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(Communicated by Jamshid Moori)

Abstract. In this paper, we study the generalized order-k Jacobsthal

sequences modulo m for k ≥ 2 and the generalized order-k Jacobsthal-
Padovan sequence modulo m for k ≥ 3. Also, we define the generalized
order-k Jacobsthal orbit of a k -generator group for k ≥ 2 and the gener-
alized order-k Jacobsthal-Padovan orbit a k -generator group for k ≥ 3.

Furthermore, we obtain the lengths of the periods of the generalized order-
3 Jacobsthal orbit and the generalized order-3 Jacobsthal-Padovan orbit
of the direct product D2n ×Z2m, (n, m ≥ 3) and the semidirect product
D2n ×φ Z2m, (n, m ≥ 3).

Keywords: Length, Jacobsthal sequence, finite group.
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1. Introduction

It is known that the Jacobsthal sequence {Jn} is defined recursively by the
equation

(1.1) Jn = Jn−1 + 2Jn−2

for n ≥ 2, where J0 = 0 and J1 = 1.
In [10], Koken and Bozkurt showed that the Jacobsthal numbers are also gen-
erated by a matrix

F=

[
1 2
1 0

]
, Fn=

[
Jn+1 2Jn
Jn 2Jn−1

]
.

Kalman [8] mentioned that these sequences are special cases of a sequence
which is defined recursively as a linear combination of the preceding k terms:

an+k = c0an + c1an+1 + · · ·+ ck−1an+k−1,
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where c0, c1, · · · , ck−1 are real constants. In [8], Kalman derived a number of
closed-form formulas for the generalized sequence by companion matrix method
as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.

Then by an inductive argument he obtained that

An
k


a0
a1
...

ak−1

 =


an

an+1

...
an+k−1

 .

In [13], Yilmaz and Bozkurt defined the k sequences of the generalized order-k
Jacobsthal numbers as follows:
for n > 0 and 1 ≤ i ≤ k

(1.2) J i
n = J i

n−1 + 2J i
n−2 + ...+ J i

n−k,

with initial conditions

J i
n =

{
1 if n = 1− i,
0 otherwise,

for 1− k ≤ n ≤ 0,

where J i
n is the nth term of the ith sequence. If k = 2 and i = 1, the generalized

order-k Jacobsthal sequence is reduced to the conventional Jacobsthal sequence.
In [13], the generalized order-k Jacobsthal matrix C had been given as:

(1.3) C =


1 2 · · · 1 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0

 .

Also, it was proved that Bn = C ·Bn−1 where

(1.4) Bn =


J1
n J2

n · · · Jk
n

J1
n−1 J2

n−1 · · · Jk
n−1

...
...

...
J1
n−k+1 J2

n−k+1 · · · Jk
n−k+1

 .

Lemma 1.1. ( [13]) Let C and Bn be as is (1.3) and (1.4), respectively. Then,
for all integers n ≥ 0
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Bn = Cn.

In [3], Deveci defined the Jacobsthal-Padovan sequence {J (n)} as follows:

(1.5) J (n+ 2) = J (n) + 2J (n− 1)

for n ≥ 0, where J (−1) = 0 and J (0) = J (1) = 1.
In [3], the Jacobsthal-Padovan matrix G had been given as:

(1.6) G = [gij ]3×3 =

 0 1 0
0 0 1
2 1 0

 .

Definition 1.2. ( [3]) For a generating pair (x, y) ∈ G, we define the Jacobsthal-
Padovan orbit Jx,y,y (G) = {xi} by

x0 = x, x1 = y, x2 = y, xi+2 = (xi−1)
2 · (xi) , i ≥ 1.

A sequence of group elements is periodic if, after a certain point, it con-
sists only of repetitions of a fixed subsequence. The number of elements in the
repeating subsequence is called the period of the sequence. For example, the
sequence a, b, c, d, e, b, c, d, e, b, c, d, e, · · · is periodic after the initial element a
and has period 4. A sequence of group elements is simply periodic with pe-
riod k if the first k elements in the sequence form a repeating subsequence.
For example, the sequence a, b, c, d, e, f, a, b, c, d, e, f, a, b, c, d, e, f, · · · is simply
periodic with period 6.

Theorem 1.3. ( [3])A Jacobsthal-Padovan orbit of a finite group is periodic.

Many references may be given for Fibonacci sequence and k -step Fibonacci
(k -nacci) sequence in groups and related issues; see for example, [1, 4, 5, 9, 11,
12, 14]. Deveci [3] expanded the theory to the Pell-Padovan sequence and the
Jacobsthal-Padovan sequence. Now we extend the concept to the generalized
order-k Jacobsthal sequence and the generalized order-k Jacobsthal-Padovan
sequence.
In this paper, the usual notation p is used for a prime number.

2. The generalized order-k Jacobsthal sequences modulo m and the
generalized order-k Jacobsthal-Padovan sequences modulo m

Now we define a new sequence called The generalized order-k (k ≥ 3) Jacobsthal-
Padovan sequence

{
JP k (n)

}
, defined by

(2.1) JP k (n+ k) = JP k (n+ k − 2) + 2JP k (n+ k − 3) + · · ·+ JP k (n− 1)

for n ≥ 0, where J (i) = 0 for − 1 ≤ i ≤ k − 3 and J (k − 2) = J (k − 1) = 1.
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By (2.1), we can write

JP k (n)

JP k (n+ 1)

JP k (n+ 2)
...

JP k (n+ k − 1)

JP k (n+ k)


=



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 0 0 1
1 1 1 · · · 2 1 0





JP k (n− 1)

JP k (n)

JP k (n+ 1)
...

JP k (n+ k − 2)

JP k (n+ k − 1)


for the Jacobsthal-Padovan sequence. Let

E =



0 1 0 · · · 0 0 0
0 0 1 · · · 0 0 0
0 0 0 · · · 0 0 0
...

...
... · · ·

...
...

...
0 0 0 · · · 0 0 1
1 1 1 · · · 2 1 0


.

The matrix G is said to be generalized order-k Jacobsthal-Padovan matrix.
Reducing the generalized order-k Jacobsthal sequence (k ≥ 2) and the gener-
alized order-k (k ≥ 3) Jacobsthal-Padovan sequence by a modulus m, we can
get the repeating sequences, respectively denoted by{

Jk,m
n

}
=

{
Jk,m
1−k , J

k,m
2−k , · · · , J

k,m
0 , Jk,m

1 , · · · , Jk,m
i , · · · ,

}
and {

JP k,m (n)
}

=
{
JP k,m (−1) , JP k,m (0) , · · · , JP k,m (k − 2) ,

JP k,m (k − 1) , · · · , JP k,m (i) , · · · ,
}

where Jk,m
i ≡ Jk

i (mod m) and JP k,m (i) ≡ JP k (i) (mod m). They have the
same recurrences relation as in (1.2) and (2.1), respectively.

Theorem 2.1. [3] The sequence
{
J (m) (n)

}
is simply periodic if m is odd,

and it is periodic if m is even.

Theorem 2.2. The sequences
{
Jk,m
n

}
(k ≥ 2) and

{
JP k,m (n)

}
(k ≥ 3) are

periodic.

Proof. Let us consider the sequence
{
Jk,m
n

}
and put

Uk = { (x1, x2, · · · , xk)| 0 ≤ xi ≤ m− 1} .
Then we have |Uk| = mk which is finite, that is, for any a ≥ 0, there exists

b ≥ a such that Jk,m
a+1 = Jk,m

b+1 , · · · , J
k,m
a+k = Jk,m

b+k , respectively.

The proof for the sequence
{
JP k,m (n)

}
(k ≥ 3) is similar to the above and is

omitted.
Let hJk,m and hJP k,m denote the smallest periods of

{
Jk,m
n

}
(k ≥ 2) and{

JP k,m (n)
}
(k ≥ 3). □
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Example 2.3. We have
{
J3,3
n

}
= {1, 0, 0, 1, 1, 0, 0, 1, · · · }, and then repeat.

So, we get hJ3,3 = 4.

Example 2.4. We have
{
JP 3,2 (n)

}
= {0, 0, 1, 1, 1, 1, 0, 0, 1, 1, · · · }, and then

repeat. So, we get hJP 3,2 = 6.

Given an integer matrix A = (aij), A (mod m) means that all entries of A are
modulom, that is, A (mod m) = (aij (mod m)). Let ⟨C⟩pa =

{
Ci (mod pa)

∣∣ i ≥ 0
}

and ⟨E⟩pa =
{
Ei (mod pa)

∣∣ i ≥ 0
}
be cyclic groups for p ̸= 2 and let

∣∣∣⟨C⟩pa

∣∣∣
and

∣∣∣⟨E⟩pa

∣∣∣denote the orders of ⟨C⟩pa and ⟨E⟩pa , respectively.

Theorem 2.5. If p ̸= 2, then hJk,pa

=
∣∣∣⟨C⟩pa

∣∣∣ and hJP k,pa

=
∣∣∣⟨E⟩pa

∣∣∣.
Proof. Firstly, let us consider the case hJk,pa

=
∣∣∣⟨C⟩pa

∣∣∣. It is clear that ∣∣∣⟨C⟩pα

∣∣∣
is divisible by hJk,pa

. Then we need only to prove that hJk,pa

is divisible by∣∣∣⟨C⟩pα

∣∣∣. Let hJk,pa

= n. We have already seen that Bn = C · Bn−1 and

Bn = Cn [13]. Since Bn ≡ I (mod pα) , where I is the identity matrix, we get
that Cn+1 ≡ C (mod pα). Therefore, Cn ≡ I (mod pα), which yields that n

is divisible by
∣∣∣⟨C⟩pα

∣∣∣.
Secondly, let us consider the case hJP k,pa

=
∣∣∣⟨E⟩pa

∣∣∣. It is clear that
∣∣∣⟨E⟩pα

∣∣∣
is divisible by hJP k,pa

. Then we need only to prove that hJP k,pa

is divisible

by
∣∣∣⟨E⟩pα

∣∣∣. Let hJP k,pa

= n. Thus

En =


m11 m12 · · · m1k+1

m21 m22 · · · m2k+1

...
...

...
mk+11 mk+12 · · · mk+1k+1

 .

The elements of the matrix En are in the following forms:

m12 = JP k (n− k + 1) , m22 = JP k (n− k + 2) , · · · ,
mk2 = JP k (n) , mk+12 = JP k (n+ 1) ,

m11 +m21 = JP k (n− k + 2) , m21 +m31 = JP k (n− k + 3) , · · · ,
mk1 +mk+11 = JP k (n+ 1) ,

mii = β1JP
k (n− 1) + β2JP

k (n) + · · · + βkJP
k (n+ k − 2) + 1

for 1 ≤ i ≤ k + 1 and β1, β2, · · · , βk ≥ 0
and

mij = η1JP
k (n− 1) + η2JP

k (n) + · · · + ηkJP
k (n+ k − 2)

for i ̸= j, 1 ≤ i, j ≤ k + 1 and η1, η2, · · · , ηk ≥ 0.
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We thus obtain that
mii ≡ 1 (mod pa) for 1 ≤ i, j ≤ k + 1
and
mij ≡ 0 (mod pa) for 1 ≤ i, j ≤ k + 1 such that i ̸= j.

So we get that En ≡ I (mod pa), which yields that n is divisible by
∣∣∣⟨E⟩pa

∣∣∣. □

Theorem 2.6. Let p ̸= 2 and let t be the largest positive integer such that

hJk,p = hP k,pt

. Then hJk,pα

= pα−t · hJp for every α ≥ t.

Proof. Let q be a positive integer. Since ChJk,pq+1

≡ I
(
mod pq+1

)
, that is,

ChJk,pq+1

≡ I (mod pq), we get that hJk,pq

divides hJk,pq+1

. On the other

hand, writing ChJk,pq

= I +
(
a
(q)
ij · pq

)
, we have

ChJk,pq ·p =
(
I +

(
a
(q)
ij · pq

))p

=

p∑
i=0

(
p
i

)(
a
(q)
ij · pq

)i

≡ I
(
mod pq+1

)
,

which yields that hJk,pq+1

divides hJk,pq · p. Therefore, hJk,pq+1

= hJk,pq

or

hJk,pq+1

= hJk,pq · p, and the latter holds if, and only if, there is a a
(q)
ij which

is not divisible by p. Since hJk,pt ̸= hJk,pt+1

, there is an a
(t+1)
ij which is not

divisible by p, thus, hJk,pt+1 ̸= hJk,pt+2

. The proof is finished by induction on
t . □

Theorem 2.7. Let p ̸= 2 and let t be the largest positive integer such that

hJP k,p = hJP k,pt

. Then hJP k,pα

= pα−t · hJP k,p for every α ≥ t.

Proof. The proof is smilar to the above and is omitted. □

Theorem 2.8. If m =
∏t

i=1 p
ei
i , (t ≥ 1) where pi’s are distinct primes, then

hJk,m =lcm
[
hJk,p

ei
i

]
(where the least common multiple of

hJk,p
e1
1 , hJk,p

e2
2 , · · · , hJk,p

et
t is denoted by lcm

[
hJk,p

ei
i

]
) and hJP k,m =lcm[

hJP k,p
ei
i

]
.

Proof. Let us consider the case hJk,m =lcm
[
hJk,p

ei
i

]
. The statement, “hJk,p

ei
i

is the length of the period of
{
J
k,p

ei
i

n

}
,” implies that the sequence

{
J
k,p

ei
i

n

}
repeats only after blocks of length u · hJk,p

ei
i , (u ∈ N); and the statement,

“hJk,m is the length of the period
{
Jk,m
n

}
,” implies that

{
J
k,p

ei
i

n

}
repeats

after hJk,m terms for all values i. Thus, hJk,m is of the form u · hJk,p
ei
i for all

values of i, and since any such number gives a period of
{
Jk,m
n

}
. Then we get

that hJk,m =lcm
[
hJk,p

ei
i

]
.
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The proof of the case hJP k,m =lcm
[
hJP k,p

ei
i

]
is similar to the above and is

omitted. □

3. The generalized order-k Jacobsthal sequences and the generalized
order-k Jacobsthal-Padovan sequences in finite groups

Definition 3.1. For a finitely generated groupG = ⟨A⟩, whereA = {a1, a2, . . . ,
ak} we define the generalized order-k Jacobsthal orbit Jk

A (G) with respect to
the generating set A to be the sequence {xi} of the elements of G such that

xi = ai+1 for 0 ≤ i ≤ k − 1, xi+k =

{
(xi)

2
(xi+1) , k = 2,

(xi) · · · (xi+k−2)
2
(xi+k−1) , k ≥ 3

for i ≥ 0.

Definition 3.2. For a finitely generated group G = ⟨A⟩, where
A = {a1, a2, · · · , ak} (k ≥ 3)

we define the generalized order-k Jacobsthal-Padovan orbit JP k
A (G) with re-

spect to the generating set A to be the sequence {xi} of the elements of G such
that

x0 = a1, x1 = a2, · · · , xk−1 = ak, xk = ak,

xi+k+1 = (xi) (xi+1) · · · (xi+k−2)
2
(xi+k−1) for i ≥ 0.

Theorem 3.3. A generalized order-k Jacobsthal orbit and a generalized order-
k Jacobsthal-Padovan orbit of a finite group are periodic.

Proof. Let us consider the generalized order-k Jacobsthal orbit and let n be
the order of G. Since there are nk distinct k -tuples of elements of G, at least
one of the k -tuples appears twice in a generalized order-k Jacobsthal orbit of
G. Thus, the subsequence following this k -tuples. Because of the repeating,
the generalized order-k Jacobsthal orbit is periodic.
The proof for a generalized order-k Jacobsthal-Padovan orbit of a finite group
is similar to the above and is omitted. □

We denote the lengths of the periods of the generalized order-k Jacobsthal
orbit Jk

A (G) and the generalized order-k Jacobsthal-Padovan orbit JP k
A (G)

by LJk
A (G) and LJP k

A (G), respectively, respectively and we call them the
generalized order-k Jacobsthal length and the generalized order-k Jacobsthal-
Padovan length of G, recpectively.
From the definitions it is clear that the generalized order-k Jacobsthal length
and the generalized order-k Jacobsthal-Padovan length of a group depend on
the chosen generating set and the order in which the assignments of x0, x1, . . . , xk

are made.
We will now address the generalized order-k Jacobsthal lengths and the gener-
alized order-k Jacobsthal-Padovan lengths of specific classes of finite groups.



The Jacobsthal sequences in finite groups 86

We use the natural generating set for D2n, as in [2], defined as satisfying

D2n =
⟨
x, y : x2 = yn = (xy)

2
= e

⟩
. This is extended to direct product by

using the following well known method of construction:
If G1 = ⟨A : R1⟩ and G2 = ⟨B : R2⟩, then G1 × G2 = ⟨A,B : R1, R2, [A,B]⟩
where [A,B] = {[a, b] : a ∈ A, b ∈ B}, see [7].
The direct product D2n × Z2m, (n, m ≥ 3) is defined by the presentation

D2n × Z2m =
⟨
x, y, z : x2 = yn = (xy)

2
= z2m = [x, z] = [y, z] = e

⟩
.

The usual notation G1 ×φ G2 is used for the semidirect product of the group
G1 by G2, where φ : G2 → Aut (G1) is a homomorphism such that bφ = φb

where φb : G1 → G1 is an element Aut (G1).
The semidirect product D2n×φZ2m, (n, m ≥ 3) is defined by the presentation

D2n ×φ Z2m =
⟨
x, y, z : x2 = yn = (xy)2 = z2m = e, z−1xzx = e, z−1yzy = e

⟩
,

where if Z2m = ⟨z⟩, then φ : Z2m → Aut (D2n) is a homomorphism such that
zφ = φz; φz : D2n → D2n is defined by xφz = x and yφz = y−1.
For more information see [6].

Theorem 3.4. LJ3
(x,y,z) (D2n × Z2m) = hJ3,2m .

ii)

Proof. The orbit J3
(x,y,z) (D2n × Z2m) is

x, y, z, xy2z, xyz3, xyz6, y−1z13, xz27, yz59, z126, . . . .

Using the above information, the orbit J3
(x,y,z) (D2n × Z2m) becomes:

x0 = x, x1 = y, x2 = z, . . . ,

x7 = xzJ
3
6 , x8 = yzJ

3
7 , x9 = zJ

3
8 , . . . ,

x14 = xzJ
3
13 , x15 = yzJ

3
14 , x16 = zJ

3
15 , . . . ,

x7.i = xzJ
3
7.i−1 , x7.i+1 = yzJ

3
7.i , x7.i+2 = zJ

3
7.i+1 , . . . ·

The smallest non-trivial integer satisfiying the above conditions occurs when
the period is lcm

[
7, hJ3,2m

]
= hJ3,2m.

□

Theorem 3.5. LJP 3
(x,y,z) (D2n × Z2m)=lcm

[
12, hJP 3,2m

]
.

Proof. The orbit JP 3
(x,y,z) (D2n × Z2m) is

x, y, z, z, xy2z, yz3, xy2z4, yz6, y−2z11,

y2z17, xy2z27, y−1z45, xz72, yz116, z189, z305, . . . .
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Using the above information, the orbit JP 3
(x,y,z) (D2n × Z2m) becomes:

x0 = x, x1 = y, x2 = z, x3 = z, . . . ,

x12 = xzJP
3(11), x13 = yzJP

3(12), x14 = zJP
3(13), x15 = zJP

3(14), . . . ,

x24 = xzJP
3(23), x25 = yzJP

3(24), x26 = zJP
3(25), x27 = zJP

3(26), . . . ,

x12.i = xzJP
3(12.i−1), x12.i+1 = yzJP

3(12.i),

x12.i+2 = zJP
3(12.i+1), x12.i+3 = zJP

3(12.i+2), · · · .

The smallest non-trivial integer satisfying the above conditions occurs when
the period is lcm

[
12, hJP 3,2m

]
. □

Theorem 3.6. LJ3
(x,y,z) (D2n ×φ Z2m) =


lcm

[
7.n

4
, hJ3,2m

]
if n ≡ 0 (mod 4) ,

lcm
[
7.n

2
, hJ3,2m

]
if n ≡ 2 (mod 4) ,

lcm
[
7.n, hJ3,2m

]
if Otherwise.

.

Proof. The orbit J3
(x,y,z) (D2n ×φ Z2m) is

x, y, z, xy2z, z3yx, z6y5x, z13y−1, z28x, z60y5, z129y4, · · · .

Using the above information, the orbit JP 3
(x,y,z) (D2n ×φ Z2m) becomes:

x0 = x, x1 = y, x2 = z, . . . ,

x7 = zJ
3
6x, x8 = zJ

3
7 y5, x14 = zJ

3
8 y4, . . . ,

x14 = zJ
3
13x, x15 = zJ

3
14y9, x16 = zJ

3
15y8, . . . ,

x7.i = zJ
3
7.i−1x, x7.i+1 = zJ

3
7.iy4.i+1, x7.i+2 = zJ

3
7.i+1y4.i, . . . .

So we need an i such that 4.i = n.u for u ∈ N and J3
7.i−1 ≡ 0 (mod 2m) ,

J3
7.i ≡ 0 (mod 2m) and J3

7.i+1 ≡ 1 (mod 2m).

If n ≡ 0 mod 4, i = n
4 . Thus, LJ

3
(x,y,z) (D2n ×φ Z2m) = lcm

[
7.n4 , hJ

3,2m
]
.

If n ≡ 2 mod 4, i = n
2 . Thus, LJ

3
(x,y,z) (D2n ×φ Z2m) = lcm

[
7.n2 , hJ

3,2m
]
.

If n ≡ 1 mod 4 or n ≡ 3 mod 4, i = n. Thus,

LJ3
(x,y,z) (D2n ×φ Z2m) = lcm

[
7.n, hJ3,2m

]
.

□

Theorem 3.7. LJP 3
(x,y,z) (D2n ×φ Z2m) =

{
lcm

[
3n, hJP 3,2m

]
if n is even,

lcm
[
6n, hJP 3,2m

]
if n is odd.

Proof. The orbit JP 3
(x,y,z) (D2n ×φ Z2m) is

x, y, z, z, xy2z, yz3, z4y2x, z6x, z11, z17y2, · · · .
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Using the above information, the orbit JP 3
(x,y,z) (D2n ×φ Z2m) becomes:

x0 = x, x1 = y, x2 = z, x3 = z, . . . ,

x6 = zJP
3(5)y2x, x7 = zJP

3(6)y3, x8 = zJP
3(7), x9 = zJP

3(8)y2, . . . ,

x12 = zJP
3(11)y4x, x13 = zJP

3(12)y5,

x14 = zJP
3(13), x15 = zJP

3(14)y4, · · · ,
x6.i = zJP

3(6.i−1)y2.ix, x6.i+1 = zJP
3(6.i)y2.i+1,

x6.i+2 = zJP
3(6.i+1), x6.i+3 = zJP

3(6.i+2)y2.i, · · · .

So we need an i such that 2.i = n.v for v ∈ N and JP 3 (6.i− 1) ≡ 0 (mod 2m),
JP 3 (6.i) ≡ 0 (mod 2m), JP 3 (6.i+ 1) ≡ 1 (mod 2m) and JP 3 (6.i+ 2) ≡
1 (mod 2m).
If n is even, i = n

2 . Thus, LJP 3
(x,y,z) (D2n ×φ Z2m) = lcm

[
6.n2 , hJ

3,2m
]
=

lcm
[
3n, hJ3,2m

]
.

If n is odd, i = n. Thus, LJP 3
(x,y,z) (D2n ×φ Z2m) = lcm

[
6n, hJ3,2m

]
. □
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