left(\frac{x(2+y)}{16}\right)-\phi\left(\frac{x}{2}\right) \\
& \text { iff }\left|\frac{6 x-x y}{16}\right| \leq \frac{-x(2+y)}{8}+x \\
& \text { iff }\left|\frac{6 x-x y}{16}\right| \leq \frac{6 x-x y}{8}, \text { which is true for } x, y \in X .
\end{aligned}
$$

Similarly, we show that $F(y, x) \preccurlyeq G F(y, x)$ and $G y \preccurlyeq F(G y, G x)$ for all $x, y \in$ X. Hence the pair $\{F, G\}$ is weakly related.
Let $x_{0}=0, y_{0}=1$, then $F\left(x_{0}, y_{0}\right)=0$ and $F\left(y_{0}, x_{0}\right)=\frac{1}{4}$.
Finally, we check that $x_{0} \preccurlyeq F\left(x_{0}, y_{0}\right)$ and $y_{0} \preccurlyeq F\left(y_{0}, x_{0}\right)$.

$$
\begin{aligned}
x_{0} \preccurlyeq F\left(x_{0}, y_{0}\right) & \text { iff } d\left(x_{0}, F\left(x_{0}, y_{0}\right)\right) \leq \phi\left(F\left(x_{0}, y_{0}\right)\right)-\phi\left(x_{0}\right) \\
& \text { iff } d(0,0) \leq \phi(0)-\phi(0), \text { which is true. } \\
y_{0} \preccurlyeq F\left(y_{0}, x_{0}\right) & \text { iff } d\left(y_{0}, F\left(y_{0}, x_{0}\right)\right) \leq \phi\left(F\left(y_{0}, x_{0}\right)\right)-\phi\left(y_{0}\right) \\
& \text { iff } d\left(1, \frac{1}{4}\right) \leq \phi\left(\frac{1}{4}\right)-\phi(1) \\
& \text { iff } \frac{3}{4} \leq(-2)\left(\frac{1}{4}\right)-(-2)(1) \\
& \text { iff } \frac{3}{4} \leq-\frac{1}{2}+2=\frac{3}{2}, \text { which is true. }
\end{aligned}
$$

Hence all the conditions of Theorem 3.2 are satisfied. Applying Theorem 3.2, $(0,0)$ is the common coupled fixed point of the pair $\{F, G\}$.

References

[1] N. Singh and R. Jain, Coupled fixed point results for weakly related mappings in partially ordered metric spaces, Bull. Iranian Math. Soc. 40 (2014), no. 1, 29-40.
(Manish Jain) Department of Mathematics, Ahir College, Rewari 123401, India. E-mail address: manish_261283@rediffmail.com
(Neetu Gupta) HAS Department, YMCAUST, Faridabad, India.
E-mail address: neetuymca@yahoo.co.in
(Sanjay Kumar) Department of Mathematics, DCRUST, Murthal, Sonepat, India.
E-mail address: sanjuciet@rediffmail.com

[^0]: Article electronically published on February 22, 2016.
 Received: 9 July 2014, Accepted: 15 October 2015.

 * Corresponding author.

