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Abstract. Suppose T and S are bounded adjointable operators between
Hilbert C*-modules admitting bounded Moore-Penrose inverse operators.

Some necessary and sufficient conditions are given for the reverse order
law (TS)† = S†T † to hold. In particular, we show that the equality
holds if and only if Ran(T ∗TS) ⊆ Ran(S) and Ran(SS∗T ∗) ⊆ Ran(T ∗),
which was studied first by Greville [SIAM Rev. 8 (1966) 518–521] for
matrices.
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Penrose inverse, reverse order law.

MSC(2010): Primary 47A05; Secondary 46L08, 15A09.

1. Introduction and preliminaries.

It is well-known that for invertible operators (or nonsingular matrices) T, S
and TS, (TS)−1 = S−1T−1. However, this so-called reverse order law is not
necessarily true for other kind of generalized inverses. An interesting problem
is, for given operators (or matrices) TS with TS meaningful, under what con-
ditions, (TS)† = S†T †? The problem first studied by Greville [7] and then
reconsidered by Bouldin and Izumino [2,9]. Many authors discussed the prob-
lem like this, see e.g. [3–5,11,13] and references therein. An special case, when
S = T ∗, was given by Moslehian et al. [14] for a Moore-Penrose invertible oper-
ator T on Hilbert C*-modules. The later paper and the work of [5,7] motivated
us to study the problem in the framework of Hilbert C*-modules.

The notion of a Hilbert C*-module is a generalization of the notion of a
Hilbert space. However, some well known properties of Hilbert spaces like
Pythagoras’ equality, self-duality, and even decomposition into orthogonal com-
plements do not hold in the framework of Hilbert modules. The first use of such
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objects was made by I. Kaplansky [10] and then studied more in the work of
W. L. Paschke [15]. Let us quickly recall the definition of a Hilbert C*-module.

Suppose that A is an arbitrary C*-algebra and E is a linear space which is a
right A-module and the scalar multiplication satisfies λ(xa) = x(λa) = (λx)a
for all x ∈ E, a ∈ A, λ ∈ C. The A-module E is called a pre-Hilbert A-module
if there exists an A-valued map ⟨., .⟩ : E×E → A with the following properties:

(i) ⟨x, y + λz⟩ = ⟨x, y⟩+ λ⟨x, z⟩; for all x, y, z ∈ E, λ ∈ C,
(ii) ⟨x, ya⟩ = ⟨x, y⟩a; for all x, y ∈ E and a ∈ A,
(iii) ⟨x, y⟩∗ = ⟨y, x⟩; for all x, y ∈ E,
(iv) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0.

The A-module E is called a Hilbert C*-module if E is complete with respect
to the norm ∥x∥ = ∥⟨x, x⟩∥1/2. For any pair of Hilbert C*-modules E1 and E2,
we define E1 ⊕ E2 = {(e1, e2)| e1 ∈ E1 and e2 ∈ E2} which is also a Hilbert
C*-module whose A-valued inner product is given by

⟨(x1, y1), (x2, y2)⟩ = ⟨x1, x2⟩+ ⟨y1, y2⟩, for x1, x2 ∈ E1 and y1, y2 ∈ E2.

If V is a (possibly non-closed) A-submodule of E, then V ⊥ := {y ∈ E :
⟨x, y⟩ = 0, for all x ∈ V } is a closed A-submodule of E and V ⊆ V ⊥⊥. A
Hilbert A-submodule V of a Hilbert A-module E is orthogonally complemented
if V and its orthogonal complement V ⊥ yield E = V ⊕V ⊥, in this case, V and
its biorthogonal complement V ⊥⊥ coincide. For the basic theory of Hilbert
C*-modules we refer to the book by E. C. Lance [12]. Note that every Hilbert
space is a Hilbert C-module and every C*-algebra A, can be regarded as a
Hilbert A-module via ⟨a, b⟩ = a∗b when a, b ∈ A.

Throughout this paper we assume that A is an arbitrary C*-algebra. We use
[·, ·] for commutator of two elements. The notations Ker(·) and Ran(·) stand
for kernel and range of operators, respectively. Suppose E and F are Hilbert
A-modules, L(E,F ) denotes the set of all bounded adjointable operators from
E to F , that is, all operator T : E → F for which there exists T ∗ : F → E
such that ⟨Tx, y⟩ = ⟨x, T ∗y⟩, for all x ∈ E and y ∈ F .

Closed submodules of Hilbert modules need not to be orthogonally comple-
mented at all, however we have the following well known results. Suppose T
in L(E,F ), the operator T has closed range if and only if T ∗ has. In this case,
E = Ker(T ) ⊕ Ran(T ∗) and F = Ker(T ∗) ⊕ Ran(T ), cf. [12, Theorem 3.2].
In view of [16, Lemma 2.1], Ran(T ) is closed if and only if Ran(T T ∗) is, and
in this case, Ran(T ) = Ran(T T ∗).

Let T ∈ L(E,F ). The Moore–Penrose inverse T † of T (if it exists) is an
element X ∈ L(F,E) which satisfies

(1) TXT = T ,
(2) XTX = X,
(3) (TX)∗ = TX,
(4) (XT )∗ = XT .
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If θ ⊆ {1, 2, 3, 4}, and X satisfies the equation (i) for all i ∈ θ, then X is
an θ-inverse of T . The set of all θ-inverses of T is denoted by T{θ}. In
particular, T{1, 2, 3, 4} = {T †}. The properties (1) to (4) imply that T † is
unique and T †T and T T † are orthogonal projections. Moreover, Ran(T †) =
Ran(T †T ), Ran(T ) = Ran(T T †), Ker(T ) = Ker(T †T ) and Ker(T †) =
Ker(T T †) which lead us to E = Ker(T †T )⊕Ran(T †T ) = Ker(T )⊕Ran(T †)
and F = Ker(T †)⊕Ran(T ).We also have Ran(T †) = Ran(T ∗) andKer(T †) =
Ker(T ∗).

Xu and Sheng in [19] have shown that a bounded adjointable operator be-
tween two Hilbert C*-modules admits a bounded Moore-Penrose inverse if and
only if the operator has closed range. The reader should be aware of the fact
that a bounded adjointable operator may admit an unbounded operator as its
Moore-Penrose, see [6, 8, 16,18] for more detailed information.

It is a classical result of Greville [7], that (TS)† = S†T † if and only if
T †TSS∗T ∗ = SS∗T ∗ and SS†T ∗TS = T ∗TS (or equivalently, Ran(SS∗T ∗) ⊆
Ran(T ∗) and Ran(T ∗TS) ⊆ Ran(S)) for Moore-Penrose invertible matrices T
and S. The present paper is an extension of some results of [5,7,14] to Hilbert
C*-modules settings. Indeed, we give some necessary and sufficient conditions
for reverse order law for the Moore–Penrose inverse by using the matrix form of
bounded adjointable module maps. These enable us to derive Greville’s result
for bounded adjointable module maps.

The matrix form of a bounded adjointable operator T ∈ L(E,F ) is induced
by some natural decompositions of Hilbert C*-modules. If F = M ⊕M⊥, E =
K ⊕K⊥ then T can be written as the following 2× 2 matrix

(1.1) T =

[
T1 T2

T3 T4

]
with operator entries, T1 ∈ L(K,M), T2 ∈ L(K⊥,M), T3 ∈ L(K,M⊥) and
T4 ∈ L(K⊥,M⊥).

Lemma 1.1. Let T ∈ L(E,F ) have a closed range. Then T has the following
matrix decomposition with respect to the orthogonal decompositions of submod-
ules E = Ran(T ∗)⊕Ker(T ) and F = Ran(T )⊕Ker(T ∗):

T =

[
T1 0
0 0

]
:

[
Ran(T ∗)
Ker(T )

]
→

[
Ran(T )
Ker(T ∗)

]
,

where T1 is invertible. Moreover,

T † =

[
T−1
1 0
0 0

]
:

[
Ran(T )
Ker(T ∗)

]
→

[
Ran(T ∗)
Ker(T )

]
.

Proof. The operator T and its adjoint T ∗ have the following representations:

T =

[
T1 T2

T3 T4

]
:

[
Ran(T ∗)
Ker(T )

]
→

[
Ran(T )
Ker(T ∗)

]
,
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T ∗ =

[
T ∗
1 T ∗

3

T ∗
2 T ∗

4

]
:

[
Ran(T )
Ker(T ∗)

]
→

[
Ran(T ∗)
Ker(T )

]
.

From T ∗(Ker(T ∗)) = {0} we obtain T ∗
3 = 0 and T ∗

4 = 0, thus T3 = 0 and
T4 = 0. Since T (Ker(T )) = {0}, T2 = 0 therefore T =

[
T1 0
0 0

]
.

Moreover since Ran(T ) is closed, T1 possesses a bounded adjointable inverse

from Ran(T ) onto Ran(T ∗). Now, it is easy to check that the matrix
[
T−1
1 0
0 0

]
is the Moore–Penrose inverse of T =

[
T1 0
0 0

]
. □

Lemma 1.2. Let T ∈ L(E,F ) have a closed range. Let E1, E2 be closed
submodules of E and F1, F2 be closed submodules of F such that E = E1 ⊕E2

and F = F1⊕F2. Then the operator T has the following matrix representations
with respect to the orthogonal sums of submodules E = Ran(T ∗)⊕Ker(T ) and
F = Ran(T )⊕Ker(T ∗):

(1.2) T =

[
T1 T2

0 0

]
:

[
E1

E2

]
→

[
Ran(T )
Ker(T ∗)

]
,

where D = T1T
∗
1 + T2T

∗
2 ∈ L(Ran(T )) is positive and invertible. Moreover,

(1.3) T † =

[
T ∗
1D

−1 0
T ∗
2D

−1 0

]
.

(1.4) T =

[
T1 0
T2 0

]
:

[
Ran(T ∗)
Ker(T )

]
→

[
F1

F2

]
,

where D = T ∗
1 T1 + T ∗

2 T2 ∈ L(Ran(T ∗)) is positive and invertible. Moreover,

(1.5) T † =

[
D−1T ∗

1 D−1T ∗
2

0 0

]
.

Proof. We prove only the matrix representations (1.2) and (1.3), the proof of
(1.4) and (1.5) are analogous. The operator T has the following representation:

T =

[
T1 T2

T3 T4

]
:

[
E1

E2

]
→

[
Ran(T )
Ker(T ∗)

]
,

which yields

T ∗ =

[
T ∗
1 T ∗

3

T ∗
2 T ∗

4

]
:

[
Ran(T )
Ker(T ∗)

]
→

[
E1

E2

]
.

From T ∗(Ker(T ∗)) = {0} we obtain T ∗
3 = 0 and T ∗

4 = 0. Then T3 = 0 and
T4 = 0 which yield the matrix form (1.2) of T . Consequently, the adjoint
operator T ∗ has the matrix representation

T ∗ =

[
T ∗
1 0

T ∗
2 0

]
:

[
Ran(T )
Ker(T ∗)

]
→

[
E1

E2

]
.
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We therefore have

(1.6) T T ∗ =

[
D 0
0 0

]
:

[
Ran(T )
Ker(T ∗)

]
→

[
Ran(T )
Ker(T ∗)

]
,

where D = T1T
∗
1 + T2T

∗
2 : Ran(T ) → Ran(T ). From Ker(TT ∗) = Ker(T ∗),

it follows that D is injective. From Ran(TT ∗) = Ran(T ) it follows that D is
surjective. Hence, D is invertible. Now using [14, Corollary 2.4] and (1.6) we
obtain

T † = T ∗(TT ∗)† =

[
T ∗
1 0

T ∗
2 0

] [
D−1 0
0 0

]
=

[
T ∗
1 D

−1 0
T ∗
2 D

−1 0

]
.

□
2. The reverse order law

We begin this section with the following useful facts about the product of
module maps with closed range. Suppose E,F and G are Hilbert C*-modules
and S ∈ L(E,F ) and T ∈ L(F,G) are bounded adjointable operators with
closed ranges. Then TS has closed range if and only if T †TSS† has, if and only
if Ker(T ) + Ran(S) is an orthogonal summand in F , if an only if Ker(S∗) +
Ran(T ∗) is an orthogonal summand in F . For the proofs of the results and
historical notes about the problem we refer to [17] and references therein.

Theorem 2.1. Suppose E,F and G are Hilbert C*-modules and S ∈ L(E,F ),
T ∈ L(F,G) and TS ∈ L(E,G) have closed ranges. Then following statements
are equivalent:

(i) TS(TS)† = TSS†T †,
(ii) T ∗TS = SS†T ∗TS,
(iii) S†T † ∈ (TS){1, 2, 3}.

Proof. Using Lemma 1.1, the operator S and its Moore-Penrose inverse S† have
the following matrix forms:

S =

[
S1 0
0 0

]
:

[
Ran(S∗)
Ker(S)

]
→

[
Ran(S)
Ker(S∗)

]
,

S† =

[
S−1
1 0
0 0

]
:

[
Ran(S)
Ker(S∗)

]
→

[
Ran(S∗)
Ker(S)

]
.

From Lemma 1.2 it follows that the operator T and T † have the following
matrix forms:

T =

[
T1 T2

0 0

]
:

[
Ran(S)
Ker(S∗)

]
→

[
Ran(T )
Ker(T ∗)

]
,

T † =

[
T ∗
1 D

−1 0
T ∗
2 D

−1 0

]
,

where D = T1T
∗
1 + T2T

∗
2 is invertible and positive in L(Ran(T )). Then we

have the following products

TS =

[
T1S1 0
0 0

]
, (TS)† =

[
(T1S1)

† 0
0 0

]
, S†T † =

[
S−1
1 T ∗

1 D
−1 0

0 0

]
.
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It is easy to check that the following three expressions in terms of T1, T2 and
S1 are equivalent to our statements.

(1) T1S1(T1S1)
† = T1T

∗
1D

−1, which is equivalent to (i).
(2) T ∗

2 T1 = 0, which is equivalent to (ii).
(3) T1T

∗
1D

−1T1 = T1 and [T1T
∗
1 , D

−1] = 0, which are equivalent to (iii).

Note that [T1T
∗
1 , D

−1] = 0, since T1S1(T1S1)
† is self-adjoint. We show that

(3) ⇒ (2) ⇔ (1) ⇒ (3).
To prove (1) ⇔ (2), we observe that T1S1(T1S1)

† = T1T
∗
1D

−1 if and only
if (T1S1)

† = (T1S1)
†T1T

∗
1D

−1. The last statement is obtained by multiplying
the first expression by (T1S1)

† from the left side, or multiplying the second
expression by T1S1 from the left side, and using T1T

∗
1 = T1S1S

−1
1 T ∗

1 . We
therefore have

(T1S1)
† = (T1S1)

†T1T
∗
1 D

−1 ⇔ (T1S1)
†(T1T

∗
1 + T2T

∗
2 ) = (T1S1)

†T1T
∗
1

⇔ (T1S1)
†T2T

∗
2 = 0

⇔ Ran(T2T
∗
2 ) ⊆ Ker((T1S1)

†) = Ker((T1S1)
∗)

⇔ S∗
1T

∗
1 T2T

∗
2 = 0 ⇔ T2T

∗
2 T1 = 0

⇔ Ran(T1) ⊆ Ker(T2T
∗
2 ) = Ker(T ∗

2 )

⇔ T ∗
2 T1 = 0.

To demonstrate (1) ⇒ (3), we multiply T1S1(T1S1)
† = T1T

∗
1D

−1 by T1S1 from
the right side, we find T1T

∗
1D

−1T1 = T1, i.e. (3) holds.
Finally, we prove (3) ⇒ (2). If T1T

∗
1D

−1T1 = T1 and [T1T
∗
1 , D

−1] = 0, then
T1T

∗
1 T1 = DT1 = T1T

∗
1 T1 + T2T

∗
2 T1. Consequently, T2T

∗
2 T1 = 0 which implies

T2T
∗
1 = 0, since Ran(T1) ⊆ Ker(T2T

∗
2 ) = Ker(T ∗

2 ). □

Theorem 2.2. Suppose E,F and G are Hilbert C*-modules and S ∈ L(E,F ),
T ∈ L(F,G) and TS ∈ L(E,G) have closed ranges. Then following statements
are equivalent:

(i) (TS)†TS = S†T †TS,
(ii) TSS∗ = TSS∗T †T,
(iii) S†T † ∈ (TS){1, 2, 4}.

Proof. The operators T , S and TS and their Moore-Penrose inverses have
the same matrix representations as in the previous theorem. To prove the
assertions, we first find the equivalent expressions for our statements in terms
of T1, T2 and S1.

(1) (T1S1)
†T1S1 = S−1

1 T ∗
1D

−1T1S1, which is equivalent to (i).
(2) T1S1S

∗
1T

∗
1D

−1T1 = T1S1S
∗
1 and T1S1S

∗
1T

∗
1D

−1T2 = 0, which are equiv-
alent to (ii).

(3) T1T
∗
1D

−1T1 = T1 and [S1S
∗
1 , T

∗
1D

−1T1] = 0, which are equivalent to
(iii).
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Note that [S1S
∗
1 , T

∗
1D

−1T1] = 0, since (T1S1)
†T1S1 is self-adjoint. We show

that (1) ⇒ (3) ⇒ (2) ⇒ (1).
Suppose (1) holds. If we multiply (T1S1)

†T1S1 = S−1
1 T ∗

1D
−1T1S1 by T1S1

from the left side, we obtain T1 = T1T
∗
1D

−1T1. Furthermore, [S1S
∗
1 , T

∗
1D

−1T1] =
0, i.e. (3) holds.

Suppose (3) holds. Obviously, T1S1S
∗
1T

∗
1 D

−1T1 = T1T
∗
1 D

−1T1S1S
∗
1 = T1S1S

∗
1 ,

that is, the first equality of (2) holds. According to the fact that (T1T
∗
1 +

T2T
∗
2 )D

−1T1 = T1 and the assumption T1T
∗
1D

−1T1 = T1, we have T
∗
2D

−1T1 =
0. Consequently,

Ran(D−1T1) ⊆ Ker(T2T
∗
2 ) = Ker(T ∗

2 ),

which yields T ∗
2D

−1T1 = 0. Therefore, T ∗
1D

−1T2 = 0 which establishes the
second equality of (2).

In order to prove (2) ⇒ (1), we multiply T1S1S
∗
1T

∗
1D

−1T1 = T1S1S
∗
1 by

(T1S1)
† from the left side. In view of [S1S

∗
1 , T

∗
1D

−1T1] = 0, we find

S∗
1T

∗
1D

−1T1 = (T1S1)
†T1S1S

∗
1 ⇒ (T1S1)

†T1S1 = S∗
1T

∗
1D

−1T1(S
∗
1 )

−1

⇔ (T1S1)
†T1S1 = S−1

1 T ∗
1D

−1T1S1.

□

Now we are ready to derive Greville’s result, which also gives an answer to
a problem of [17] about the reverse order law for Moore-Penrose inverses of
modular operators. The operators SS† and T †T are orthogonal projections
onto Ran(S) and Ran(T †) = Ran(T ∗), respectively. These facts together with
Theorems 2.1 and 2.2 lead us to the following result.

Corollary 2.3. Suppose E,F and G are Hilbert C*-modules and S ∈ L(E,F ),
T ∈ L(F,G) and TS ∈ L(E,G) have closed ranges. Then following statements
are equivalent:

(i) (TS)† = S†T †,
(ii) TS(TS)† = TSS†T † and (TS)†TS = S†T †TS,
(iii) SS†T ∗TS = T ∗TS and TSS∗T †T = TSS∗,
(iv) Ran(T ∗TS) ⊆ Ran(S) and Ran(SS∗T ∗) ⊆ Ran(T ∗).
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