Title:
Frames in right ideals of C^*-algebras

Author(s):
M. B. Asadi
FRAMES IN RIGHT IDEALS OF C^*-ALGEBRAS

M. B. ASADI

(Communicated by Ali Ghaffari)

Abstract. We investigate the problem of the existence of a frame for right ideals of a C^*-algebra, without using the Kasparov stabilization theorem.

Keywords: Hilbert C^*-modules, frames, C^*-algebras.

MSC(2010): Primary: 46L08; Secondary: 42C15, 46L05.

1. Introduction

Frank and Larsen generalized the notion of a frame in Hilbert spaces to Hilbert C^*-modules [7]. They showed, using the Kasparov stabilization theorem [8], that every finitely or countably generated Hilbert C^*-module has a standard frame.

The characterization problem of those C^*-algebras A for which all Hilbert A-modules have a standard frame is open until now [7]. In 2011, Li solved the problem for commutative unital C^*-algebras [10, Theorem 1.1]. In fact, Li shows that for a commutative unital C^*-algebra A, every Hilbert A-module has a frame if and only if A is finite dimensional.

On the other hand, a C^*-algebra A is a C^*-algebra of compact operators if and only if every Hilbert A-module has a basis [2,3]. Also, it is well known that each unital C^*-algebra of compact operators is finite dimensional and a commutative C^*-algebra $A = C_0(Z)$ is a C^*-algebra of compact operators exactly when Z is discrete.

Hence, as mentioned in [1], a non-unital version of Li’s theorem can be obtained as follows.

Theorem 1.1. Let A be a commutative C^*-algebra. Then A is a C^*-algebra of compact operators if and only if every Hilbert A-module has a frame.

Therefore, for general case, the following conjecture arises [1].
Conjecture 1.2. If every Hilbert C^*-module over a C^*-algebra A has a frame, then A is a C^*-algebra of compact operators.

In [1], it is shown that the above conjecture has an affirmative for certain classes of C^*-algebras.

In this note, we investigate the problem of the existence of a frame for right ideals of a C^*-algebra A, without using the Kasparov stabilization theorem. We show that this property cannot characterize A as a C^*-algebra of compact operators.

2. Frames and Ideals

Let A be a C^*-algebra and E be a Hilbert A-module. A family $\{x_i\}_{i \in I}$ of elements in E is called a frame if there are real constants $C, D > 0$ such that $\sum_{i \in I} \langle x, x_i \rangle_A \langle x_i, x \rangle_A$ converges, in the ultraweak topology of the universal enveloping von Neumann algebra, to some element in A^* and

$$C \langle x, x \rangle_A \leq \sum_{i \in I} \langle x, x_i \rangle_A \langle x_i, x \rangle_A \leq D \langle x, x \rangle_A$$

for every $x \in E$. A frame is said to be standard if the sum in the middle of the above inequality converges in norm for every $x \in E$, and is said to be normalized if $C = D = 1$.

There are some results in the literature on the characterization of a C^*-algebra of compact operators by certain properties of its (right) ideals. For instance, Magajna in [11] showed that if A is a C^*-algebra and there exists a full Hilbert A-module E such that each closed submodule of E is orthogonally complemented, then A is a C^*-algebra of compact operators. Schweizer in [14] remarked that this problem on Hilbert A-submodules of E can be reformulated as a problem on right ideals of A and consequently the result can be obtained easily.

Therefore, one may expect that the problem of the existence of a frame for each Hilbert A-module can be reformulated as the problem of the existence of a frame for each right ideal of A. Hereinafter, by ideal we mean closed ideals.

Definition 2.1. We say that a right Hilbert C^*-module E over a C^*-algebra A is countably generated if there is a sequence $\{x_n\}_{n \in \mathbb{N}}$ in E such that the A-linear hull of $\{x_n : n \in \mathbb{N}\}$ is norm-dense in E.

Note that our definition of being countably generated really means “topologically countably generated” and this differs from being algebraically countably generated. Surprisingly, it is shown in [5] that if every closed right ideal of a Banach algebra A is algebraically countably generated, then A is finite dimensional. Recently, Blecher and Kania gave a characterization of Hilbert C^*-modules which are algebraically (countably) finitely generated [4].
Lemma 2.2. Let H be a Hilbert space. Then $K(H)$ is countably generated, as a $K(H)$-module, if and only if H is separable.

Proof. Let H be a separable Hilbert space with a fixed orthonormal basis $\{e_n\}_{n=1}^{\infty}$. We have $T = \sum_{n=1}^{\infty} P_n T$, for all $T \in K(H)$, where P_n is the orthogonal projection to the one-dimensional subspace spanned by e_n. Therefore $\{P_n\}_{n=1}^{\infty}$ is a countable set of generators for $K(H)$.

Conversely, let $\{T_n\}_{n=1}^{\infty}$ be a countable set of generators for $K(H)$. Then H is equal to the closed linear span of $\cup_{n \in \mathbb{N}} R(T_n)$, where $R(T_n)$ is the range of T_n. Also, it is well known that the range of each compact operator is separable. Therefore, H is separable. \qed

Note that, in the above lemma, H is separable if and only if the C^*-algebra $K(H)$ is separable. For a general C^*-algebra A, if it is topologically countably generated as an A-module, one cannot conclude that A is separable. Instead, we have the following characterization.

Proposition 2.3. For a C^*-algebra A, the following statements are equivalent:

(i) A is σ-unital;
(ii) A has a strictly positive element;
(iii) A has a countable standard normalized frame;
(iv) A is countably generated as an A-module.

Proof. (i) \Leftrightarrow (ii): This is a well-known fact in the C^*-algebra literature [13].

(ii) \Rightarrow (iii): Let $h \in A$ be a strictly positive element. We set $v_0 = 0$, $v_n = h(h + \frac{1}{n})^{-1}$ and $u_n = (v_n - v_{n-1})^{\frac{1}{2}}$ for each $n \in \mathbb{N}$. As mentioned in [13], the sequence $\{v_n\}_{n=1}^{\infty}$ is a countable approximate unit for A. Then, for every $a \in A$, we have $a = \lim_n v_n a = \lim_n \sum_{j=1}^{n} (u_j)^2 a = \sum_{n=1}^{\infty} u_n (u_n, a)$. Hence, $\{u_n\}_{n=1}^{\infty}$ is a countable standard normalized frame for A.

(iii) \Rightarrow (iv): Obviously, if $\{u_n\}_{n=1}^{\infty}$ is a standard normalized frame for A, then $\{u_n\}_{n=1}^{\infty}$ is a countable set of generators for A, by the reconstruction formula.

(iv) \Rightarrow (ii): Let $\{u_n\}_{n=1}^{\infty}$ be a bounded set of generators for A, then $p = \sum_{n=1}^{\infty} \frac{1}{n} u_n u_n^*$ is a strictly positive element. In fact, if φ is a positive functional on A such that $\varphi(p) = 0$, then $\varphi(u_n u_n^*) = 0$, for all n. It follows that $\varphi(u_n b_n) = 0$, for all $n \in \mathbb{N}$ and $b_n \in A$. Therefore, $\varphi(a) = 0$ for each $a \in A$, i.e., $\varphi \equiv 0$. \qed

We recall that if B is a hereditary C^*-subalgebra of A, then there is a unique right ideal L such that $B = L \cap L^*$ [13, Theorem 3.2.1]. Similar to the proof of (ii) \Rightarrow (iii) in the above proposition, one can show that if B has a strictly positive element, then L, as a Hilbert A-module, has a countable standard normalized frame.

Corollary 2.4. For a C^*-algebra A, the following statements are equivalent:
(i) \(A \) is completely \(\sigma \)-unital, i.e., every hereditary \(C^* \)-subalgebra of \(A \) is \(\sigma \)-unital;
(ii) every hereditary \(C^* \)-subalgebra of \(A \) has a strictly positive element;
(iii) every right ideal \(I \) of \(A \) is countably generated as an \(A \)-module;
(iv) every right ideal \(I \) of \(A \) has a countable standard normalized frame.

If \(Z \) is a locally compact Hausdorff space, then the \(C^* \)-algebra \(C_0(Z) \) is separable if and only if \(Z \) is \(\sigma \)-compact and metrizable, if and only if \(Z \) is second countable. Also, the \(C^* \)-algebra \(C_0(Z) \) is \(\sigma \)-unital if and only if \(Z \) is \(\sigma \)-compact.

We recall that if a locally compact Hausdorff space \(Z \) is \(\sigma \)-compact, then \(Z \) is paracompact. Also, whenever a locally compact Hausdorff space \(Z \) is paracompact (or \(\sigma \)-compact), for any open cover \(U \) of \(Z \), there exists a continuous partition of unity subordinated to \(U \). In fact, there exists a partition of unity \(\{f_j\}_{j \in J} \) (or \(\{f_n\}_{n \in \mathbb{N}} \)) in \(C_c(Z) \).

It is well known that ideals of \(A = C_0(Z) \) correspond bijectively to closed sets of \(Z \). More precisely, \(I \) is an ideal of \(A \) if and only if there is a closed set \(F \subseteq Z \) such that

\[
I = \{ f \in C_0(Z) : f(z) = 0 \text{ for all } z \in F \}.
\]

The following proposition can be derived easily from Proposition 2.3, however we supply a direct proof of it.

Proposition 2.5. Let \(Z \) be a locally compact Hausdorff space and let \(A = C_0(Z) \). Then the following statements are equivalent:

(i) \(A \) is completely \(\sigma \)-unital;
(ii) \(Z \) is hereditary \(\sigma \)-compact, i.e., every open subset of \(Z \) is \(\sigma \)-compact;
(iii) every ideal \(I \) of \(A \) has a countable standard normalized frame.

Proof. (i) \(\iff \) (ii): Since \(A \) is commutative, hereditary \(C^* \)-subalgebras are exactly ideals of \(A \). Also, if \(F \) is a closed subset of \(Z \) and \(I_F = \{ f \in C_0(Z) : f(z) = 0 \text{ for all } z \in F \} \), then it is easy to see that \(I_F \) is \(\sigma \)-unital if and only if \(F^c \) is \(\sigma \)-compact.

(ii) \(\implies \) (iii): Let \(I \) be an ideal of \(A = C_0(Z) \) and \(F \) be a closed subset of \(Z \) such that \(I = I_F \). By assumption, \(F^c \) is \(\sigma \)-compact (and so paracompact), thus there exists a partition of unity of \(F^c \) as \(\{f_n\}_{n \in \mathbb{N}} \) in \(C_c(F^c) \). Since for each \(f_n \), \(\text{Supp}(f_n) = \{ z \in F^c : f_n(z) \neq 0 \} \) is compact and \(\text{Supp}(f_n) \cap F = \emptyset \), if one extends each \(f_n \) on \(Z \) by setting zero on \(F \), then \(f_n \in I_F \), for all \(n \). It is easy to see that, \(\{ f_n^2 \}_{n \in \mathbb{N}} \) is a standard normalized frame for \(I_F = I \).

(iii) \(\implies \) (ii): Let \(F \) be a closed subset of \(Z \) and the sequence \(\{f_n\}_{n \in \mathbb{N}} \) be a standard normalized frame for \(I_F \). Then we have

\[
|f(z)|^2 = \sum_{n=1}^{\infty} |f(z)|^2 |f_n(z)|^2,
\]
for all \(f \in I_F \) and \(z \in Z \). On the other hand, for each \(z \in F^c \) there is some \(f \in I_F \) such that \(f(z) = 1 \). Then \(1 = \sum_{n=1}^{\infty} |f_n(z)|^2 \), for all \(z \in F^c \). Now, we have \(F^c = \bigcup_{m,n=1}^{\infty} K_m(f_n) \), where \(K_m(f_n) = \{ z \in Z : |f_n(z)|^2 \geq \frac{1}{m} \} \), for all \(m,n \in \mathbb{N} \). Therefore \(F^c \) is \(\sigma \)-compact, because \(K_m(f_n) \) is compact for all \(m,n \).

\begin{proposition}
Let \(Z \) be a locally compact metrizable space and \(A = C_0(Z) \). Then the following statements are equivalent:
\begin{enumerate}
 \item \(A \) is separable;
 \item \(A \) is completely \(\sigma \)-unital;
 \item every ideal \(I \) of \(A \) has a countable standard normalized frame.
\end{enumerate}
\end{proposition}

\begin{proof}
(i) \(\Rightarrow \) (ii): Let \(I \) be an ideal of \(A = C_0(Z) \) and \(F \) be a closed subset of \(Z \) such that \(I = I_F \). Also, let \(\{f_j\}_{j \in I} \) be a (standard normalized) frame for \(I_F \). Then we have \(|f(z)|^2 = \sum_{j \in J} |f(z)|^2 |f_j(z)|^2 \), for all \(f \in I_F \) and \(z \in Z \).

By assumption, there is a countable subset \(W \) of \(F^c \), such that \(W \supseteq F^c \). By Urysohn’s Lemma for locally compact Hausdorff spaces [6], for every \(z \in F^c \) there is an \(f \in I_F \) such that \(f(z) = 1 \) which implies \(\sum_{j \in J} |f_j(z)|^2 = 1 \) for all \(z \in F^c \). In particular, for each \(z \in W \) the set \(J_z = \{ j \in J : f_j(z) \neq 0 \} \) is countable. If \(J_W = \bigcup_{z \in W} J_z \), then \(J_W \) is countable and we have \(f_j(z) = 0 \), for all \(j \in J \setminus J_W \) and \(z \in F^c \), because every \(f_j \) is continuous and \(W \supseteq F^c \).

Therefore, we have
\[|f(z)|^2 = \sum_{j \in J_W} |f(z)|^2 |f_j(z)|^2, \]
for all \(f \in I_F \) and \(z \in Z \). This means that \(\{f_j\}_{j \in J_W} \) is a countable standard normalized frame for \(I \).

(ii) \(\Rightarrow \) (i): This is evident.
\end{proof}

Proposition 2.7 can be used to derive the following standard fact from Topology:

\begin{proposition}
Let \(Z \) be a separable locally compact Hausdorff space. Then \(Z \) is paracompact if and only if it is \(\sigma \)-compact.
\end{proposition}

Similarly, we can obtain the following result.

\begin{proposition}
Let \(Z \) be a locally compact Hausdorff space and \(A = C_0(Z) \). Then every ideal \(I \) of \(A \) has a standard normalized frame exactly when every open subset of \(Z \) is paracompact.
\end{proposition}
Since every metric space is hereditary paracompact, we also have the following result.

Corollary 2.10. If a locally compact Hausdorff space Z is metrizable, then every ideal of the C^*-algebra $A = C_0(Z)$ has a standard normalized frame.

As seen in the above results, for a C^*-algebra A, the fact that “every right ideal of A has a (countable) standard normalized frame” cannot characterize A as a C^*-algebra of compact operators. In fact, if every Hilbert C^*-module over A has a (countable) standard frame, then every right ideal of A has a (countable) standard frame, but the converse might not hold.

Finally, we remark that in the category of C^*-algebras, being separable is strictly stronger than being completely σ-unital. For instance, according to a classical example, due to Alexandroff and Urysohn, the double arrow space is a compact Hausdorff and perfectly normal space [15]. The latter implies that all open subsets of the double arrow space are σ-compact, while this space is not second countable and thus it is not metrizable. Therefore, if Z is the double arrow space, then $C(Z)$ is completely σ-unital, while it is not separable.

Acknowledgments

The author would like to thank the anonymous reviewers for their valuable comments. This research was supported by a grant from IPM (No. 92470123).

References

(Mohammad B. Asadi) **School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran.**

E-mail address: mb.asadi@khayam.ut.ac.ir