Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 1, pp. 79-89

Title:
The Jacobsthal sequences in finite groups
Author(s):
Ö Deveci, E. Karaduman and G. Sağlam

THE JACOBSTHAL SEQUENCES IN FINITE GROUPS

Ö DEVECI*, E. KARADUMAN AND G. SAĞLAM
(Communicated by Jamshid Moori)

Abstract

In this paper, we study the generalized order- k Jacobsthal sequences modulo m for $k \geq 2$ and the generalized order- k JacobsthalPadovan sequence modulo \bar{m} for $k \geq 3$. Also, we define the generalized order- k Jacobsthal orbit of a k-generator group for $k \geq 2$ and the generalized order- k Jacobsthal-Padovan orbit a k-generator group for $k \geq 3$. Furthermore, we obtain the lengths of the periods of the generalized order3 Jacobsthal orbit and the generalized order-3 Jacobsthal-Padovan orbit of the direct product $D_{2 n} \times \mathbb{Z}_{2 m},(n, m \geq 3)$ and the semidirect product $D_{2 n} \times{ }_{\varphi} \mathbb{Z}_{2 m},(n, m \geq 3)$. Keywords: Length, Jacobsthal sequence, finite group. MSC(2010): Primary: 11B50; Secondary: 11C20, 20F05, 20 D60.

1. Introduction

It is known that the Jacobsthal sequence $\left\{J_{n}\right\}$ is defined recursively by the equation

$$
\begin{equation*}
J_{n}=J_{n-1}+2 J_{n-2} \tag{1.1}
\end{equation*}
$$

for $n \geq 2$, where $J_{0}=0$ and $J_{1}=1$.
In [10], Koken and Bozkurt showed that the Jacobsthal numbers are also generated by a matrix

$$
F=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right], F^{n}=\left[\begin{array}{cc}
J_{n+1} & 2 J_{n} \\
J_{n} & 2 J_{n-1}
\end{array}\right]
$$

Kalman [8] mentioned that these sequences are special cases of a sequence which is defined recursively as a linear combination of the preceding k terms:

$$
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\cdots+c_{k-1} a_{n+k-1}
$$

[^0]where $c_{0}, c_{1}, \cdots, c_{k-1}$ are real constants. In [8], Kalman derived a number of closed-form formulas for the generalized sequence by companion matrix method as follows:
\[

A_{k}=\left[$$
\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_{0} & c_{1} & c_{2} & \cdots & c_{k-2} & c_{k-1}
\end{array}
$$\right]
\]

Then by an inductive argument he obtained that

$$
A_{k}^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right]
$$

In [13], Yilmaz and Bozkurt defined the k sequences of the generalized order- k Jacobsthal numbers as follows: for $n>0$ and $1 \leq \mathrm{i} \leq k$

$$
\begin{equation*}
J_{n}^{i}=J_{n-1}^{i}+2 J_{n-2}^{i}+\ldots+J_{n-k}^{i}, \tag{1.2}
\end{equation*}
$$

with initial conditions

$$
J_{n}^{i}=\left\{\begin{array}{ll}
1 & \text { if } n=1-i, \\
0 & \text { otherwise }
\end{array} \quad \text { for } 1-k \leq n \leq 0\right.
$$

where J_{n}^{i} is the nth term of the i th sequence. If $k=2$ and $i=1$, the generalized order- k Jacobsthal sequence is reduced to the conventional Jacobsthal sequence. In [13], the generalized order- k Jacobsthal matrix C had been given as:

$$
C=\left[\begin{array}{ccccc}
1 & 2 & \cdots & 1 & 1 \tag{1.3}\\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0
\end{array}\right]
$$

Also, it was proved that $B_{n}=C \cdot B_{n-1}$ where

$$
B_{n}=\left[\begin{array}{cccc}
J_{n}^{1} & J_{n}^{2} & \cdots & J_{n}^{k} \tag{1.4}\\
J_{n-1}^{1} & J_{n-1}^{2} & \cdots & J_{n-1}^{k} \\
\vdots & \vdots & & \vdots \\
J_{n-k+1}^{1} & J_{n-k+1}^{2} & \cdots & J_{n-k+1}^{k}
\end{array}\right]
$$

Lemma 1.1. ([13]) Let C and B_{n} be as is (1.3) and (1.4), respectively. Then, for all integers $n \geq 0$

$$
B_{n}=C^{n}
$$

In [3], Deveci defined the Jacobsthal-Padovan sequence $\{J(n)\}$ as follows:

$$
\begin{equation*}
J(n+2)=J(n)+2 J(n-1) \tag{1.5}
\end{equation*}
$$

for $n \geq 0$, where $J(-1)=0$ and $J(0)=J(1)=1$.
In [3], the Jacobsthal-Padovan matrix G had been given as:

$$
G=\left[g_{i j}\right]_{3 \times 3}=\left[\begin{array}{lll}
0 & 1 & 0 \tag{1.6}\\
0 & 0 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

Definition 1.2. ([3]) For a generating pair $(x, y) \in G$, we define the JacobsthalPadovan orbit $J_{x, y, y}(G)=\left\{x_{i}\right\}$ by

$$
x_{0}=x, x_{1}=y, x_{2}=y, x_{i+2}=\left(x_{i-1}\right)^{2} \cdot\left(x_{i}\right), \quad i \geq 1
$$

A sequence of group elements is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The number of elements in the repeating subsequence is called the period of the sequence. For example, the sequence $a, b, c, d, e, b, c, d, e, b, c, d, e, \cdots$ is periodic after the initial element a and has period 4. A sequence of group elements is simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For example, the sequence $a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, \cdots$ is simply periodic with period 6 .

Theorem 1.3. ([3])A Jacobsthal-Padovan orbit of a finite group is periodic.
Many references may be given for Fibonacci sequence and k-step Fibonacci (k-nacci) sequence in groups and related issues; see for example, $[1,4,5,9,11$, 12,14]. Deveci [3] expanded the theory to the Pell-Padovan sequence and the Jacobsthal-Padovan sequence. Now we extend the concept to the generalized order- k Jacobsthal sequence and the generalized order- k Jacobsthal-Padovan sequence.
In this paper, the usual notation p is used for a prime number.

2. The generalized order- k Jacobsthal sequences modulo m and the generalized order- k Jacobsthal-Padovan sequences modulo m

Now we define a new sequence called The generalized order $-k(k \geq 3)$ JacobsthalPadovan sequence $\left\{J P^{k}(n)\right\}$, defined by

$$
\begin{equation*}
J P^{k}(n+k)=J P^{k}(n+k-2)+2 J P^{k}(n+k-3)+\cdots+J P^{k}(n-1) \tag{2.1}
\end{equation*}
$$

for $n \geq 0$, where $J(i)=0$ for $-1 \leq i \leq k-3$ and $J(k-2)=J(k-1)=1$.

By (2.1), we can write

$$
\left[\begin{array}{c}
J P^{k}(n) \\
J P^{k}(n+1) \\
J P^{k}(n+2) \\
\vdots \\
J P^{k}(n+k-1) \\
J P^{k}(n+k)
\end{array}\right]=\left[\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 1 & 1 & \cdots & 2 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
J P^{k}(n-1) \\
J P^{k}(n) \\
J P^{k}(n+1) \\
\vdots \\
J P^{k}(n+k-2) \\
J P^{k}(n+k-1)
\end{array}\right]
$$

for the Jacobsthal-Padovan sequence. Let

$$
E=\left[\begin{array}{ccccccc}
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \cdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 1 & 1 & \cdots & 2 & 1 & 0
\end{array}\right]
$$

The matrix G is said to be generalized order- k Jacobsthal-Padovan matrix. Reducing the generalized order- k Jacobsthal sequence ($k \geq 2$) and the generalized order- $k(k \geq 3)$ Jacobsthal-Padovan sequence by a modulus m, we can get the repeating sequences, respectively denoted by

$$
\left\{J_{n}^{k, m}\right\}=\left\{J_{1-k}^{k, m}, J_{2-k}^{k, m}, \cdots, J_{0}^{k, m}, J_{1}^{k, m}, \cdots, J_{i}^{k, m}, \cdots,\right\}
$$

and

$$
\begin{aligned}
\left\{J P^{k, m}(n)\right\}= & \left\{J P^{k, m}(-1), J P^{k, m}(0), \cdots, J P^{k, m}(k-2)\right. \\
& \left.J P^{k, m}(k-1), \cdots, J P^{k, m}(i), \cdots,\right\}
\end{aligned}
$$

where $J_{i}^{k, m} \equiv J_{i}^{k}(\bmod m)$ and $J P^{k, m}(i) \equiv J P^{k}(i)(\bmod m)$. They have the same recurrences relation as in (1.2) and (2.1), respectively.

Theorem 2.1. [3] The sequence $\left\{J^{(m)}(n)\right\}$ is simply periodic if m is odd, and it is periodic if m is even.

Theorem 2.2. The sequences $\left\{J_{n}^{k, m}\right\}(k \geq 2)$ and $\left\{J P^{k, m}(n)\right\}(k \geq 3)$ are periodic.

Proof. Let us consider the sequence $\left\{J_{n}^{k, m}\right\}$ and put

$$
U_{k}=\left\{\left(x_{1}, x_{2}, \cdots, x_{k}\right) \mid 0 \leq x_{i} \leq m-1\right\}
$$

Then we have $\left|U_{k}\right|=m^{k}$ which is finite, that is, for any $a \geq 0$, there exists $b \geq a$ such that $J_{a+1}^{k, m}=J_{b+1}^{k, m}, \cdots, J_{a+k}^{k, m}=J_{b+k}^{k, m}$, respectively.
The proof for the sequence $\left\{J P^{k, m}(n)\right\}(k \geq 3)$ is similar to the above and is omitted.
Let $h J^{k, m}$ and $h J P^{k, m}$ denote the smallest periods of $\left\{J_{n}^{k, m}\right\}(k \geq 2)$ and $\left\{J P^{k, m}(n)\right\}(k \geq 3)$.

Example 2.3. We have $\left\{J_{n}^{3,3}\right\}=\{1,0,0,1,1,0,0,1, \cdots\}$, and then repeat. So, we get $h J^{3,3}=4$.
Example 2.4. We have $\left\{J P^{3,2}(n)\right\}=\{0,0,1,1,1,1,0,0,1,1, \cdots\}$, and then repeat. So, we get $h J P^{3,2}=6$.
Given an integer matrix $A=\left(a_{i j}\right), A(\bmod m)$ means that all entries of A are modulo m, that is, $A(\bmod m)=\left(a_{i j}(\bmod m)\right)$. Let $\langle C\rangle_{p^{a}}=\left\{C^{i}\left(\bmod p^{a}\right) \mid i \geq 0\right\}$ and $\langle E\rangle_{p^{a}}=\left\{E^{i}\left(\bmod p^{a}\right) \mid i \geq 0\right\}$ be cyclic groups for $p \neq 2$ and let $\left|\langle C\rangle_{p^{a}}\right|$ and $\left|\langle E\rangle_{p^{a}}\right|$ denote the orders of $\langle C\rangle_{p^{a}}$ and $\langle E\rangle_{p^{a}}$, respectively.
Theorem 2.5. If $p \neq 2$, then $h J^{k, p^{a}}=\left|\langle C\rangle_{p^{a}}\right|$ and $h J P^{k, p^{a}}=\left|\langle E\rangle_{p^{a}}\right|$.
Proof. Firstly, let us consider the case $h J^{k, p^{a}}=\left|\langle C\rangle_{p^{a}}\right|$. It is clear that $\left|\langle C\rangle_{p^{\alpha}}\right|$ is divisible by $h J^{k, p^{a}}$. Then we need only to prove that $h J^{k, p^{a}}$ is divisible by $\left|\langle C\rangle_{p^{\alpha}}\right|$. Let $h J^{k, p^{a}}=n$. We have already seen that $B_{n}=C \cdot B_{n-1}$ and $B_{n}=C^{n}$ [13]. Since $B_{n} \equiv I\left(\bmod p^{\alpha}\right)$, where I is the identity matrix, we get that $C^{n+1} \equiv C\left(\bmod p^{\alpha}\right)$. Therefore, $C^{n} \equiv I\left(\bmod p^{\alpha}\right)$, which yields that n is divisible by $\left|\langle C\rangle_{p^{\alpha}}\right|$.
Secondly, let us consider the case $h J P^{k, p^{a}}=\left|\langle E\rangle_{p^{a}}\right|$. It is clear that $\left|\langle E\rangle_{p^{\alpha}}\right|$ is divisible by $h J P^{k, p^{a}}$. Then we need only to prove that $h J P^{k, p^{a}}$ is divisible by $\left|\langle E\rangle_{p^{\alpha}}\right|$. Let $h J P^{k, p^{a}}=n$. Thus

$$
E^{n}=\left[\begin{array}{cccc}
m_{11} & m_{12} & \cdots & m_{1 k+1} \\
m_{21} & m_{22} & \cdots & m_{2 k+1} \\
\vdots & \vdots & & \vdots \\
m_{k+11} & m_{k+12} & \cdots & m_{k+1 k+1}
\end{array}\right]
$$

The elements of the matrix E^{n} are in the following forms:

$$
\begin{aligned}
m_{12} & =J P^{k}(n-k+1), m_{22}=J P^{k}(n-k+2), \cdots \\
m_{k 2} & =J P^{k}(n), m_{k+12}=J P^{k}(n+1) \\
m_{11}+m_{21} & =J P^{k}(n-k+2), m_{21}+m_{31}=J P^{k}(n-k+3), \cdots, \\
m_{k 1}+m_{k+11} & =J P^{k}(n+1) \\
m_{i i}=\beta_{1} J & P^{k}(n-1)+\beta_{2} J P^{k}(n)+\cdots+\beta_{k} J P^{k}(n+k-2)+1
\end{aligned}
$$

for $1 \leq i \leq k+1$ and $\beta_{1}, \beta_{2}, \cdots, \beta_{k} \geq 0$
and

$$
m_{i j}=\eta_{1} J P^{k}(n-1)+\eta_{2} J P^{k}(n)+\cdots+\eta_{k} J P^{k}(n+k-2)
$$

for $i \neq j, 1 \leq i, j \leq k+1$ and $\eta_{1}, \eta_{2}, \cdots, \eta_{k} \geq 0$.

We thus obtain that
$m_{i i} \equiv 1\left(\bmod p^{a}\right)$ for $1 \leq i, j \leq k+1$
and
$m_{i j} \equiv 0\left(\bmod p^{a}\right)$ for $1 \leq i, j \leq k+1$ such that $i \neq j$.
So we get that $E^{n} \equiv I\left(\bmod p^{a}\right)$, which yields that n is divisible by $\left|\langle E\rangle_{p^{a}}\right|$.
Theorem 2.6. Let $p \neq 2$ and let t be the largest positive integer such that $h J^{k, p}=h P^{k, p^{t}}$. Then $h J^{k, p^{\alpha}}=p^{\alpha-t} \cdot h J^{p}$ for every $\alpha \geq t$.

Proof. Let q be a positive integer. Since $C^{h J^{k, p^{q+1}}} \equiv I\left(\bmod p^{q+1}\right)$, that is, $C^{h J^{k, p^{q+1}}} \equiv I\left(\bmod p^{q}\right)$, we get that $h J^{k, p^{q}}$ divides $h J^{k, p^{q+1}}$. On the other hand, writing $C^{h J^{k, p^{q}}}=I+\left(a_{i j}^{(q)} \cdot p^{q}\right)$, we have

$$
C^{h J^{k, p^{q}} \cdot p}=\left(I+\left(a_{i j}^{(q)} \cdot p^{q}\right)\right)^{p}=\sum_{i=0}^{p}\binom{p}{i}\left(a_{i j}^{(q)} \cdot p^{q}\right)^{i} \equiv I\left(\bmod p^{q+1}\right),
$$

which yields that $h J^{k, p^{q+1}}$ divides $h J^{k, p^{q}} \cdot p$. Therefore, $h J^{k, p^{q+1}}=h J^{k, p^{q}}$ or $h J^{k, p^{q+1}}=h J^{k, p^{q}} \cdot p$, and the latter holds if, and only if, there is a $a_{i j}^{(q)}$ which is not divisible by p. Since $h J^{k, p^{t}} \neq h J^{k, p^{t+1}}$, there is an $a_{i j}^{(t+1)}$ which is not divisible by p, thus, $h J^{k, p^{t+1}} \neq h J^{k, p^{t+2}}$. The proof is finished by induction on t.

Theorem 2.7. Let $p \neq 2$ and let t be the largest positive integer such that $h J P^{k, p}=h J P^{k, p^{t}}$. Then $h J P^{k, p^{\alpha}}=p^{\alpha-t} \cdot h J P^{k, p}$ for every $\alpha \geq t$.

Proof. The proof is smilar to the above and is omitted.
Theorem 2.8. If $m=\prod_{i=1}^{t} p_{i}^{e_{i}},(t \geq 1)$ where p_{i} 's are distinct primes, then $h J^{k, m}=l c m\left[h J^{k, p_{i}^{e_{i}}}\right]$ (where the least common multiple of
$h J^{k, p_{1}^{e_{1}}}, h J^{k, p_{2}^{e_{2}}}, \cdots, h J^{k, p_{t}^{e}} \quad$ is denoted by lcm $\left.\left[h J^{k, p_{i}^{e_{i}}}\right]\right)$ and $h J P^{k, m}=l c m$ $\left[h J P^{k, p_{i}^{e_{i}}}\right]$.
Proof. Let us consider the case $h J^{k, m}=\operatorname{lcm}\left[h J^{k, p_{i}^{e_{i}}}\right]$. The statement, " $h J^{k, p_{i}^{e_{i}}}$ is the length of the period of $\left\{J_{n}^{k, p_{i}^{e_{i}}}\right\}$," implies that the sequence $\left\{J_{n}^{k, p_{i}^{e_{i}}}\right\}$ repeats only after blocks of length $u \cdot h J^{k, p_{i}^{e_{i}}},(u \in \mathbb{N})$; and the statement, " $h J^{k, m}$ is the length of the period $\left\{J_{n}^{k, m}\right\}$," implies that $\left\{J_{n}^{k, p_{i}^{e_{i}}}\right\}$ repeats after $h J^{k, m}$ terms for all values i. Thus, $h J^{k, m}$ is of the form $u \cdot h J^{k, p_{i}^{e_{i}}}$ for all values of i, and since any such number gives a period of $\left\{J_{n}^{k, m}\right\}$. Then we get that $h J^{k, m}=\operatorname{lcm}\left[h J^{k, p_{i}^{e_{i}}}\right]$.

The proof of the case $h J P^{k, m}=\operatorname{lcm}\left[h J P^{k, p_{i}^{e_{i}}}\right]$ is similar to the above and is omitted.

3. The generalized order- k Jacobsthal sequences and the generalized order- k Jacobsthal-Padovan sequences in finite groups

Definition 3.1. For a finitely generated group $G=\langle A\rangle$, where $A=\left\{a_{1}, a_{2}, \ldots\right.$, $\left.a_{k}\right\}$ we define the generalized order- k Jacobsthal orbit $J_{A}^{k}(G)$ with respect to the generating set A to be the sequence $\left\{x_{i}\right\}$ of the elements of G such that

$$
x_{i}=a_{i+1} \text { for } 0 \leq i \leq k-1, x_{i+k}=\left\{\begin{array}{l}
\left(x_{i}\right)^{2}\left(x_{i+1}\right), \\
\left(x_{i}\right) \cdots\left(x_{i+k-2}\right)^{2}\left(x_{i+k-1}\right), \quad k \geq 3
\end{array}\right.
$$

for $i \geq 0$.
Definition 3.2. For a finitely generated group $G=\langle A\rangle$, where

$$
A=\left\{a_{1}, a_{2}, \cdots, a_{k}\right\}(k \geq 3)
$$

we define the generalized order- k Jacobsthal-Padovan orbit $J P_{A}^{k}(G)$ with respect to the generating set A to be the sequence $\left\{x_{i}\right\}$ of the elements of G such that

$$
x_{0}=a_{1}, x_{1}=a_{2}, \cdots, x_{k-1}=a_{k}, x_{k}=a_{k}
$$

$x_{i+k+1}=\left(x_{i}\right)\left(x_{i+1}\right) \cdots\left(x_{i+k-2}\right)^{2}\left(x_{i+k-1}\right)$ for $i \geq 0$.
Theorem 3.3. A generalized order- k Jacobsthal orbit and a generalized orderk Jacobsthal-Padovan orbit of a finite group are periodic.

Proof. Let us consider the generalized order- k Jacobsthal orbit and let n be the order of G. Since there are n^{k} distinct k-tuples of elements of G, at least one of the k-tuples appears twice in a generalized order- k Jacobsthal orbit of G. Thus, the subsequence following this k-tuples. Because of the repeating, the generalized order- k Jacobsthal orbit is periodic.
The proof for a generalized order- k Jacobsthal-Padovan orbit of a finite group is similar to the above and is omitted.

We denote the lengths of the periods of the generalized order- k Jacobsthal orbit $J_{A}^{k}(G)$ and the generalized order- k Jacobsthal-Padovan orbit $J P_{A}^{k}(G)$ by $L J_{A}^{k}(G)$ and $L J P_{A}^{k}(G)$, respectively, respectively and we call them the generalized order- k Jacobsthal length and the generalized order- k JacobsthalPadovan length of G, recpectively.
From the definitions it is clear that the generalized order- k Jacobsthal length and the generalized order- k Jacobsthal-Padovan length of a group depend on the chosen generating set and the order in which the assignments of $x_{0}, x_{1}, \ldots, x_{k}$ are made.
We will now address the generalized order- k Jacobsthal lengths and the generalized order- k Jacobsthal-Padovan lengths of specific classes of finite groups.

We use the natural generating set for $D_{2 n}$, as in [2], defined as satisfying $D_{2 n}=\left\langle x, y: x^{2}=y^{n}=(x y)^{2}=e\right\rangle$. This is extended to direct product by using the following well known method of construction:
If $G_{1}=\left\langle A: R_{1}\right\rangle$ and $G_{2}=\left\langle B: R_{2}\right\rangle$, then $G_{1} \times G_{2}=\left\langle A, B: R_{1}, R_{2},[A, B]\right\rangle$ where $[A, B]=\{[a, b]: a \in A, b \in B\}$, see $[7]$.
The direct product $D_{2 n} \times \mathbb{Z}_{2 m},(n, m \geq 3)$ is defined by the presentation

$$
D_{2 n} \times \mathbb{Z}_{2 m}=\left\langle x, y, z: x^{2}=y^{n}=(x y)^{2}=z^{2 m}=[x, z]=[y, z]=e\right\rangle
$$

The usual notation $G_{1} \times{ }_{\varphi} G_{2}$ is used for the semidirect product of the group G_{1} by G_{2}, where $\varphi: G_{2} \rightarrow \operatorname{Aut}\left(G_{1}\right)$ is a homomorphism such that $b \varphi=\varphi_{b}$ where $\varphi_{b}: G_{1} \rightarrow G_{1}$ is an element $\operatorname{Aut}\left(G_{1}\right)$.
The semidirect product $D_{2 n} \times{ }_{\varphi} \mathbb{Z}_{2 m},(n, m \geq 3)$ is defined by the presentation

$$
D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}=\left\langle x, y, z: x^{2}=y^{n}=(x y)^{2}=z^{2 m}=e, z^{-1} x z x=e, z^{-1} y z y=e\right\rangle
$$

where if $\mathbb{Z}_{2 m}=\langle z\rangle$, then $\varphi: \mathbb{Z}_{2 m} \rightarrow \operatorname{Aut}\left(D_{2 n}\right)$ is a homomorphism such that $z \varphi=\varphi_{z} ; \varphi_{z}: D_{2 n} \rightarrow D_{2 n}$ is defined by $x \varphi_{z}=x$ and $y \varphi_{z}=y^{-1}$. For more information see [6].

Theorem 3.4. $L J_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)=h J^{3,2 m}$.
ii)

Proof. The orbit $J_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)$ is

$$
x, y, z, x y^{2} z, x y z^{3}, x y z^{6}, y^{-1} z^{13}, x z^{27}, y z^{59}, z^{126}, \ldots
$$

Using the above information, the orbit $J_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)$ becomes:

$$
\begin{aligned}
& x_{0}=x, x_{1}=y, x_{2}=z, \ldots, \\
& x_{7}=x z^{J_{6}^{3}}, x_{8}=y z^{J_{7}^{3}}, x_{9}=z^{J_{8}^{3}}, \ldots, \\
& x_{14}=x z^{J_{13}^{3}}, x_{15}=y z^{J_{14}^{3}}, x_{16}=z^{J_{15}^{3}}, \ldots, \\
& x_{7 . i}=x z^{J_{7 . i-1}^{3}}, x_{7 . i+1}=y z^{J_{7 . i}^{3}}, x_{7 . i+2}=z^{J_{7 . i+1}^{3}}, \ldots
\end{aligned}
$$

The smallest non-trivial integer satisfiying the above conditions occurs when the period is $\operatorname{lcm}\left[7, h J^{3,2 m}\right]=h J^{3,2 m}$.

Theorem 3.5. $\operatorname{LJ} P_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)=\operatorname{lcm}\left[12, h J P^{3,2 m}\right]$.
Proof. The orbit $J P_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)$ is

$$
\begin{aligned}
& x, y, z, z, x y^{2} z, y z^{3}, x y^{2} z^{4}, y z^{6}, y^{-2} z^{11} \\
& y^{2} z^{17}, x y^{2} z^{27}, y^{-1} z^{45}, x z^{72}, y z^{116}, z^{189}, z^{305}, \ldots
\end{aligned}
$$

Using the above information, the orbit $J P_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)$ becomes:

$$
\begin{aligned}
& x_{0}=x, x_{1}=y, x_{2}=z, x_{3}=z, \ldots, \\
& x_{12}=x z^{J P^{3}(11)}, x_{13}=y z^{J P^{3}(12)}, x_{14}=z^{J P^{3}(13)}, x_{15}=z^{J P^{3}(14)}, \ldots, \\
& x_{24}=x z^{J P^{3}(23)}, x_{25}=y z^{J P^{3}(24)}, x_{26}=z^{J P^{3}(25)}, x_{27}=z^{J P^{3}(26)}, \ldots, \\
& x_{12 . i}=x z^{J P^{3}(12 . i-1)}, x_{12 . i+1}=y z^{J P^{3}(12 . i)}, \\
& x_{12 . i+2}=z^{J P^{3}(12 . i+1)}, x_{12 . i+3}=z^{J P^{3}(12 . i+2)}, \cdots .
\end{aligned}
$$

The smallest non-trivial integer satisfying the above conditions occurs when the period is $\operatorname{lcm}\left[12, h J P^{3,2 m}\right]$.

Theorem 3.6. $L J_{(x, y, z)}^{3}\left(D_{2 n} \times{ }_{\varphi} \mathbb{Z}_{2 m}\right)=\left\{\begin{array}{lll}\operatorname{lcm}\left[7 \cdot \frac{n}{4}, h J^{3,2 m}\right] & \text { if } n \equiv 0(\bmod 4), \\ \operatorname{lcm}\left[7 \cdot \frac{n}{2}, h J^{3,2 m}\right] & \text { if } n \equiv 2(\bmod 4), \\ \operatorname{lcm}\left[7 . n, h J^{3,2 m}\right] & \text { if } \quad \text { Otherwise. }\end{array}\right.$
Proof. The orbit $J_{(x, y, z)}^{3}\left(D_{2 n} \times \mathbb{Z}_{2 m}\right)$ is

$$
x, y, z, x y^{2} z, z^{3} y x, z^{6} y^{5} x, z^{13} y^{-1}, z^{28} x, z^{60} y^{5}, z^{129} y^{4}, \cdots
$$

Using the above information, the orbit $J P_{(x, y, z)}^{3}\left(D_{2 n} \times{ }_{\varphi} \mathbb{Z}_{2 m}\right)$ becomes:

$$
\begin{aligned}
& x_{0}=x, x_{1}=y, x_{2}=z, \ldots, \\
& x_{7}=z^{J_{6}^{3}} x, x_{8}=z^{J_{7}^{3}} y^{5}, x_{14}=z^{J_{8}^{3}} y^{4}, \ldots, \\
& x_{14}=z^{J_{13}^{3}} x, x_{15}=z^{J_{14}^{3}} y^{9}, x_{16}=z^{J_{15}^{3}} y^{8}, \ldots, \\
& x_{7 . i}=z^{J_{7 . i-1}^{3}} x, x_{7 . i+1}=z^{J_{7 . i}^{3}} y^{4 . i+1}, x_{7 . i+2}=z^{J_{7 . i+1}^{3}} y^{4 . i}, \ldots
\end{aligned}
$$

So we need an i such that $4 . i=n . u$ for $u \in \mathbb{N}$ and $J_{7 . i-1}^{3} \equiv 0(\bmod 2 m)$, $J_{7 . i}^{3} \equiv 0(\bmod 2 m)$ and $J_{7 . i+1}^{3} \equiv 1(\bmod 2 m)$.
If $n \equiv 0 \bmod 4, i=\frac{n}{4}$. Thus, $L J_{(x, y, z)}^{3}\left(D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}\right)=\operatorname{lcm}\left[7 \cdot \frac{\mathrm{n}}{4}, h J^{3,2 m}\right]$.
If $n \equiv 2 \bmod 4, i=\frac{n}{2}$. Thus, $L J_{(x, y, z)}^{3}\left(D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}\right)=\operatorname{lcm}\left[7 \cdot \frac{\mathrm{n}}{2}, h J^{3,2 m}\right]$.
If $n \equiv 1 \bmod 4$ or $n \equiv 3 \bmod 4, i=n$. Thus,

$$
L J_{(x, y, z)}^{3}\left(D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}\right)=\operatorname{lcm}\left[7 . n, h J^{3,2 m}\right]
$$

Theorem 3.7. $L J P_{(x, y, z)}^{3}\left(D_{2 n} \times{ }_{\varphi} \mathbb{Z}_{2 m}\right)=\left\{\begin{array}{lc}\operatorname{lcm}\left[3 n, h J P^{3,2 m}\right] & \text { if } n \text { is even, } \\ \operatorname{lcm}\left[6 n, h J P^{3,2 m}\right] & \text { if } n \text { is odd. }\end{array}\right.$
Proof. The orbit $J P_{(x, y, z)}^{3}\left(D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}\right)$ is

$$
x, y, z, z, x y^{2} z, y z^{3}, z^{4} y^{2} x, z^{6} x, z^{11}, z^{17} y^{2}, \cdots
$$

Using the above information, the orbit $J P_{(x, y, z)}^{3}\left(D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}\right)$ becomes:

$$
\begin{aligned}
& x_{0}=x, x_{1}=y, x_{2}=z, x_{3}=z, \ldots, \\
& x_{6}=z^{J P^{3}(5)} y^{2} x, x_{7}=z^{J P^{3}(6)} y^{3}, x_{8}=z^{J P^{3}(7)}, x_{9}=z^{J P^{3}(8)} y^{2}, \ldots, \\
& x_{12}=z^{J P^{3}(11)} y^{4} x, x_{13}=z^{J P^{3}(12)} y^{5}, \\
& x_{14}=z^{J P^{3}(13)}, x_{15}=z^{J P^{3}(14)} y^{4}, \cdots, \\
& x_{6 . i}=z^{J P^{3}(6 . i-1)} y^{2 . i} x, x_{6 . i+1}=z^{J P^{3}(6 . i)} y^{2 . i+1} \\
& x_{6 . i+2}=z^{J P^{3}(6 . i+1)}, x_{6 . i+3}=z^{J P^{3}(6 . i+2)} y^{2 . i}, \cdots
\end{aligned}
$$

So we need an i such that $2 . i=n . v$ for $v \in \mathbb{N}$ and $J P^{3}(6 . i-1) \equiv 0(\bmod 2 m)$, $J P^{3}(6 . i) \equiv 0(\bmod 2 m), J P^{3}(6 . i+1) \equiv 1(\bmod 2 m)$ and $J P^{3}(6 . i+2) \equiv$ $1(\bmod 2 m)$.
If n is even, $i=\frac{n}{2}$. Thus, $L J P_{(x, y, z)}^{3}\left(D_{2 n} \times{ }_{\varphi} \mathbb{Z}_{2 m}\right)=\operatorname{lcm}\left[6 \cdot \frac{n}{2}, h J^{3,2 m}\right]=$ $\operatorname{lcm}\left[3 n, h J^{3,2 m}\right]$.
If n is odd, $i=n$. Thus, $L J P_{(x, y, z)}^{3}\left(D_{2 n} \times_{\varphi} \mathbb{Z}_{2 m}\right)=\operatorname{lcm}\left[6 n, h J^{3,2 m}\right]$.

Acknowledgments

This Project was supported by the Commission for the Scientific Research Projects of Kafkas University. The Project number. 2011-FEF-26.

References

[1] C. M. Campbell, H. Doostie and E. F. Robertson, Fibonacci length of generating pairs in groups, Applications of Fibonacci numbers, Vol. 3 (Pisa, 1988), 27-35,Kluwer Acad. Publ., Dordrecht, 1990.
[2] C. M. Campbell, E. F. Robertson and P. D. Williams, On the efficiency of some direct powers of groups, GroupsCanberra 1989, 106-113, Lecture Notes in Math., 1456, Springer, Berlin, 1990.
[3] O. Deveci, The Pell-Padovan sequences and the Jacobsthal-Padovan sequences in finite groups, Util. Math. 98 (2015) 257-270.
[4] Ö. Deveci and E. Karaduman, he k-nacci sequences in $Q_{2^{n}} \times{ }_{\phi} \mathbb{Z}_{2 m}$, Math. Comput. Modelling 55 (2012), no. 3-4, 1450-1455.
[5] O. Deveci and E. Karaduman, k-nacci sequences in Miller's generalization of polyhedral groups, Iran. J. Sci. Technol. Trans. A Sci. 34 (2010), no. 4, 275-283.
[6] H. Doostie and P. P. Campbell, On the commutator lengths of certain classes of finitely presented groups, Int. J. Math. Math. Sci. 2006 (2006), Article ID 74981, 9 pages.
[7] D. L. Johnson, Presentations of groups, Second edition, London Mathematical Society Student Texts, 15, Cambridge University Press, Cambridge, 1997.
[8] D. Kalman, Generalized Fibonacci numbers by matrix methods, The Fibonacci Quart. 20 (1982), no. 1, 73-76.
[9] S. W. Knox, Fibonacci sequences in finite groups, The Fibonacci Quart. 30 (1992), no. 2, 116-120.
[10] F. Koken and D. Bozkurt, On the Jacobsthal numbers by matrix methods, Int. J. Contemp. Math. Sci. 3 (2008), no. 13-16, 605-614.
[11] K. Lü and J. Wang, k-step Fibonacci sequence modulo m, Util. Math. 71 (2006) 169-177.
[12] E. Özkan, H. Aydin and R. Dikici, 3-step Fibonacci series modulo m, Appl. Math. Comput. 143 (2003), no. 1, 165-172.
[13] F. Yilmaz and D. Bozkurt, The generalized order-k Jacobsthal numbers, Int. J. Contemp. Math. Sci. 4 (2009), no. 33-36, 1685-1694.
[14] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly 67 (1960) 525-532.
(Ömür Deveci) Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, Turkey.

E-mail address: odeveci36@hotmail.com

(Erdal Karaduman) Department of Mathematics, Faculty of Science, Atat ürk University, 25240 Erzurum, Turkey.

E-mail address: eduman@atauni.edu.tr
(Gencay Sağlam) Department of Mathematics, Faculty of Science and Letters, Kafkas University, 36100 Kars, Turkey.

E-mail address: saglamgencay25@hotmail.com

[^0]: Article electronically published on February 22, 2016.
 Received: 26 June 2012, Accepted: 2 November 2015.

 * Corresponding author.

