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RINGS FOR WHICH EVERY SIMPLE MODULE IS ALMOST

INJECTIVE

M. ARABI-KAKAVAND, SH. ASGARI∗ AND H. KHABAZIAN

(Communicated by Omid Ali S. Karamzadeh)

Abstract. We introduce the class of “right almost V -rings” which is
properly between the classes of right V -rings and right good rings. A
ring R is called a right almost V -ring if every simple R-module is almost
injective. It is proved that R is a right almost V -ring if and only if for

every R-module M , any complement of every simple submodule of M is
a direct summand. Moreover, R is a right almost V -ring if and only if
for every simple R-module S, either S is injective or the injective hull

of S is projective of length 2. Right Artinian right almost V -rings and
right Noetherian right almost V -rings are characterized. A 2 × 2 upper
triangular matrix ring over R is a right almost V -ring precisely when R
is semisimple.
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1. Introduction

Throughout rings will have unity and modules will be unitary right mod-
ules. An R-module M is called almost injective if for every embedding ι : A →
B of R-modules and every homomorphism f : A → M , either there exists a
homomorphism g : B → M such that diagram (1) commutes, or there exists
a nonzero direct summand D of B with the canonical projection π : B → D,
and a homomorphism h : M → D such that diagram (2) commutes:
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This concept has been studied in [1,3,4,9–13]. The reader is referred to [13] for
a recent survey on this subject. Besides the other relations of almost injective
property to some classical rings mentioned in [13], this property supplies an
answer to a question in the theory of extending modules. Recall that a mod-
ule M is extending (or CS) if every complement submodule of M is a direct
summand. In the study of extending modules, a question that has attracted
more attention is when a direct sum of such modules is extending. The almost
injective property provides an answer to this question in some special cases;
see [1, Remark 10] and [5, 1.19]. In this paper, we deal with the rings R for
which every simple R-module is almost injective, called right almost V -rings.
Recall that R is a right V -ring if every simple R-module is injective. Right V -
rings are introduced by Villamayor for associative rings and for commutative
rings it was shown by Kaplansky that these rings coincide with von Neumann
regular rings. But, the latter fact fails for non-commutative rings in general.
In fact, this failure was responsible for the extensive research in the literature
concerning V -rings. Our work in this article is somewhat related to V -rings,
too. Every right V -ring and every 2 × 2 upper triangular matrix ring over a
semisimple ring is a right almost V -ring. A ring R is called a right good ring if
R/Rad(R) is a right V -ring. Right almost V -rings form a class of rings which
properly lies between the classes of right V -rings and right good rings (Propo-
sition 2.3, Examples 2.6 and 2.10), so they are worth studying. Moreover,
these rings are of interest for us since over such rings, every finite direct sum of
Artinian extending modules is extending (Corollary 2.14 and Proposition 3.4).

In Section 2, we obtain several results on right almost V -rings. Every ring
Morita equivalent to a right almost V -ring is a right almost V -ring (Proposition
2.8). Let us say that a module M is simple-extending if every complement of
any simple submodule of M is a direct summand. It is an obvious fact that
every module over a right V -ring is simple-extending. We prove that a ring
R for which every R-module is simple-extending is precisely a right almost V -
ring (Theorem 2.9). For the close connection between right almost V -rings and
simple-extending modules, we end the section by investigating some properties
of simple-extending modules. Among others, it is shown that every direct sum
of (two) cocyclic R-modules is simple-extending if and only if every cocyclic
R-module has length at most 2 (Theorem 2.15).

In Section 3 we study right almost V -rings with chain conditions. First, we
prove that R is a right almost V -ring if and only if for every simple R-module
S, either S is injective or E(S) is projective of length 2 (Theorem 3.1). In the
sequel, we determine right almost V -rings with chain conditions. It is shown
that R is a right Artinian right almost V -ring, if and only if, every R-module
is extending, if and only if, R is an Artinian serial ring with Rad2(R) = 0
(Corollary 3.5). Moreover, R is a right Noetherian right almost V -ring if and
only if there exists a two-sided ideal K of R such that R/K is a right V -ring,
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K is a direct summand of R, and K is a direct sum of minimal right ideals and
injective right ideals of length 2 (Theorem 3.6). Finally, we show that a 2× 2
upper triangular matrix ring over a ring R is a right almost V -ring if and only
if R is semisimple (Theorem 3.8).

2. right almost V -rings

Definition 2.1. We say that R is a right almost V -ring if every simple R-
module is almost injective.

Clearly, every right V -ring is a right almost V -ring, however we will give
examples of right almost V -rings which are not right V -rings; see Example
2.10 and Corollary 3.9.

The first result, in particular, shows that if R is a right almost V -ring such
that Soc(RR) is injective, then R is a right V -ring.

Proposition 2.2. Let R be a right almost V -ring, and S be a simple R-module.
If S cannot be embedded in R, then S is injective.

Proof. Assume that S is not injective. Then there exist an essential right ideal
I of R and a homomorphism f : I → S such that f cannot be extended to
a homomorphism of R to S. Since R is a right almost V -ring, there exist
a nonzero direct summand D of R, say R = D ⊕ D′, and a homomorphism
h : S → D such that πι = hf , where ι : I → R is the natural embedding and
π : R → D is the canonical projection. If h = 0, then I ≤ kerπ = D′ and so
D′ is essential in R. This implies that D = 0 which is a contradiction. Thus h
is an embedding of S into R. □
Proposition 2.3. Let R be a right almost V -ring.

(i) R/Rad(R) is a right V -ring.
(ii) R/Soc(RR) is a right V -ring.
(iii) Rad(M) ≤ Soc(M) and Rad(M) ≪ M , for every R-module M .

Proof. (i). By [6, 2.13], it suffices to show that if I is a right ideal of R
containing Rad(R), then for every x ∈ R \ I, there exists a maximal right ideal
K of R such that I ≤ K and x ̸∈ K. Let L be a right ideal of R maximal
with respect to the properties that I ≤ L and x ̸∈ L. Set S = (L + xR)/L.
Clearly, S is simple, and since R is a right almost V -ring, S is almost injective.
If the natural epimorphism f : L + xR → S extends to g : R → S, then ker g
is a maximal right ideal of R such that I ≤ ker g and x ̸∈ ker g. If there are
a nonzero direct summand D of R, say R = D ⊕ D′, and a homomorphism
h : S → D such that πι = hf , where ι : L+ xR → R is the natural embedding
and π : R → D is the canonical projection, then Rad(R) ≤ L ≤ D′. Thus
Rad(R) = Rad(D) ⊕ Rad(D′) implies that Rad(D) = 0. Moreover, π(x) ̸= 0,
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for otherwise x ∈ D′, and so x ̸∈ L⊕D, which contradicts the maximal property
of L. Hence there exists a maximal submodule A of D such that π(x) ̸∈ A.
Thus K = A⊕D′ is a maximal right ideal of R such that I ≤ K and x ̸∈ K.

(iii). First we show that Rad(R) ≤ Soc(RR). Let x ∈ Rad(R) \ Soc(RR).
Clearly, E(RR) = E(xR)⊕E′ for some submodule E′ of E(R), and so Rad(E(RR))

= Rad(E(xR)) ⊕ Rad(E′). Thus x ∈ Rad(E(xR)). Now, assume that L is
a maximal submodule of xR containing Soc(xR), and set S = xR/L. Since
R is a right almost V -ring, S is almost injective. Let f : xR → S be the
natural epimorphism, and ι : xR → E(xR) be the natural embedding. If there
exists g : E(xR) → S such that gι = f , then ker g is a maximal submodule
of E(xR). Hence x ∈ ker g, and so x ∈ ker f which is impossible. Thus
there exist a nonzero direct summand E of E(xR) and h : S → E such that
πι = hf , where π : E(xR) → E is the natural projection. Without loss of
generality we can assume that E is the injective hull of h(S). Let a = π(x).
Since aR = π(xR) = h(S) is a simple R-module, we conclude that aR ≤
Soc(E(xR)) = Soc(xR) ≤ ker f . Hence aR = π(aR) = hf(aR) = 0 which is
impossible. Therefore Rad(R) ≤ Soc(RR), as desired. Now let M be an R-
module. By (i), R/Rad(R) is a right V -ring, and so Rad(M/MRad(RR)) = 0.
Hence Rad(M) ≤ MRad(R). But MRad(R) ≤ Rad(M), and so Rad(M) =
MRad(R). Thus by what we have shown above, Rad(M) = MRad(R) ≤
MSoc(RR) ≤ Soc(M). Moreover, by [5, 2.8(9)], Soc(Rad(M)) ≪ M , hence
Rad(M) ≪ M .

(ii). By (iii), R/Soc(RR) is a factor ring of R/Rad(R), and so it is a right
almost V -ring by (i). □

Corollary 2.4. If M is a singular module over a right almost V -ring R, then
Rad(M) = 0.

Proof. Let R = R/Soc(RR). Since the annihilator of every element of M is an
essential right ideal of R, we conclude that MSoc(RR) = 0. Hence M is an R-
module, and so by Proposition 2.3 (ii), Rad(MR) = 0. Thus Rad(MR) = 0. □

Following [15], a submodule A of M is called an absolute summand of M if
A⊕C = M , for every complement C of A in M . Every injective submodule of
M is an absolute summand of M .

Corollary 2.5. The following statements are equivalent for a ring R.

(1) R is a right almost V -ring and every minimal right ideal of R is an absolute
summand.
(2) R is a right almost V -ring and every minimal right ideal of R is injective.
(3) R is a right V -ring.

Proof. (1) ⇒ (3). By Proposition 2.3, it is enough to prove that Rad(R) = 0.
Then since Rad(R) ≤ Soc(RR), it suffices to show that Rad(R) contains no
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minimal right ideal of R. Assume that I ≤ Rad(R) is a minimal right ideal of
R, and C is a complement of I in R. By hypothesis, I ⊕C = R, and so C = R
which is impossible. This shows that Rad(R) contains no minimal right ideal
of R, as desired.

(3) ⇒ (2) ⇒ (1). These implications are obvious. □
Recall that a ring R is called a right good ring if f(Rad(R)) = Rad(f(R)),

for every R-homomorphism f : R → X. The ring R is a right good ring if and
only if R/Rad(R) is a right V -ring; see [17, 23.7]. By Proposition 2.3(i), every
right almost V -ring is a right good ring. The next example shows that the class
of right good rings properly contains the class of right almost V -rings.

Example 2.6. Let R =

(
Z4 2Z4

0 Z4

)
. Then Rad(R) =

(
2Z4 2Z4

0 2Z4

)
.

Since R/Rad(R) ∼= Z2 × Z2, it is a V -ring. Now, let I =

(
2Z4 2Z4

0 Z4

)
,

J =

(
0 2Z4

0 Z4

)
, S = I/J , f : I → S be the natural epimorphism, and

ι : I → R be the natural embedding. Clearly, S is a simple R-module. If
there exists a homomorphism g : R → S such that gι = f , then ker g is a
maximal right ideal of R containing J = ker f . Thus ker g = I, which is im-
possible. On the other hand, if there exists a nonzero direct summand D of R,
say R = D ⊕D′, and a homomorphism h : S → R such that hf = πι, where
π : R → D is the canonical projection, then J = ker f ≤ kerπ = D′. Therefore
D′ = R, which is impossible. This shows that R is not a right almost V -ring.

Recall that R is a right generalized V -ring if every simple R-module is ei-
ther projective or injective, or equivalently, every singular simple R-module is
injective. In the following we show that a right nonsingular right almost V -ring
is a right generalized V -ring.

Proposition 2.7. Let R be a right almost V -ring.

(i) If Z(RR) ∩ Rad(R) = 0, then R is a right generalized V -ring.
(ii) R/Z2(RR) is a right generalized V -ring.

Proof. (i). Let I be a proper essential right ideal of R. Then R/I is singular,
and so by Corollary 2.4, Rad(R/I) = 0. Thus I is an intersection of maximal
right ideals of R. So by [15, Theorem 3.3(1)], R is a right generalized V -ring.

(ii). This follows from (i) and the fact that R/Z2(RR) is a right nonsingular
ring. □
Proposition 2.8. Every ring Morita equivalent to a right almost V -ring is a
right almost V -ring.
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Proof. This follows from the facts that being an exact sequence, a direct sum-
mand and a simple module are preserved under Morita equivalences. □

Recall that a module M is extending (or CS) if every complement (equiva-
lently, every closed submodule) of M is a direct summand. Let us say that M
is a simple-extending module if every complement of any simple submodule of
M is a direct summand of M . Every direct summand of a simple-extending
module inherits the property. The next result gives an equivalent condition for
a right almost V -ring in terms of the simple-extending property.

Theorem 2.9. A ring R is a right almost V -ring if and only if every R-module
M is simple-extending.

Proof. (⇒). Let S be a simple submodule of an R-module M , and C be a
complement of S in M . By hypothesis, S is almost injective. Assume that
f : S ⊕ C → S is the canonical projection, and ι : S ⊕ C → M is the natural
embedding. If there exists g : M −→ S such that gι = f , then ker g is a
maximal submodule ofM which contains C but not S. Since C is a complement
of S we conclude that ker f = C. Thus S ⊕ C = M , and so C is a direct
summand of M . Now, assume that there exist a nonzero direct summand D
of M , say M = D ⊕D′, and a homomorphism h : S → D such that πι = hf ,
where π : M → D is the canonical projection. So C ≤ kerπ = D′. Since
S ⊕ C ≤e M we conclude that S ∩D′ = 0. Thus C = D′ is a direct summand
of M . This shows that M is simple-extending.

(⇐). Step 1: First we show that R/Soc(RR) is a right V -ring. By [16,
Theorem 23], it suffices to show that if S is a simple R-module and M is an
extending R-module, then S⊕M is extending. Let C be a closed submodule of
S⊕M . If S ≤ C, then C = S⊕(C∩M). It is easy to see that C∩M is a closed
submodule of M , and so it is a direct summand of M since M is extending.
Thus C is a direct summand of S⊕M . If S ̸≤ C, then S⊕C = S⊕π(C), where
π : S⊕M → M is the canonical projection. Since M is extending, there exists
a direct summand D of M such that π(C) ≤e D. Thus S ⊕ C = S ⊕ π(C) ≤e

S ⊕ D. Hence by [14, Proposition 6.22], C is a complement of S in S ⊕ D.
But S ⊕ D is simple-extending by hypothesis, and so C is a direct summand
of S ⊕D. Hence C is a direct summand of S ⊕M . This implies that S ⊕M is
extending, as desired.

Step 2: If S is a singular simple R-module, we show that Z(E(S)) = S.
Since S is singular we conclude that Soc(RR) ≤ annR(S). As shown in step 1,
R/Soc(RR) is a right V -ring, and so S is an injectiveR/Soc(RR)-module. By [8,
Exercise 5J], the injective hull of S as R/Soc(RR)-module is annE(S)(Soc(RR)).
Thus annE(S)(Soc(R)) = S, and since Z(E(S)) is singular we conclude that
Z(E(S)) ≤ annE(S)(Soc(RR)) = S. On the other hand, S ≤ Z(E(S)) since S
is singular, and hence Z(E(S)) = S.
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Step 3: Finally, we show that a simple R-module S is almost injective. Let
A be an essential submodule of an R-module B, and f : A → S be a nonzero
R-homomorphism. Set K = ker f . Clearly, K is a maximal submodule of A. If
K ̸≤e A, then there exists a simple submodule K ′ of A such that A = K ⊕K ′.
Let C be a complement of K ′ in B which contains K. By hypothesis, B
is simple-extending, hence C is a direct summand of B, say B = C ⊕ C ′.
Assume that π : B → C ′ is the canonical projection, and θ = (f |K′)−1. Then
h = πθ : S → C ′ is an R-homomorphism such that hf = πι, where ι : A → B is
the natural embedding. On the other hand, if K ≤e A then K ≤e B. Clearly,
there exists a homomorphism g : B → E(S) such that gι = f . Since K ≤ ker g
we conclude that ker g ≤e B, and so Img ≤ Z(E(S)). Thus by what we have
shown in step 2, Img ≤ S. So g : B → S is a homomorphism such that
gι = f . □

By Theorem 2.9, we give an example of a right almost V -ring which is not
a right V -ring. More examples are provided by Corollary 3.9.

Example 2.10. Let R = Zp2 , where p is a prime number. Clearly, R is an

Artinian serial ring with Rad2(R) = 0. So by [6, 13.5((a) ⇔ (g))] and The-
orem 2.9, R is a right almost V -ring. However, R is not a right V -ring since
Rad(R) ̸= 0.

We end this section by exploring some properties of simple-extending mod-
ules which are useful in the study of right almost V -rings. The following ex-
ample shows that the notions of an extending module and a simple-extending
module are really different.

Example 2.11. Let R be an infinite direct product of fields. Since R is a
V -ring, Theorem 2.9 implies that every R-module is simple-extending. How-
ever, not every R-module can be extending, for otherwise, R would be Artinian
by [6, 13.5(g)].

Proposition 2.12. Let M be a simple-extending module. Then every com-
plement of a finitely generated semisimple submodule is a direct summand of
M .

Proof. By induction, it suffices to show that a complement C of S1 ⊕ S2 in M
is a direct summand, where S1, S2 are two simple submodules of M . There
exists a complement C1 of S1 in M such that S2 ⊕C ≤ C1. Since M is simple-
extending, C1 is a direct summand of M . On the other hand, it is easy to see
that C is a complement of S2 in C1. But C1 is a direct summand of M , and so
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it is simple-extending. Thus C is a direct summand of C1. Hence C is a direct
summand of M , as desired. □
Corollary 2.13. A finitely cogenerated module M is simple-extending if and
only if it is extending.

Proof. Let M be simple-extending, and C be a closed submodule of M which
is a complement of a submodule N . Since M is finitely cogenerated, Soc(M) is
finitely generated and essential, and so is Soc(N). Thus C is a complement of
Soc(N), and so by Proposition 2.12, C is a direct summand of M . This shows
that M is extending. □

It is well known that a direct sum of extending modules is not necessarily
extending. In the literature, there are some conditions under which a direct
sum of certain extending modules is extending. The next result shows that
every finite direct sum of finitely cogenerated extending modules over a right
almost V -ring is extending.

Corollary 2.14. If R is a right almost V -ring, then every finite direct sum of
finitely cogenerated extending R-modules is extending.

Proof. LetM be a finite direct sum of finitely cogenerated extendingR-modules.
Then M is finitely cogenerated, and by Theorem 2.9, it is simple-extending.
Thus by Corollary 2.13, M is extending. □

Recall that a module M is called cocyclic if there exists an essential simple
submodule in M . In fact, M is cocyclic, if and only if, M is an uniform module
with nonzero socle, if and only if, M is isomorphic to a nonzero submodule of
the injective hull of a simple module. In the following, by adapting the method
of [6, Theorem 13.1], we show that every direct sum of cocyclic R-modules is
simple-extending, if and only if, every cocyclic R-module has length at most 2.
This is used in obtaining more characterizations of right almost V -rings in the
next section.

Theorem 2.15. The following statements are equivalent for a ring R.

(1) Every direct sum of (two) cocyclic R-modules is simple-extending.
(2) Every direct sum of (two) cocyclic R-modules is extending.
(3) Every cocyclic R-module has length at most 2.

Proof. (1) ⇒ (3). First we show that the radical of any uniform R-module
is either zero or simple. For this it suffices to show that if U is an injective
uniform R-module, then Rad(U) is either zero or simple. Let 0 ̸= x ∈ Rad(U),
and L be a nonzero maximal submodule of xR. The hypothesis implies that
U ⊕ xR/L is simple-extending, and so by Corollary 2.13, U ⊕ xR/L is ex-
tending. Thus by [6, Lemma 7.3(i)], the natural epimorphism f : xR → xR/L
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extends to a homomorphism f : U → xR/L. But xR ≤ Rad(U) ≤ ker f , and
hence xR ≤ ker f , which is impossible. This shows that xR is simple, for every
0 ̸= x ∈ Rad(U). Hence Rad(U) is simple.

For proving (3), it suffices to show that an injective cocyclic R-module M
has length at most 2 (Note that the injective hull of a cocyclic R-module is
cocyclic). If Rad(M) = 0, then M is simple. Otherwise, by what we have
shown above, Rad(M) is simple. So if we show that M has only one maxi-
mal submodule, then M has length at most 2. Let L1 and L2 be two distinct
maximal submodule of M . Assume that f : Li → Lj is a monomorphism, for
i, j ∈ {1, 2}. The injectivity of M implies that f extends to an endomorphism g
ofM such that ker(g)∩Li = 0. SinceM is uniform we conclude that ker(g) = 0,
and so g is left-invertible. But End(M) is local, hence g is an isomorphism.
Therefore f(Li) is a maximal submodule M , and so f is an isomorphism. Then
if i = j, the facts that ker(f)∩ker(1− f) = 0 and M is uniform imply that the
endomorphism rings of L1 and L2 are local. On the other hand, by hypothesis,
Li ⊕ Lj is simple-extending. Thus by Corollary 2.13, Li ⊕ Lj is extending, for
i, j ∈ {1, 2}. Thus by [6, Lemma 7.3(ii)], L1 is L1-injective and L2-injective.
But L1 + L2 = M , hence L1 is M -injective, and so it is a direct summand of
M , which is impossible. Thus M has only one maximal submodule, as desired.

(3) ⇒ (2). Let N be a direct sum of essential extensions of simple R-
modules. By hypothesis, an essential extension of a simple R-module S is
either S or E(S). Hence N = N1 ⊕ N2, where N1 is semisimple and N2 is a
direct sum of injective modules of length 2. Thus by [6, Lemma 8.14], N is
extending.

(2) ⇒ (1). Since every extending module is simple-extending, the implica-
tion is clear. □

Corollary 2.16. Let R be a ring for which every direct sum of two cocyclic
R-module is simple-extending. Then R is a right max ring with Rad(R)2 = 0.

Proof. By Theorem 2.15, every cocyclic R-module has a maximal submodule.
Thus by [7, 3.32D], R is a right max ring. Moreover, as shown in the proof
of Theorem 2.15((1) ⇒ (3)), Rad(E(S)) is zero or simple, for every simple
R-module S. Hence Rad(R) embeds in a direct product of simple modules;
see [2, Corollary 18.16]. So Rad(R)2 = 0. □

Remark 2.17. Theorem 2.9 and Corollary 2.16 imply that a right almost
V -ring is a right max ring with Rad(R)2 = 0.

3. Right almost V -rings with chain conditions

In this section, right Noetherian (resp., Artinian) almost V -rings are de-
termined. First, we give a characterization of right almost V -rings according
to the certain property of their simple modules.
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Theorem 3.1. The following statements are equivalent.

(1) R is a right almost V -ring.
(2) For every simple R-module S, either S is injective or E(S) is projective

of length 2.

Proof. (1) ⇒ (2). Let S be a simple non-injective R-module. There exist an
essential right ideal I of R and a homomorphism f : I → S such that f cannot
be extended to a homomorphism of R to S. Since R is a right almost V -ring we
conclude that there exist a nonzero direct summand D, say R = D ⊕D′, and
a homomorphism h : S → D such that πι = hf , where ι : I → R is the natural
embedding and π : R → D is the canonical projection. If πι = 0, then I ≤ D′,
and so D′ is essential in R, which is impossible. Hence 0 ̸= πι(I) = h(S), and
so h(S) ≤ D is a minimal right ideal of R. Let C be a complement of h(S)
in D. By Theorem 2.9, C is a direct summand of D, say D = C ⊕ C ′. Let
π′ : D → C ′ be the canonical projection. If X ≤ C ′ such that π′h(S) ∩X = 0,
then h(S) ∩ (C ⊕ X) = 0. Thus X = 0, and so π′h(S) ≤e C ′. This shows
that C ′ is cocyclic and π′h : S → C ′ is a monomorphism. If π′h(S) = C ′,
then π′h is an isomorphism. So (π′h)−1π′π : R → S is a homomorphism such
that (π′h)−1π′πι = f , which is a contradiction to the first assumption that f
cannot be extended to a homomorphism of R to S. Thus π′h(S) ̸= C ′, and
so by Theorems 2.9 and 2.15, C ′ and E(C ′) are cocyclic R-modules of length
2. Hence E(C ′) = C ′ is a direct summand of R. Thus E(C ′) is projective of
length 2. Since S ∼= π′h(S) ≤e C

′ we conclude that E(S) is projective of length
2.

(2) ⇒ (1). Let S be a non-injective simple R-module. There exist an
essential submodule A of a module B, and a homomorphism f : A → S such
that f cannot be extended to a homomorphism of B to S. Since E(S) is
injective, there exists a homomorphism g : B → E(S) such that gι = ι′f ,
where ι : A → B and ι′ : S → E(S) are natural embeddings. The assumption
on f implies that f ̸= 0, and so g(B) is a nonzero submodule of E(S). Thus
S ≤ g(B). Again, the assumption on f implies that S is a proper submodule
of g(B) ≤ E(S). Since E(S) has length 2 by hypothesis, we conclude that
g(B) = E(S), and so B/ ker(g) ∼= E(S). But, by hypothesis, E(S) is projective,
so ker(g) is a direct summand of B, say B = ker(g)⊕L. Clearly, g|L : L → g(L)
is an isomorphism, and S ≤ g(L). Then (g|L)−1ι′ : S → L is a homomorphism
such that (g|L)−1ι′f = πι. where π : B → L is the natural projection. This
shows that R is a right almost V -ring. □

Remark 3.2. A ring R is called right co-Noetherian if the injective hulls of
simple R-modules are Artinian. Theorem 3.1 implies that every right almost
V -ring is right co-Noetherian.
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By Proposition 2.3, if R is a right almost V -ring, then R/Rad(R) is a right V -
ring and Rad(R) ≤ Soc(RR). The converse implication is not always true. For
example, the ring R of Example 2.6 is not a right almost V -ring but R/Rad(R)
is a right V -ring and Rad(R) = Soc(RR). The next result shows that the
converse implication holds if E(A) is projective of length 2, for every simple
right ideal A contained in Rad(R).

Corollary 3.3. R is a right almost V -ring, if and only if, R/Rad(R) is a
right V -ring, Rad(R) is semisimple, and E(A) is projective of length 2, for
every simple right ideal A ≤ Rad(R).

Proof. (⇒). By Proposition 2.3, R/Rad(R) is a right V -ring, and Rad(R) is
semisimple. Let A be a simple right ideal of R contained in Rad(R). Clearly,
A is not injective, and so by Theorem 3.1, E(A) is projective of length 2.

(⇐). Let S be a non-injective simple R-module. There exist an essential
right ideal I of R and a homomorphism f : I → S such that f cannot be
extended to a homomorphism of R to S. Clearly, Rad(R) ≤ I since Rad(R)
is semisimple. Assume that ‘bar’ denotes the image in R/Rad(R). Since R is
a right V -ring, if Rad(R) ≤ ker(f), then f : I → S defined by f(a) = f(a)
can be extended to h : R → S. Hence by assuming that π : R → R is the
natural epimorphism, h = hπ is an extension of f , which is a contradiction.
Thus Rad(R) ̸≤ ker(f), and so there is a simple submodule A of Rad(R) such
that A ̸≤ ker(f). But clearly, ker(f) is a maximal submodule of I, hence
I = A ⊕ ker(f). This implies that S ∼= A, and so by hypothesis, E(S) is
projective of length 2. Thus by Theorem 3.1, R is a right almost V-ring. □

In the following we determine right almost V -rings with chain conditions.

Proposition 3.4. Let M be a module over a right almost V -ring R. The fol-
lowing statements are equivalent.

(1) M is Artinian.
(2) M is finitely cogenerated.
(3) M is a serial finite length module.
(4) M is a finite direct sum of simple submodules and uniform injective sub-
modules of length 2.

Proof. (4) ⇒ (3) ⇒ (1) ⇒ (2). These implications are clear.
(2) ⇒ (4). By [17, 21.3], M = M1 ⊕ · · · ⊕Mk, where each Mi is indecom-

posable; moreover, Soc(M) ≤e M . Assume that S is a simple submodule of
Soc(Mi), and C is a complement of S in Mi. Since R is a right almost V -ring,
Mi is simple-extending. Hence C is a direct summand of Mi, and so C = 0
as Mi is indecomposable. This implies that S ≤e Mi, and so Mi is cocyclic.
Thus by Theorems 2.9 and 2.15(3), Mi has length at most 2. If Mi has length
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1, then it is simple. If Mi has length 2, then Mi = E(Mi) is injective since
E(Mi) has length at most 2 by Theorem 2.15(3). □

Corollary 3.5. The following statements are equivalent for a ring R.

(1) R is a right Artinian right almost V -ring.
(2) Every R-module is extending.
(3) R is an Artinian serial ring with Rad(R)2 = 0.

Proof. (1) ⇒ (2). This follows from Proposition 3.4(4) and [6, 13.5(e)].
(2) ⇒ (1). This is clear by Theorem 2.9 and [6, 13.5(g)].
(2) ⇔ (3). It was proved in [6, 13.5]. □

Proposition 3.6. A right Noetherian ring R is right almost V -ring if and only
if there exists a two-sided ideal K of R such that

(i) R/K is a right V-ring.
(ii) K is a direct summand of R.
(iii) K is a direct sum of minimal right ideals and injective right ideals of

length 2.

Proof. (⇒). Let C be a complement of Soc(RR). Since R is right Noetherian,
Soc(RR) is finitely generated. Thus by Theorem 2.9 and Proposition 2.12, C is
a direct summand of R, say R = C⊕K. Since C is a complement of Soc(RR) we
conclude that Soc(K) = Soc(RR) ≤e K. Thus K is finitely cogenerated, and
so by Proposition 3.4, K is a direct sum of minimal right ideals and injective
right ideals of length 2. Now we show that K is a two-sided ideal of R. Let
r ∈ R and define the homomorphism f : K → rK by the rule f(x) = rx.
Since rK is isomorphic to a factor module of K, it is Artinian. However C
has no nonzero Artinian submodule as it is a complement of Soc(RR). Thus
π(rK) = 0, where π : R → C is the canonical projection. Hence rK ≤ K, and
so K is a two-sided ideal of R, as desired. So R/K is a right almost V -ring.
Moreover, R/K ∼= C has zero socle. Hence by Proposition 2.3(ii), R/K is a
right V -ring.

(⇐). Assume that R = I ⊕K, where K is a two-sided ideal of R satisfying
the condition (iii) and R/K is a right V -ring. Let S be a non-injective simple
R-module. By Theorem 3.1, it suffices to show that E(S) is projective of length
2. If SK = 0, then S is a simple R/K-module, and so it is an injective R/K-
module. But R/K is a projective R-module, and hence, a flat R-module. Thus
by [14, Corollary (3.6A)], S is an injective R-module, which is a contradiction.
Hence SK ̸= 0, and so SK = S. If E(S)I ̸= 0, then E(S)I∩S ̸= 0, and so S ≤
E(S)I. Thus S = SK ≤ E(S)IK = 0, which is impossible. This shows that
E(S)I = 0. So xK = xR, for each x ∈ E(S)\S. Thus the natural map π : K →
xR is an epimorphism. But by hypothesis, K = (

⊕m
i=1 Ai)

⊕
(
⊕n

j=1 Uj), where
each Ai is a minimal right ideal, and each Uj is an injective right ideal of length
2. Clearly, each Uj is uniform with simple socle. If xSoc(Uj) = 0 for each j,



125 Arabi-Kakavand, Asgari and Khabazian

then
⊕n

j=1 Soc(Uj) ≤ ker(π). Hence xR is a factor of the semisimple R-module

(
⊕m

i=1 Ai)
⊕

(
⊕n

j=1 Uj/Soc(Uj)). So xR is semisimple, which is impossible as

x ∈ E(S)\S. This implies that xSoc(Uj) ̸= 0, for some j, and so ann(x)∩Uj =
0. Hence π |Uj is a monomorphism. Therefore xR contains an injective module
of length 2. Therefore E(S) = xR ∼= Uj . So E(S) is projective of length 2, as
desired. □

Corollary 3.7. If R is a right Noetherian right almost V -ring, then R is a
direct sum of right ideals such that their endomorphism rings are either simple
or local.

Proof. By Propositions 3.4 and 3.6, there exists a decomposition R = K ⊕ L
such that K is an Artinian two-sided ideal of R and R/K is a right V -ring. So
by [7, 3.20], R/K is a finite direct product of simple rings. So L is a finite direct
sum of right ideals with simple endomorphism rings. On the other hand, by
Proposition 3.4, K is a direct sum of minimal right ideals and injective uniform
right ideals of length 2. So R is a direct sum of right ideals such that their
endomorphism rings are either simple or local. □

Finally, we show that a 2× 2 upper triangular matrix ring over a ring R is
a right almost V -ring precisely when R is semisimple.

Theorem 3.8. A 2 × 2 upper triangular matrix ring over a ring R is a right
almost V -ring if and only if R is semisimple.

Proof. (⇒). It suffices to show that every maximal right ideal L of R is a direct

summand of R. Set T =

(
R R
0 R

)
, and P =

(
0 L
0 R

)
. Let ‘bar’ denote

the image in T/P . Clearly, S =

(
0 R
0 0

)
is a simple T -submodule of T , and

C =

(
L 0
0 0

)
is a complement of S. By Theorem 2.9, C is a direct summand

of T , say T = C ⊕C ′, where C ′ =

(
I J
0 0

)
. Thus R = L⊕ I, that is, L is a

direct summand of R, as desired.
(⇐). Clearly, T is a (two-sided) Artinian ring. Moreover, Rad(T ) =(
0 R
0 0

)
, and so Rad(T )2 = 0. Assume that R =

⊕n
i=1 Ki, where each Ki is

a minimal right ideal ofR. Then T = (
⊕n

i=1

(
Ki Ki

0 0

)
)⊕(

⊕n
i=1

(
0 0
0 Ki

)
),

and hence T is a serial ring. Thus by Corollary 3.5, T is a right almost V -
ring. □
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Corollary 3.9. If R is a semisimple ring, then T =

(
R R
0 R

)
is a right

almost V -ring but not a right V -ring.

Proof. By Theorem 3.8, T is a right almost V -ring. Moreover, Rad(T ) =(
0 R
0 0

)
̸= 0, and so T is not a right V -ring. □

We conclude the paper with an open question. By Theorem 3.8, a 2×2 upper
triangular matrix ring over a ring R is a right almost V -ring if and only if R
is semisimple. On the other hand, Example 2.6 shows that a 2× 2 generalized
upper triangular matrix ring need not be a right almost V -ring, in general. So
the following open question arises:

Question 3.10. When a 2×2 generalized upper triangular matrix ring

(
R M
0 S

)
is a right almost V -ring?

Acknowledgments

The authors wish to thank the referee for his/her comments which helped to
improve the present version of this article. The research of the second author
was in part supported by a grant from IPM (No. 93160068).

References

[1] A. Alahmadi and S. K. Jain, A note on almost injective modules, Math. J. Okayama
Univ. 51 (2009) 101–109.

[2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag,
New York, 1992.

[3] Y. Baba, Note on Almost M-injectives, Osaka J. Math. 26 (1989), no. 3, 687–698.
[4] Y. Baba and M. Harada, On almost M -projectives and almost M -injectives, Tsukuba

J. Math. 14 (1990), no. 1, 53–69.
[5] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Frontiers in Math-
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