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Abstract. In this paper, a complete description concerning linear opera-

tors of Banach spaces with range in Lipschitz algebras lipα(X) is provided.
Necessary and sufficient conditions are established to ensure boundedness
and (weak) compactness of these operators. Finally, a lower bound for
the essential norm of such operators is obtained.
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1. Introduction and preliminaries

Let (X, d) be a compact metric space, (E, ∥ · ∥) be a Banach space, and
α ∈ (0, 1]. The space of E-valued functions f on X for which

pα(f) = sup

{
∥f(x)− f(y)∥

dα(x, y)
: x, y ∈ X,x ̸= y

}
<∞,

is denoted by Lipα(X,E). The subspace of those functions f with

lim
d(x,y)→0

∥f(x)− f(y)∥
dα(x, y)

= 0,

is denoted by lipα(X,E). The spaces Lipα(X,E) and lipα(X,E) are Banach
spaces with the norm ∥f∥α = ∥f∥X + pα(f), where ∥f∥X = supx∈X ∥f(x)∥ is
the uniform norm. If K is the scalar field of the real or complex numbers, to
simplify the notation, we put Lipα(X) = Lipα(X,K) and lipα(X) = lipα(X,K).
In this case, Lipα(X) for 0 < α ≤ 1 and lipα(X) for 0 < α < 1 are Banach
function algebras which are called Lipschitz algebras and their character spaces
(maximal ideal spaces) coincide with X. We are concerned with the spaces
Lipα(X,E) for 0 < α ≤ 1 and lipα(X,E) for 0 < α < 1. The study of these
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algebras started by de Leeuw [6] and Sherbert [7, 8]. The interested reader is
referred to [1, 5, 9] for further details on these algebras.

It is interesting to characterize compact and weakly compact operators be-
tween various function spaces or algebras. Recall that C(X) is the Banach
space of scalar-valued continuous functions on a compact Hausdorff space X
with the uniform norm. In [2, Theorem VI, 7.1] a complete description of
bounded, compact and weakly compact linear operators from a Banach space
to C(X) was obtained as follows.

Theorem 1.1. [2, Theorem VI, 7.1] Let X be a compact Hausdorff space and
let T be a bounded linear operator from a Banach space E into C(X). Then
there exists a mapping τ : X → E∗ which is continuous with the w∗-topology
on E∗ such that

(i) Te(x) = τ(x)e, e ∈ E, x ∈ X;
(ii) ∥T∥ = supx∈X ∥τ(x)∥.

Conversely, if such a map τ is given, then the operator T defined by (i) is a
bounded linear operator from E into C(X) with the norm given by (ii).

The operator T is compact if and only if τ is continuous with the norm
topology on E∗.

The operator T is weakly compact if and only if τ is continuous with the
weak topology on E∗.

In this paper, we consider these properties for linear operators from a Banach
space E into Lipschitz algebras lipα(X) and give a complete description of
these operators. We also obtain a lower bound for the essential norm of these
operators. As a consequence of our results, if T is a map from lipα(X) into
lipα(Y ), then Theorem 5.1 in [7], Theorem 1 in [5] and Theorem 3.1 in [4] will
follow immediately. Also using the results of this paper, we give a short proof
to the aforementioned theorems in [7] and [5] provided T maps Lipα(X) into
Lipα(Y ) and 0 < α < 1. In addition, one can conclude Theorem 2.10 (ii) in [3]
in the scalar case, provided 0 < α < 1.

2. Results

We begin by introducing some notation. Let E be a Banach space. Then
E×, the algebraic dual space of E, is the space of all linear functionals on E.
The topological dual space of E is the Banach space E∗ whose elements are
the bounded linear functionals on E.

Let T be a linear operator (not necessarily bounded) from a Banach space
E into lipα(X). The restriction of the algebraic adjoint T× : lipα(X)∗ → E×

of T to the space X is denoted by ψ. Then, by the definition of adjoint,
the function ψ = T×|X : X → E× is defined by ψ(x) = T×(δx) = δx ◦ T ,
where δx ∈ lipα(X)∗ is the evaluation functional at point x ∈ X defined by
δx(f) = f(x) for every f ∈ lipα(X). One can say that the linear operator T is
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induced by the function ψ or that ψ induces T by means of ψ(x) = δx ◦ T or
equivalently, (Te)(x) = ψ(x)(e) for each e ∈ E and x ∈ X. In the case where
T is bounded, the function ψ maps X into E∗. In fact, ψ is the restriction
of the topological adjoint T ∗ : lipα(X)∗ → E∗ of T to the space X, and it is
continuous with the weak∗-topology on E∗.

In the following theorem, we shall explore the possibility of inducing a linear
operator T : E → lipα(X) by a function ψ : X → E×.

Theorem 2.1. Let E be a Banach space. If T is a linear operator from E into
lipα(X), then the function ψ = T×|X satisfies

lim
d(x,y)→0

ψ(x)− ψ(y)

dα(x, y)
= 0,(2.1)

in the pointwise convergence topology of E×. Conversely, if a function ψ : X →
E× satisfies (2.1) in the pointwise convergence topology of E×, then the linear
operator T defined by Te(x) = ψ(x)e maps E into lipα(X).

Proof. If E is a Banach space and T is a linear operator that maps E into
lipα(X), then Te ∈ lipα(X) for each e ∈ E. Thus,

lim
d(x,y)→0

ψ(x)e− ψ(y)e

dα(x, y)
= lim
d(x,y)→0

Te(x)− Te(y)

dα(x, y)
= 0 (e ∈ E).

Conversely, suppose that a function ψ : X → E× satisfies (2.1) in the
pointwise convergence topology of E×. It follows that

lim
d(x,y)→0

Te(x)− Te(y)

dα(x, y)
= lim
d(x,y)→0

ψ(x)e− ψ(y)e

dα(x, y)
= 0,

from which we obtain Te ∈ lipα(X) for each e ∈ E. □
We are interested in the problem of using function theoretic properties of

ψ to determine when the linear operator T is bounded, compact or weakly
compact. If the linear operator T maps a Banach space E into lipα(X), then
we have the following result on the boundedness of T .

Theorem 2.2. Suppose that E is a Banach space and T : E → lipα(X) is
a linear operator induced by ψ : X → E×. Then T is bounded if and only if
ψ ∈ Lipα(X,E

∗). Moreover, ∥T∥ ≤ ∥ψ∥α ≤ 2∥T∥.

Proof. If T is bounded, then for every x, y ∈ X with x ̸= y,

∥ψ(x)− ψ(y)∥
dα(x, y)

= sup
∥e∥≤1

|ψ(x)(e)− ψ(y)(e)|
dα(x, y)

= sup
∥e∥≤1

|Te(x)− Te(y)|
dα(x, y)

≤ sup
∥e∥≤1

pα(Te) ≤ sup
∥e∥≤1

∥Te∥α = ∥T∥.

Thus ψ ∈ Lipα(X,E
∗) and pα(ψ) ≤ ∥T∥. Moreover,

∥ψ(x)∥ = ∥T ∗(δx)∥ ≤ ∥T ∗∥∥δx∥ = ∥T∥,
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for every x ∈ X. Therefore, ∥ψ∥X ≤ ∥T∥ and ∥ψ∥α = ∥ψ∥X + pα(ψ) ≤ 2∥T∥.
Conversely, let ψ ∈ Lipα(X,E

∗). Then for every x, y ∈ X with x ̸= y,

|(Te)(x)− (Te)(y)|
dα(x, y)

=
|(ψ(x)− ψ(y))(e)|

dα(x, y)

≤ ∥ψ(x)− ψ(y)∥
dα(x, y)

∥e∥ ≤ pα(ψ)∥e∥.(2.2)

Hence, pα(Te) ≤ pα(ψ)∥e∥. Also, we have

|(Te)(x)| = |ψ(x)(e)| ≤ ∥ψ(x)∥∥e∥ ≤ ∥ψ∥X∥e∥,

for every x ∈ X. Thus ∥Te∥X ≤ ∥ψ∥X∥e∥. The addition of these inequalities
yields

∥Te∥α = pα(Te) + ∥Te∥X ≤ (pα(ψ) + ∥ψ∥X)∥e∥ = ∥ψ∥α∥e∥,

which implies that T is bounded and ∥T∥ ≤ ∥ψ∥α. □

Note that every ψ ∈ Lipα(X,E
∗) induces a bounded linear operator from

E into Lipα(X). Using the same argument as in the proof of Theorem 2.2, we
can obtain the following result for Lipα(X).

Theorem 2.3. Let E be a Banach space. Then the operator T : E → Lipα(X)
is a bounded linear operator induced by ψ : X → E∗ if and only if ψ ∈
Lipα(X,E

∗). Moreover, ∥T∥ ≤ ∥ψ∥α ≤ 2∥T∥.

Considering Theorem 2.1, a function ψ : X → E∗ may not, in general, induce
a linear operator T : E → lipα(X). Even if ψ ∈ Lipα(X,E

∗), the operator T
defined by (Te)(x) = ψ(x)e does not, in general, map E into lipα(X). For
example, set E = lipα(X) and let λ0 ∈ lipα(X)∗, f0 ∈ Lipα(X) \ lipα(X) and
define ψ : X → lipα(X)∗ by ψ(x) = f0(x)λ0. Note that ψ ∈ Lipα(X, lipα(X)∗).
Let T be the induced operator by ψ. Then (Tf)(x) = ψ(x)f = f0(x)λ0(f) for
each f ∈ lipα(X) and x ∈ X. Thus, Tf = λ0(f)f0 is not in lipα(X) for any
f ∈ lipα(X) with λ0(f) ̸= 0. Therefore, T does not map E = lipα(X) into
lipα(X).

We now address the compactness of these operators.

Theorem 2.4. Let E be a Banach space. Then a linear operator T : E →
lipα(X) is a compact operator induced by ψ if and only if ψ ∈ lipα(X,E

∗).

Proof. Let T : E → lipα(X) be a compact linear operator induced by ψ. Then
T (BE) = {Te : e ∈ BE} is totally bounded in lipα(X) where BE is the open
unit ball in E. Given ε > 0, there exist f1, . . . , fn ∈ lipα(X) such that T (BE) ⊆
∪ni=1B(fi, ε/2) where B(f, r) = {g ∈ lipα(X) : ∥g − f∥α < r} for f ∈ lipα(X)
and r > 0. One can choose δ > 0 such that |fi(x) − fi(y)|/dα(x, y) < ε/2
for every x, y ∈ X with 0 < d(x, y) < δ and for each i ∈ {1, . . . , n}. Let
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e ∈ BE . Hence ∥Te − fi∥α < ε/2 for some i ∈ {1, . . . , n}. Let x, y ∈ X with
0 < d(x, y) < δ. Then,

|(ψ(x)− ψ(y))(e)|
dα(x, y)

=
|(Te)(x)− (Te)(y)|

dα(x, y)

≤ |(Te− fi)(x)− (Te− fi)(y)|
dα(x, y)

+
|fi(x)− fi(y)|

dα(x, y)

≤ pα(Te− fi) +
ε

2
≤ ∥Te− fi∥α +

ε

2
< ε.

Therefore, ∥ψ(x) − ψ(y)∥/dα(x, y) < ε whenever 0 < d(x, y) < δ, that is
ψ ∈ lipα(X,E

∗).
Conversely, suppose that ψ ∈ lipα(X,E

∗). It follows from (2.2) that Te ∈
lipα(X) for every e ∈ E. Hence, T maps the space E into lipα(X). Therefore,
by Theorem 2.2, the operator T : E → lipα(X) is bounded. Furthermore,
given ε > 0, there exists 0 < δ < 1 such that ∥ψ(x) − ψ(y)∥/dα(x, y) < ε/4
for every x, y ∈ X with 0 < d(x, y) < δ. For the compactness of T , we assume
that {en} is a sequence in BE . Then the boundedness of T and the fact that
Ten ∈ Lipα(X) imply that {Ten} is a bounded and equicontinuous sequence
of functions on the compact metric space X. Hence by Arzela-Ascoli theorem,
there exists a subsequence {eni} of {en} such that {Teni} is uniformly Cauchy
on X. Hence, ∥Teni

− Tenj
∥X < εδα/4 < ε/2, for large enough i, j.

Let x, y ∈ X with x ̸= y. If d(x, y) < δ, then

|(Teni − Tenj )(x)− (Teni − Tenj )(y)|
dα(x, y)

=
|(ψ(x)− ψ(y))(eni − enj )|

dα(x, y)

≤ ∥ψ(x)− ψ(y)∥
dα(x, y)

∥eni − enj∥

< 2
ε

4
=
ε

2
.

If d(x, y) ≥ δ, then

|(Teni − Tenj )(x)− (Teni − Tenj )(y))|
dα(x, y)

≤ 2
∥Teni − Tenj∥X

δα
<

2

δα
εδα

4
=
ε

2
.

Hence pα(Teni − Tenj ) < ε/2, for large enough i, j. Therefore,

∥Teni − Tenj∥α = ∥Teni − Tenj∥X + pα(Teni − Tenj ) < ε,

for large enough i, j, that is {Teni} is a Cauchy sequence in lipα(X) and hence
it is convergent in lipα(X). Therefore, T is compact and this completes the
proof of the theorem. □

Using Theorem 2.4, we get a lower bound for the essential norm of a bounded
linear operator T : E → lipα(X). We recall that the essential norm ∥T∥e of a



Linear operators with range in Lipschitz algebras 74

bounded linear operator T is defined by

∥T∥e = inf
K

∥T −K∥,

where the infimum is taken over all compact operators K : E → lipα(X). Note
that ∥T∥e = 0 if and only if T is compact.

Theorem 2.5. If E is a Banach space and T : E → lipα(X) is a bounded
linear operator induced by a function ψ : X → E∗, then

lim
δ→0

sup
0<d(x,y)<δ

∥ψ(x)− ψ(y)∥
dα(x, y)

≤ ∥T∥e.

Proof. Suppose that K : E → lipα(X) is a compact linear operator. Then by
Theorem 2.4, φ = K∗|X ∈ lipα(X,E

∗) and Ke(x) = φ(x)e (e ∈ E, x ∈ X).
Given ε > 0, there exists δ > 0 such that

∥φ(x)− φ(y)∥
dα(x, y)

< ε,(2.3)

whenever 0 < d(x, y) < δ for x, y ∈ X.
Let x, y ∈ X with 0 < d(x, y) < δ, and e ∈ E with ∥e∥ ≤ 1. Then using

(2.3), we have

∥T −K∥ ≥ ∥Te−Ke∥α ≥ pα(Te−Ke) ≥ |(Te−Ke)(x)− (Te−Ke)(y)|
dα(x, y)

≥ |Te(x)− Te(y)|
dα(x, y)

− |Ke(x)−Ke(y)|
dα(x, y)

=
|ψ(x)(e)− ψ(y)(e)|

dα(x, y)
− |φ(x)(e)− φ(y)(e)|

dα(x, y)

≥ |ψ(x)(e)− ψ(y)(e)|
dα(x, y)

− ∥φ(x)− φ(y)∥
dα(x, y)

≥ |ψ(x)(e)− ψ(y)(e)|
dα(x, y)

− ε.

By taking supremum over all e in the closed unit ball of E we obtain that

∥T −K∥ ≥ ∥ψ(x)− ψ(y)∥
d(x, y)α

− ε,

and then

lim
δ→0

sup
0<d(x,y)<δ

∥ψ(x)− ψ(y)∥
dα(x, y)

≤ ∥T −K∥.

Now by taking infimum over all compact operators K : E → lipα(X) we
conclude the desired result. □

We now give a necessary and sufficient condition for a bounded linear oper-
ator T : E → lipα(X) to be weakly compact.
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Theorem 2.6. Let E be a Banach space. Then a linear operator T : E →
lipα(X) induced by ψ : X → E∗ is a weakly compact operator if and only if

lim
d(x,y)→0

ψ(x)− ψ(y)

dα(x, y)
= 0,

in the weak topology of E∗.

Proof. Note first that T ∗∗ : E∗∗ → lipα(X)∗∗. By [2, Theorem VI.4.2], T is
weakly compact if and only if T ∗∗ maps E∗∗ into lipα(X), that is for each
Λ ∈ E∗∗, T ∗∗Λ = δf for some f ∈ lipα(X). By the definition of the adjoint
of an operator and the mentioned fact, T ∗∗E∗∗ ⊆ lipα(X) ⊆ lipα(X)∗∗ if and
only if

lim
d(x,y)→0

Λ(ψ(x)− ψ(y))

dα(x, y)
= lim
d(x,y)→0

Λ(T ∗(δx)− T ∗(δy))

dα(x, y)

= lim
d(x,y)→0

T ∗∗Λ(δx)− T ∗∗Λ(δy)

dα(x, y)

= lim
d(x,y)→0

f(x)− f(y)

dα(x, y)
= 0,

for each Λ ∈ E∗∗, which is equivalent to

lim
d(x,y)→0

ψ(x)− ψ(y)

dα(x, y)
= 0,

in the weak topology of E∗. This completes the proof. □

Using Theorems 2.3 and 2.4, one may immediately conclude Theorem 5.1
in [7], Theorem 1 in [5] and Theorem 3.1 in [4] when T is a map from lipα(X)
into lipα(Y ). Finally, using Theorems 2.3, 2.4 and the following lemma, we
give a short proof for the aforementioned theorems in [7], [5] and Theorem 2.10
(ii) in [3] if T maps Lipα(X) into Lipα(Y ) provided 0 < α < 1.

Lemma 2.7. Let (X, d) be a compact metric space. Then,

∥δx − δy∥ =
2dα(x, y)

2 + dα(x, y)

for each x, y ∈ X where δx and δy are regarded as elements of the dual space
lipα(X)∗.

Proof. Let x, y ∈ X with x ̸= y and α < β < 1, and define the function f on
X by

f(t) =
dβ(t, y)− dβ(t, x)

2dβ−α(x, y) + dβ(x, y)
(t ∈ X).

It is clear that

|f(x)| = |f(y)| = dα(x, y)

2 + dα(x, y)
,
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and

|f(t)| ≤ dβ(x, y)

2dβ−α(x, y) + dβ(x, y)
=

dα(x, y)

2 + dα(x, y)
,

for every t ∈ X. Hence,

∥f∥X =
dα(x, y)

2 + dα(x, y)
.(2.4)

On the other hand,

|f(x)− f(y)|
dα(x, y)

=
2dβ−α(x, y)

2dβ−α(x, y) + dβ(x, y)
=

2

2 + dα(x, y)
,

and for each t, s ∈ X with t ̸= s, considering two cases either d(x, y) ≤ d(t, s)
or d(t, s) ≤ d(x, y), we get

|f(t)− f(s)|
dα(t, s)

≤ 2

2 + dα(x, y)
.

Therefore,

pα(f) =
2

2 + dα(x, y)
.(2.5)

The addition of (2.4) and (2.5) yields ∥f∥α = ∥f∥X + pα(f) = 1.
Moreover, for each t, s ∈ X with t ̸= s, we have

|f(t)− f(s)|
dα(t, s)

≤ 2dβ−α(t, s)

2dβ−α(x, y) + dβ(x, y)
,

which implies that f ∈ lipα(X). Using the equality,

|(δx − δy)(f)| =
2dβ(x, y)

2dβ−α(x, y) + dβ(x, y)
=

2dα(x, y)

2 + dα(x, y)
,

we conclude that ∥δx − δy∥ ≥ 2dα(x, y)/(2 + dα(x, y)).
Next, take any g ∈ lipα(X) with ∥g∥α = 1. Without loss of generality

suppose that |g(x)| ≥ |g(y)|. Set c = |g(x) − g(y)|/dα(x, y) + |g(x)|. Then
0 ≤ c ≤ 1 and we have

c =
|g(x)− g(y)|
dα(x, y)

+ |g(x)| ≤ 2
|g(x)|
dα(x, y)

+ |g(x)| = |g(x)|2 + dα(x, y)

dα(x, y)
.

Thus, |g(x)| ≥ cdα(x, y)/(2 + dα(x, y)). It follows that

|(δx − δy)(g)| = |g(x)− g(y)| = (c− |g(x)|)dα(x, y)

≤ (c− c
dα(x, y)

2 + dα(x, y)
)dα(x, y) =

2cdα(x, y)

2 + dα(x, y)
≤ 2dα(x, y)

2 + dα(x, y)
.

Therefore, ∥δx − δy∥ = 2dα(x, y)/(2 + dα(x, y)). □

Corollary 2.8. Let 0 < α < 1.
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(i) [7, Theorem 5.1]. The operator T : Lipα(X) → Lipα(Y ) is a unital
homomorphism if and only if there exists a map φ : Y → X such that
Tf = f ◦ φ for all f ∈ Lipα(X) and d(φ(x), φ(y)) ≤ Cd(x, y) for all
x, y ∈ Y where C > 0 is a constant.

(ii) [5, Theorem 1]. The unital homomorphism T : Lipα(X) → Lipα(Y )
is compact if and only if φ is a supercontraction, i.e.

lim
d(x,y)→0

d(φ(x), φ(y))

d(x, y)
= 0.

(iii) [3, Theorem 2.10 (ii)]. Suppose that T = uCφ : Lipα(X) → Lipα(Y )
is a weighted composition operator. If u ∈ lipα(Y ) and φ is a super-
contraction on coz(u) = {x : u(x) ̸= 0}, then T is compact.

Proof. i). It is known that if T : Lipα(X) → Lipα(Y ) is a unital homomor-
phism, then for each character m on Lipα(Y ), m◦T is a character on Lipα(X).
We recall that the character space of Lipα(X) coincide with X, that is every
character on Lipα(X) is an evaluation homomorphism at some unique point of
X. Thus ψ = T ∗|Y maps Y into X. In fact, there exists a map φ : Y → X such
that ψ(x) = δφ(x) for each x ∈ Y and

Tf(x) = ψ(x)f = δφ(x)f = f(φ(x)),

for every f ∈ Lipα(X) and x ∈ Y . Furthermore, by Theorem 2.3, ψ ∈
Lipα(Y,Lipα(X)∗) and by using Lemma 2.7, we have

dα(φ(x), φ(y)) =
1

2
∥δφ(x) − δφ(y)∥(2 + dα(φ(x), φ(y)))

≤ 1

2
∥ψ(x)− ψ(y)∥(2 + diam(X)α)

≤ 1

2
(2 + diam(X)α)pα(ψ)d

α(x, y) ≤ Cdα(x, y),

for each x, y ∈ Y , where C = 1
2 (2 + diam(X)α)pα(ψ). The converse is clear.

ii). By [1, Theorem 3.5], we have lipα(X)∗∗ = Lipα(X). Let S be the
restriction of T to lipα(X). Then, by (i), S maps lipα(X) into lipα(Y ) and
T = S∗∗. By [2, Theorem VI.5.2], T is compact if and only if S is compact.
Using Lemma 2.7, we have

dα(φ(x), φ(y))

dα(x, y)
=

2 + dα(φ(x), φ(y))

2

∥ψ(x)− ψ(y)∥
dα(x, y)

.

Hence, the result follows from Theorem 2.4.
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iii). In this case ψ(x) = u(x)δφ(x) for each x ∈ Y . Thus for every x, y ∈ Y ,

∥ψ(x)− ψ(y)∥
dα(x, y)

=
∥u(x)δφ(x) − u(y)δφ(y)∥

dα(x, y)

≤ |u(x)− u(y)|
dα(x, y)

∥δφ(x)∥+ |u(y)|
∥δφ(x) − δφ(y)∥

dα(x, y)

=
|u(x)− u(y)|
dα(x, y)

+ |u(y)|d
α(φ(x), φ(y))

dα(x, y)

2

2 + dα(φ(x), φ(y))
.

Considering two cases either both x and y belong to coz(u) or at least one of
them, say y, does not belong to coz(u), one can conclude that

limd(x,y)→0
∥ψ(x)−ψ(y)∥
dα(x,y) = 0. As in the proof of part (ii), let S be the restriction

of T to lipα(X). Then, by Theorem 2.4, S and consequently T is compact. □
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