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Abstract. We say that a module M is a cms-module if, for every cofi-

nite submodule N of M , there exist submodules K and K
′
of M such

that K is a supplement of N , and K, K
′
are mutual supplements in

M . In this article, the various properties of cms-modules are given as a
generalization of ⊕-cofinitely supplemented modules. In particular, we
prove that a π-projective module M is a cms-module if and only if M is
⊕-cofinitely supplemented. Finally, we show that every free R-module is

a cms-module if and only if R is semiperfect.
Keywords: Supplements, cofinite submodule, (⊕-)cofinitely supplemented
module.
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1. Introduction

Throughout this paper, it is assumed that R is an associative ring with
identity and all modules are unital right R-modules. Let R be such a ring and
let M be an R-module. The notation K ⊆ M (K ⊂ M) means that K is
a (proper) submodule of M . A submodule N of M is called cofinite in M if
the factor module M

N is finitely generated. A module M is called extending if
every submodule is essential in a direct summand of M [3]. Here a submodule
K ≤ M is said to be essential in M , denoted as K⊴M , if K ∩N ̸= 0 for every
non-zero submodule N ≤ M . Dually a proper submodule S of M is called
small (in M), denoted as S << M , if M ̸= S + L for every proper submodule
L of M [12]. The Jacobson radical of M will be denoted by Rad(M). It is
known that Rad(M) is the sum of all small submodules of M .

A non-zero module M is said to be hollow if every proper submodule of M is
small in M , and it is said to be local if it is hollow and is finitely generated. A
module M is local if and only if it is finitely generated and Rad(M) is maximal
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(see [3, 2.12 §2.15]). A ring R is said to be local if J is maximal, where J is
the Jacobson radical of R.

An R-module M is called supplemented if every submodule of M has a
supplement in M . Here a submodule K ⊆ M is said to be a supplement of N
in M if K is minimal with respect to N +K = M , or equivalently, N +K = M
and N ∩ K ≪ K [12]. A supplement submodule X of M is then defined
when X is a supplement of some submodule of M . Every direct summand of
a module M is a supplement submodule of M , and supplemented modules are
a generalization of semisimple modules. In addition, every factor module of a
supplemented module is again supplemented. For a moduleM , two submodules
N and K of M are called mutual supplements if, M = N+K, N ∩K ≪ K and
N ∩K ≪ N [3]. Alizade et al. [1] have defined cofinitely supplemented modules
as a proper generalization of supplemented modules. They call a module M
cofinitely supplemented if every cofinite submodule N of M has a supplement in
M , and give characterizations of these modules over any ring and commutative
domain (see [1]).

A module M is called lifting (or D1-module) if, for every submodule N of
M , there exists a direct summand K of M such that K ≤ N and N

K << M
K .

Mohamed and Müller has generalized the concept of lifting modules to ⊕-
supplemented modules. M is called ⊕-supplemented if every submodule N
of M has a supplement that is a direct summand of M [7]. Clearly every ⊕-
supplemented module is supplemented, but a supplemented module need not be
⊕-supplemented in general (see [7, Lemma A.4 (2)]). It is shown in [7, Propo-
sition A.7 and Proposition A.8] that if R is a Dedekind domain, every supple-
mented R-module is ⊕-supplemented. Hollow modules are ⊕-supplemented.

In [4], Çalışıcı and Pancar call a module M ⊕-cofinitely supplemented if
every cofinite submodule of M has a supplement that is a direct summand
of M . They gave in the same paper some properties of these module. In
particular, it is shown in [4, Theorem 2.9] that every free R-module is ⊕-
cofinitely supplemented if and only if R is semiperfect. Now we generalize
these modules, and so we define cms-modules.

In this paper, we provide the some properties of cms-modules. Some exam-
ples are given to separate cms-modules and ⊕-cofinitely supplemented mod-
ules. We prove that a π-projective module M is a cms-module if and only
if M is ⊕-cofinitely supplemented. In Proposition 2.5, we show that if M is
cofinitely supplemented and f -supplemented, then it is a cms-module. We ob-
tain a new characterization of semiperfect rings by using this result. We give
some conditions for factor modules (in particular, cofinite direct summands)
of a cms-module to be a cms-module. We prove that a refinable module M is
⊕-cofinitely supplemented if and only if M is a cms-module if and only if it is
cofinitely supplemented.
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2. cms-modules

In this section, we define the concept of cms-modules and give various prop-
erties of them.

Definition 2.1. Let M be a module. Then M is called a cms-module if, for
every cofinite submodule N of M , there exist submodules K and K

′
of M such

that K is a supplement of N , and K, K
′
are mutual supplements in M .

From the above definition it is clear that every supplemented module is a
cms-module. But every cms-module is not always supplemented. For example,
let R (e.g. Z) be a non-local Dedekind domain which is not a field and Q be
a quotient field of R. Consider the right R-module M = Q(I), where I is any
index set. Since M has not any maximal submodule, M is a unique cofinite
submodule of M . So M is a cms-module. Suppose that M is supplemented.
Then Q is supplemented as a factor module of M . By [13], this implies that
R is local, a contradiction. Therefore M is not supplemented. It is easy to see
that every finitely generated cms-module is supplemented.

Resulting from all direct summands are mutual supplements to each other,
every ⊕-cofinitely supplemented module is a cms-module. Under given defini-
tions, we clearly have the following implication on modules:

⊕− cofinitely supplemented modules

��
cms−modules

��
cofinitely supplemented modules

But we shall give example of a cms-module which is not ⊕-cofinitely supple-
mented.

Example 2.2. (See [6]) Let F be any field and R = F [[X,Y ]] the ring of
formal power series over F indeterminatesX,Y . Then R is a local commutative
Noetherian domain. Now suppose that M is the Noetherian right R-module J .
ThereforeM = XR+Y R. By [12, 42.6], since R is a local ring, every submodule
of M is supplemented and so it is a cms-module. It follows from [6, Corollary
2.4] that M is not ⊕-supplemented. Since M is finitely generated, M is not
⊕-cofinitely supplemented.

In [9, 1.4], a module M is called uniserial if its lattice of submodules is a
chain. M is said to be serial if M is a direct sum of uniserial modules. A ring
R is right (left) serial if the module RR (RR) is serial. In [3, 29.10] a ring R is
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artinian serial with J2 = 0 if and only if every R-module is lifting if and only
if every R-module is extending.

Example 2.3. (See [5]) Let R be a local artinian ring with radical W such
that W 2 = 0, Q = R

W is commutative, dim(QW ) = 1, and dim(WQ) = 3.
Then R is left serial but not right serial. Let W = w1R ⊕ w2R ⊕ w3R. By
[5, Proposition 4.9], there exist five isomorphism types of indecomposable R-
modules defined in [5, Lemmas 4.1§4.2], where X5 = RR⊕RR

(w1,0)R+(0,w1)R+(w2,w3)R

is an indecomposable R-module of length 5 which is not local. Hence, X5 is
not ⊕-supplemented by [6, Lemma 3.1]. Since X5 is 2-generated, it is not ⊕-
cofinitely supplemented. Applying [12, 42.6], since R is local, we obtain that
X5 is supplemented. Therefore X5 is a cms-module.

A module M is called π-projective if, for every two submodules U, V of M
and identity homomorphism IM : M −→ M with M = U + V , there exists
f ∈ End(M) with Im(f) ⊆ U and Im(IM − f) ⊆ V [12, 41.13].

Proposition 2.4. Let M be a π-projective module. If M is a cms-module,
then M is a ⊕-cofinitely supplemented module.

Proof. Let N be any cofinite submodule of M . By the hypothesis, there exist
submodules K and K

′
of M such that K is a supplement of N , and K, K

′
are

mutual supplements in M . Since M is a π-projective module, in accordance
with [3, 20.9], K∩K ′

= 0 and henceM = K⊕K
′
. ThereforeM is a ⊕-cofinitely

supplemented module. □
Recall from [12, 41.1] that a module M is f-supplemented if every finitely

generated submodule of M has a supplement in M .

Proposition 2.5. Let M be a cofinitely supplemented module.

(1) If M is f-supplemented, then it is cms.
(2) If every proper cofinite submodule of M is supplemented, then M is a

cms-module.

Proof. (1) For any cofinite submodule U ⊆ M , it follows from assumption that
we can write M = U + V and U ∩ V << V for some submodule V ⊆ M . Now

M
U

∼= V
U∩V

is finitely generated. Since U∩V is a small submodule of V , we obtain that V is
finitely generated. By (1), V has a supplement inM , say V

′
. Then,M = V +V

′

and V ∩ V
′
<< V

′
. By [12, 41.1(5)], we deduce that V ∩ V

′
<< V . Hence, V

and V
′
are mutual supplements in M .

(2) Let U be any cofinite submodule of M . Since M is cofinitely supple-
mented module, there exists a submodule V ⊆ M that M = U + V and
U ∩V ≪ V . By the hypothesis, U = (U ∩V )+T and (U ∩V )∩T = V ∩T ≪ T
for some submodule T ⊆ U . Now M = U + V = (U ∩ V ) + T + V = V + T .
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Note that V ∩T ≪ M . Since V is a supplement of U in M , we have V ∩T ≪ V
by [12, 41.1(5)]. Therefore M is a cms-module. □

We don’t know whether or not any factor module of a cms-module is a
cms-module. But we prove that a factor module of a cms-module by a fully
invariant submodule is a cms-module in the following theorem.

Recall from [12, 6.4] that a submodule U of an R-module M is called fully
invariant if f(U) is contained in U for every R-endomorphism f of M . A
module M is called duo, if every submodule of M is fully invariant [8].

Theorem 2.6. Let M be a cms-module and N be a fully invariant submodule
of M . Then M

N is a cms-module.

Proof. Let U
N be any cofinite submodule of M

N .

M
N
U
N

∼= M
U

is finitely generated. So U is cofinite inM . SinceM is a cms-module, then there
exist submodules V and V

′
of M such that V is a supplement of U , and V , V

′

are mutual supplements in M . It is clear that V+N
N is a supplement of U

N in M
N .

Since V ∩V ′ ≪ V
′
, V ∩V ′ ≪ V andN is a fully invariant submodule ofM , then

V+N
N ∩ V

′
+N
N ⊆ (V ∩V

′
)+N

N ≪ V+N
N and V+N

N ∩ V
′
+N
N ⊆ (V ∩V

′
)+N

N ≪ V
′
+N
N .

Thus M is a cms-module. □

Since Rad(M) is a fully invariant submodule of a module M , we obtain the
following corollary as an immediate consequence of Theorem 2.6.

Corollary 2.7. If M is a cms-module, then every cofinite submodule of M
Rad(M)

is a direct summand.

Proposition 2.8. Let 0 −→ N −→ M −→ K −→ 0 be a short exact sequence
such that N is small in a module M

′
, whenever N ⊂ M

′
. If K is a cms-module,

then M is a cms-module.

Proof. Without loss of generality we will assume that N ⊆ M . Then, M
N

∼= K
is a cms-module. Let U be any cofinite submodule of M ,

M
U+N

∼=
M
U

U+N
U

and, so

M
N

U+N
N

∼= M
U+N

is finitely generated. Then U+N
N is a cofinite submodule of M

N . Since M
N is

cms-module, then there exist submodules T
N and T

′
+N
N of M

N such that T
N is

a supplement of U+N
N , and T+N

N , T
′
+N
N are mutual supplements in M . It is
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clear that M = U +N + T = U + T and U+N
N ∩ T

N = (U∩T )+N
N ≪ T

N . By the

hypothesis N ≪ T . Note that M = T +T
′
. Then U ∩T ≪ T and T ∩T

′ ≪ T .
Again by the hypothesis, N ≪ T

′
, from which it follows that T ∩ T

′ ≪ T
′
.

Therefore M is a cms-module. □
Recall from [11, 1.11] that a module M is said to be distributive if (X+Y )∩

Z = (X ∩ Z) + (Y ∩ Z) for any submodules X,Y, and Z of M . This means
that the submodule lattice Lat(M) is distributive.

Proposition 2.9. Let M be a distributive cms-module and N be a cofinite
direct summand of M . Then N is a cms-module.

Proof. Let L be any cofinite submodule of N . Then N
L is finitely generated.

Since N is a direct summand of M , there exists a finitely generated submod-
ule N

′
of M such that M = N ⊕ N

′
. Then N

′ ∼= M
N is finitely generated.

Furthermore M = N +N
′
+ L and N ∩ (N

′
+ L) = L. Since

(N
′
+L)
L

∼= N
′

N ′∩L
= N

′

0
∼= N

′

is finitely generated, then M
L = N

L + N
′
+L
L is finitely generated. Therefore L is

a cofinite submodule of M . Since M is a cms-module, there exist submodules
L

′
and K

′
of M such that L

′
is a supplement of L, and L

′
, K

′
are mutual

supplements in M . Then we have N = L + (N ∩ L
′
) and L ∩ (N ∩ L

′
) ≪ L

′
.

Since M is a distributive module, L
′
= (N ∩ L

′
) ⊕ (N

′ ∩ L
′
). It follows

that L ∩ (N ∩ L
′
) ≪ N ∩ L

′
. Since M is a distributive module, K

′
= (N ∩

K
′
) ⊕ (N

′ ∩ K
′
). It follows that N = (N ∩ L

′
) + (N ∩ K

′
). So we have

(N ∩ L
′
) ∩ (N ∩ K

′
) ≪ N ∩ K

′
and (N ∩ L

′
) ∩ (N ∩ K

′
) ≪ N ∩ L

′
due

to the inequality (N ∩ L
′
) ∩ (N ∩ K

′
) ≤ L

′ ∩ K
′ ≪ K

′
. Therefore N is a

cms-module. □
Theorem 2.10. Let {Mi}i∈I be a family of cms-modules and M = ⊕i∈IMi.
If every cofinite submodule of M is fully invariant, then M is a cms-module.

Proof. Let N be any cofinite submodule of M . Then M
N is finitely generated.

By the hypothesis, N = ⊕i∈I(N∩Mi). Note that ⊕i∈I(
Mi

N∩Mi
) = ⊕i∈IMi

⊕i∈I(N∩Mi)
=

M
N is finitely generated. Then for every i ∈ I, Mi

N∩Mi
is finitely generated.

Since for every i ∈ I, Mi is a cms-module, there exist submodules Ki and Ti

of Mi such that Ki is a supplement of N ∩ Mi, and Ki and Ti are mutual
supplements in Mi. Let ⊕i∈IKi = K and ⊕i∈ITi = T , and M = ⊕i∈IMi =
⊕i∈I(N ∩Mi) + ⊕i∈IKi = N +K, and N ∩K = ⊕i∈I(N ∩Mi) ∩ ⊕i∈IKi ⊆
⊕i∈I [(N ∩ Mi) ∩ Ki] = ⊕i∈I(N ∩ Ki) ≪ K. It follows that M = K + T ,
K ∩ T ≪ K and K ∩ T ≪ T . Therefore M is a cms-module. □
Corollary 2.11. Let {Mi}i∈I be a family of cms-modules and M = ⊕i∈IMi.
If M is a duo module, then M is a cms-module.
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Lemma 2.12. Let R be a ring with identity. Then the R-module RR is a
cms-module if and only if every free R-module is a cms-module.

Proof. (⇒) Let M be a free R-module. Suppose that RR is a cms-module.
Since R is π-projective, RR is a ⊕-cofinitely supplemented module by Proposi-
tion 2.4. It follows that M is ⊕-cofinitely supplemented module by [4, Lemma
2.8]. So M is a cms-module.

(⇐) is obvious. □

For modules M and P , let f : P → M be an epimorphism. f is called
cover if ker(f) is small in P . A projective module P together with a cover
f : P → M is called a projective cover of M . By [2, Theorem 2.1], rings whose
(finitely generated) modules have a projective cover are (semi)perfect.

Theorem 2.13. Let R be a ring with identity. Then the following statements
are equivalent.

(1) R is semiperfect;
(2) RR is ⊕-cofinitely supplemented;
(3) every free R-module is ⊕-cofinitely supplemented;
(4) RR is a cms-module;
(5) every free R-module is a cms-module.
(6) every finitely generated R-module is a cms-module.

Proof. (1) ⇔ (2) ⇔ (3) It follows from [4, Theorem 2.9].
(3) ⇔ (4) ⇔ (5) By Lemma 2.12 and Proposition 2.4.
(1) ⇒ (6) Let R be a semiperfect ring. By [12, 42.6], every finitely generated

R-module is supplemented. Thus every finitely generated R-module is a cms-
module.

(6) ⇐ (1) Suppose that every finitely generated R-module is a cms-module.
In particular RR is a cms-module. Since RR is finitely generated, then RR is
supplemented. By [12, 42.6], R is semiperfect. □

Recall from [12, 21.4] that a submodule N of a module M is called radical if
N has no maximal submodule, that is, N = Rad(N). For a module M , P (M)
will indicate the sum of all radical submodules of M . If P (M) = 0, M is called
reduced. Note that P (M) is the largest radical submodule of M .

Lemma 2.14. Let R be a Dedekind domain and M be an R-module. Then
P (M) is a cms-module.

Proof. Let R be a Dedekind domain, and so R is noetherian. Here, P (M)
denotes the divisible part of M . Then P (M) is injective by [10, proposition
2.10], hence M = P (M) ⊕ N for some submodule N of M . In this case N is
called the reduced part of M . By [1, Lemma 4.4], P (M) is the only cofinite
submodule of P (M). Thus P (M) is a cms-module. □
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Proposition 2.15. Let R be a Dedekind domain, M be a duo R-module and
N be the reduced part of M . Then M is a cms-module if and only if N is a
cms-module.

Proof. (⇒) Since P (M) is a fully invariant submodule, then M
P (M)

∼= N is a

cms-module by Theorem 2.6.
(⇐) It is clear by Corollary 2.11 and Lemma 2.14. □
In [3, 11.26], an R-module M is called refinable if for any submodules U, V ⊆

M with M = U +V , there exists a direct summand U
′
of M with U

′ ⊆ U and
M = U

′
+ V . Every finitely generated regular module is refinable. Note that

every direct summand of a refinable module is refinable.

Theorem 2.16. Let M be a refinable module. Then the following statements
are equivalent.

(1) M is ⊕-cofinitely supplemented;
(2) M is a cms-module;
(3) M is cofinitely supplemented.

Proof. (1) ⇒ (2) ⇒ (3) are obvious.
(3) ⇒ (1) Let N be any cofinite submodule of M . Since M is a cofinitely

supplemented module, then there exists a submodule K of M such that M =
N+K andN∩K ≪ K. So we haveN∩K ≪ M . SinceM is a refinable module,
there exists a direct summand L of M such that L ⊆ K and M = N+L. Then
N ∩ L ≪ L. Thus M is a ⊕-cofinitely supplemented module. □
Corollary 2.17. Let M be a finitely generated refinable module. Then the
following statements are equivalent.

(1) M is ⊕-supplemented;
(2) M is ⊕-cofinitely supplemented;
(3) M is a cms-module;
(4) M is cofinitely supplemented;
(5) M is supplemented;
(6) every maximal submodule of M has a supplement.

Corollary 2.18. Let M be a refinable module. M = ⊕i∈IMi. Suppose that
for every submodule N of M there is a cofinite submodule L of M such that
N = L+ T or L = N + T for some T ≪ M . Then M is a cms-module if and
only if Mi is a cms-module.

Finally, we have the following fact.

Corollary 2.19. Consider the following statements for a ring R.

(1) R is right perfect.
(2) Every right R-module is cms.
(3) R is semiperfect.
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Proof. (1) ⇒ (2) Since every module over a right perfect ring is supplemented,
it is clear.

(2) ⇒ (3) It follows from Theorem 2.13. □
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