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1. Introduction

In this paper, we study the existence of nontrivial solutions to the following
p-Kirchhoff-type elliptic system

(
a+c(

∫
RN

(|∇u|p+b|u|p)dx)τ
)
(−∆pu+b|u|p−2u)

=
1

d
Fu(u, v)+λ|u|q−2u, x ∈ RN ,(

a+ c(

∫
RN

(|∇v|p+b|v|p)dx)τ
)
(−∆pv+b|v|p−2v)

=
1

d
Fv(u, v)+µ|v|q−2v, x ∈ RN ,

u, v ∈W 1,p(RN ),

(1.1)

where a, b > 0, c, τ ≥ λ, µ ∈ RN , 1 < p < N, p < q < d < p∗ = pN
N−p , F (u, v) ∈

C1(R2), Fu = ∂F
∂u , Fv = ∂F

∂v and ∆pu = div(|∇u|p−2∇u).
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System (1.1) is a generalization of a model introduced by Kirchhoff [10].
More precisely, Kirchhoff proposed a model given by the equation

ρtt − (
P0

h
+

E

2L

∫ L

0

u2xdx)uxx = 0, 0 < x < L, t > 0.(1.2)

which takes into account the changes in length of string produced by transverse
vibration. The parameters in (1.2) have the following meaning: L is the length
of the string, h is the area of cross-section, E is the Young modulus of material,
ρ is the mass density and P0 is the initial tension.

The equation

ρtt −M(∥∇u∥22)∆u = f(x, u), x ∈ Ω, t > 0,(1.3)

generalizes equation (1.2), where M : R+ → R is a given function, Ω is a
domain of RN . The stationary counterpart of (1.3) is Kirchhoff-type elliptic
equation

−M(∥∇u∥22)∆u = f(x, u), x ∈ Ω, t > 0,(1.4)

Some classical and interesting results of Kirchhoff-type elliptic equation can be
found, for example, in [1, 4, 12,14,18,19].

In this paper, we investigate the existence of nontrivial and radially symmet-
ric solutions for system (1.1). In particular, we are interested in the nonlinear
term F (u, v) including the two cases: F (u, v) = |u|α|v|β with α+β = d, and
F (u, v) = (u2 + v2)d/2, where p(τ + 1) < d < p∗ and the asymptotic behavior
of F (u, v) is different as u2 + v2 → ∞. Furthermore, we assume p < q < d
in system (1.1), that is, the nonlinear term λ|u|q + µ|v|q is a lower degree
perturbation of F (u, v).

For F (u, v) = |u|α|v|β , the authors in [2, 3, 5–8, 11, 13] considered the exis-
tence of solution for (1.1) with c = 0. Under the assumption p(τ + 1) < q <
d < p∗, the authors in [9,20,21] studied the existence of solutions for Kirchhoff-
type elliptic equation. Clearly, it is an interesting problem for the existence of
solution for system (1.1) with p < q < p(τ + 1) < d < p∗. It is noticeable that
the Mountain Pass Theorem, Fountain Theorem, Ekeland’s variational prin-
ciple, and the other variational methods have been used to get the existence
of solutions in the above references. But, we know that the Nehari manifold
and fibrering maps methods are useful to prove the existence of at least two
solutions for (1.4) with a concave-convex term, see [19, 20] and the references
therein.

For the nonlinearity f(u), problem (1.1) is not compact, that is, the min-
imizing sequences are bounded, but not pre-compact in W 1,p(RN ). To over-
come this diffculty, motivated by [17], we will use the Nehari manifold and the
fibering maps method and Mountain Pass Theorem to study the existence of
solutions for system (1.1).
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In order to state our main results, we first introduce some Sobolev spaces and
norms. Let C∞

0 (RN ) denote the collection of smooth functions with compact
support and

C∞
0,r(RN ) = {u ∈ C∞

0 (RN )|u(x) = u(|x|), x ∈ RN}.(1.5)

Let X = D1,p
r (RN ) be the completion of C∞

0,r(RN ) under the norm

∥u∥X = (

∫
RN

|∇u|pdx)1/p.(1.6)

We will work on the space Y = X∩Lp(RN ), which is a subspace of the Sobolev
space W 1,p(RN ), endowed with the norm

∥u∥Y = (

∫
RN

(|∇u|p + b|u|p)dx)1/p.(1.7)

with the constant b > 0. It is well known that the embedding Y → Lm(RN )
for p ≤ m ≤ p∗ is continuous, and there exists a constant cm > 0 such that

∥u∥m ≤ cm∥u∥Y , ∀u ∈ Y,(1.8)

where ∥ · ∥ is the usual norm of Lm(RN ).
Obviously, under the norm ∥ · ∥Y , Y is a Banach space. For the product

space E = Y × Y , the norm of (u, v) ∈ E is defined by

∥(u, v∥E = ∥u∥X + ∥u∥Y .(1.9)

Definition 1.1. A pair of functions (u, v) ∈ E is said to be a (weak)
solution of (1.1) if for any (φ,ψ) ∈ E, there holds

(a+ c∥u∥pτY )

∫
RN

(|∇u|p−2∇u∇φ+ b|u|p−2uφ)dx+

(a+ c∥v∥pτY )

∫
RN

(|∇v|p−2∇v∇ψ + b|v|p−2vψ)dx

=
1

d

∫
RN

(Fuφ+ Fvψ)dx+

∫
RN

(λ|u|q−2uφ+ µ|v|q−2vψ)dx.

(1.10)

Let J(u, v) : E → R be the energy functional associated with system (1.1)
defined by

J(u, v) =
a

p
A(u, v) +

c

p
(τ + 1)B(u, v)− 1

d

∫
RN

F (u, v)dx

− 1

q

∫
RN

(λ|u|q + µ|v|q)dx.
(1.11)

Here and in the sequel, we denote

A(u, v) = ∥u∥pY + ∥v∥pY , B(u, v) = ∥u∥p(τ+1)
Y + ∥v∥p(τ+1)

Y .(1.12)
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It is easy to see that the functional J ∈ C1(E,R) and its Gateaux derivative
is given by

J ′(u, v)(φ,ψ) = (a+ c∥u∥pτY )

∫
RN

(|∇u|p−2∇u∇φ+ b|u|p−2uφ)dx

− 1

d

∫
RN

(Fuφ+ Fvψ)dx+ (a+ c∥v∥pτY )

∫
RN

(|∇v|p−2∇v∇ψ + b|v|p−2vψ)dx

−
∫
RN

(λ|u|q−2uφ+ µ|v|q−2vψ)dx.

Throughout this paper, we make the following assumptions:

(H) Let F (u, v) ∈ C1(R2) be positively homogeneous of degree d ∈ (p, p∗),
that is, F (tu, tv) = tdF (u, v)(t > 0) for any (u, v) ∈ R2. Also, assume
F (u, 0) = F (0, v) = Fu(u, 0) = Fv(0, v) = 0 and F (u, v) > 0 for any
(u, v) ∈ R2 \ {(0, 0)}. Furthermore, there exists a constant k1 > 0 such
that

0 ≤ F (u, v) ≤ k1(|u|d + |v|d), ∀(u, v) ∈ R2,

and

|Fu(u, v)| ≤ k1(|u|d−1 + |v|d−1),

|Fv(u, v)| ≤ k1(|u|d−1 + |v|d−1), ∀(u, v) ∈ R2,

with p(τ + 1) < d < p∗.

Remark 1.1. By the hypothesis (H), we have the so-called Euler identity

Fu(u, v)u+ Fv(u, v)v = dF (u, v), ∀(u, v) ∈ R2.

Clearly, the functions F (u, v) = |u|α|v|β with α + β = d and F (u, v) = (u2 +
v2)d/2 satisfy (H).

Here are the main results of this paper.

Theorem 1.2. Let (H) and 1 < p(τ + 1) ≤ q < d < p∗ hold. Then, for any
a, b > 0, c, τ ≥ 0 and λ, µ ∈ R, the system (1.1) admits at least a pair of positive
ground state solution (u, v) ∈ E with J(u, v) > 0.

Theorem 1.3. Let (H) and 1 < p < q < p(τ + 1) < d < p∗ hold. Then, for
any a, b > 0, c, τ ≥ 0 and λ, µ ∈ R, the system (1.1) admits at least a pair of
positive ground state solution (u, v) ∈ E with J(u, v) > 0.

Remark 1.4. For the problem (1.1) with p = 2, τ = 1, λ = µ, Li et al. in [12]
proved that there exists at least one positive solution for any c ∈ [0, c0) with
some small c0 > 0.

Remark 1.5. For the problem (1.1) with c = 0, if the perturbation terms
λ|u|q−2u and µ|v|q−2v are replaced by f(x) and g(x) respectively, such that
∥f∥p′ and ∥g∥p′ are small, the authors in [6] proved that problem (1.1) has at
least one nontrivial solution (u, v) ∈ E with J(u, v) < 0.



133 Liu and Chen

This paper is organized as follows. In Section 2, we set up the variational
framework and derive some Lemmas, we shall discuss the proof of Theorem 1.2
in Section 3. The proof of Theorem 1.3 is given in Section 4.

2. Preliminaries

For the space Y , one can give a pointwise estimate for function in Y .

Lemma 2.1. [15]. There exists a constant C = C(p,N) > 0 such that for
every u ∈ Y ,

|u(x)| ≤ C|x|(p−N)/p∥∇u∥p, ∀x ∈ RN \ {0}.(2.1)

Lemma 2.2. Let m ∈ (p, p∗). Then the embedding Y → Lm(RN ) is compact.

Proof. Let {uk} be a bounded sequence in Y . Without loss of a generality, we
assume that uk ⇀ 0 in Y and ∥uk∥Y ≤ M, ∀k ∈ N with some M > 0. For our
purpose, it is enough to show that uk → 0 in Lm(RN ). By the Sobolev-Rellich
embedding theorem in a bounded domain, we can assume uk → 0 in Lm

loc(RN )
and uk(x) → 0 a.e. in RN as k → ∞. Let B be the unit sphere in RN with
the center at the origin and Bc = RN \B. Then, as k → ∞, we have∫
RN

|uk(x)|mdx =

∫
B

|uk(x)|mdx+

∫
Bc

|uk(x)|mdx =

∫
Bc

|uk(x)|mdx+ o(1).

Fix q > p∗ = pN
N−p. By Lemma 2.1, we have

|uk(x)|q ≤ C1|x|−q(N−p)/p, x ∈ RN and ∀k ∈ N,(2.2)

where C1 > 0, independent of k. Since q > p∗, we get |x|−q(N−p)/p ∈ L1(Bc)
and then, by Lebesgue dominated convergence theorem,∫

Bc

|uk(x)|qdx→ 0, as k → ∞.(2.3)

Let s ∈ (0, 1) be so that m = ps + (1 − s)q. Then, it follows from the Hölder
inequality that∫

Bc

|uk|mdx =

∫
Bc

|uk|ps|uk|q(1−s)dx ≤ (

∫
Bc

|uk|pdx)s(
∫
Bc

|u|qdx)1−s.

Since {
∫
Bc |uk|pdx} is bounded and {

∫
Bc |uk|qdx} → 0, we have {

∫
Bc |uk|mdx}

→ 0 as k → ∞. Moreover, we obtain from (2.3) that∫
RN

|uk|mdx→ 0 as k → ∞(2.4)

and the embedding Y ↪→ Lm(RN ) is compact. This completes the proof of
Lemma 2.2. □
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To prove the existence of solution for the system (1.1), we introduce the
Nehari manifold

N = {(u, v) ∈ E \ {0, 0}|J ′(u, v)(u, v) = 0}(2.5)

that is, (u, v) ∈ N if and only if (u, v) ̸= (0, 0) and

aA(u, v) + cB(u, v) =

∫
RN

(F (u, v) + λ|u|q + µ|v|q)dx.(2.6)

Furthermore, we define the fibering maps ϕ(t) = J(tu, tv) for t > 0. Clearly,
(u, v) ∈ N if and only if ϕ′(1) = 0 and, more generally, (tu, tv) ∈ N if and only
if ϕ′(t) = 0, that is, elements in N correspond to stationary points of fibering
maps ϕ(t). By definition, we have

ϕ(t) = J(tu, tv) =
a

p
(∥tu∥pY + (∥tv∥pY ) +

c

p(τ + 1)
(∥tu∥p(τ+1)

Y + ∥tv∥p(τ+1)
Y )

− td

d

∫
RN

F (u, v)dx− tq

q

∫
RN

(λ|u|q + µ|v|q)dx,

and

ϕ′(t) = atp−1A(u, v)+ctp(τ+1)−1B(u, v)− td−1

∫
RN

F (u, v)dx

−tq−1

∫
RN

(λ|u|q + µ|v|q)dx.

Notice that, if (u, v) ∈ N , then

J(u, v) = a(
1

p
− 1

q
)A(u, v) + c(

1

p(τ + 1)
− 1

q
)B(u, v)

+ (
1

q
− 1

d

∫
RN

F (u, v)dx

= a(
1

p
− 1

d
)A(u, v) + c(

1

p(τ + 1)
− 1

d
)B(u, v)

+ (
1

d
− 1

q
)

∫
RN

(λ|u|q + µ|u|q)dx

(2.7)

In the following, we derive some properties for the Nehari manifold N .

Lemma 2.3. Let p < q < d and (H). Then, the Nehari manifold N ̸= ∅.

Proof. Let (u, v) ∈ E, (u, v) ̸= (0, 0). Consider the following function for t > 0:

γ(t) = J ′(tu, tv)(tu, tv) = a(∥tu∥pY + ∥tv∥pY ) + c(∥tu∥pτ+1
Y + ∥tv∥pτ+1

Y )

− td
∫
RN

F (u, v)dx− tq
∫
RN

(λ|u|q + µ|v|q)dx.

Since p < q < d, it follows that γ(t) > 0 for small t > 0 and γ(t) → ∞ as t→ ∞.
Then there exists t1 > 0 such that γ(t1) = 0. Obviously, (t1u, t1v) ̸≡ (0, 0).
We conclude that (t1u, t1v) ∈ N and N ̸= ∅. □
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Lemma 2.4. Let (H) and p(τ + 1) ≤ q < d hold. Then, the functional J is
coercive and bounded below on N and satisfies

d = inf
(u,v)∈N

J(u, v) > 0.(2.8)

Proof. Let (u, v) ∈ N . Then it follows from (1.8) and (2.6) that

aA(u, v) + cB(u, v) =

∫
RN

(F (u, v) + λ|u|q + µ|v|q)dx

≤ C0(∥u∥dY + ∥v∥dY + ∥u∥qY + ∥v∥qY )
(2.9)

where C0 = max{cdk1, cq max{|λ|, |µ|}} and cm is the constant in (1.8). Notice
that for any m ≥ 1,

21−m∥(u, v)∥mE ≤ ∥u∥mY + ∥v∥mY ≤ ∥(u, v)∥mE .(2.10)

Then it follows from (2.9) that

21−pa ≤ C0(∥(u, v)∥d−p
E + ∥(u, v)∥q−p

E ).(2.11)

If ∥(u, v)∥E ≤ 1, (2.11) gives a ≤ 2pC0∥(u, v)∥q−p
E . So we have

∥(u, v)∥E ≥ min{1, (2pC0a
−1)

1
p−q ≡ C1, ∀(u, v) ∈ N .(2.12)

Therefore, if (u, v) ∈ N , we have from (2.7) and (2.12) that

J(u, v) ≥ p1∥u∥pX + p2∥u∥p(τ+1)
X ≥ C2(2.13)

where

p1 = a(
1

p
− 1

q
) > 0,

p2 = c(
1

p(τ + 1)
− 1

q
) ≥ 0,

C2 ≡ p1C
p
1 + p2C

p(τ+1)
1 > 0.

(2.14)

This shows that J is coercive and bounded below on N and d ≥ C2 > 0. This
completes the proof of Lemma 2.4 □

Lemma 2.5. Let (H) and p(τ+1) ≤ q < d hold. Then, there exists (u, v) ∈ N
such that J(u, v) = d and u, v ≥ 0 a.e. in RN .

Proof. Let {(un, vn)} be a minimizing sequence for d inN . The fact J(un, vn) =
J(|u|n, |vn|) implies that {(|un|, |vn|)} is also a minimizing sequence, so that
we can assume from beginning that un, vn ≤ 0 a.e. in RN . Since J is coercive
and bounded below on N , the sequence {(un, vn)} is bounded in E. We can
assume that, up to a subsequence, (un, vn) ⇀ (u, v) in E. By Lemma 2.2, we
have un → u, vn → v in Ld(RN ) ∩ Lq(RN ), and, again up to a subsequence,
un(x) → u(x), vn(x) → v(x) a.e. in RN . So that u(x), v(x) ≥ 0 a.e. in RN and
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(u, v) ∈ Y . We now prove that (u, v) ∈ N and J(u, v) = d.
Since (un, vn) ∈ N , then,

aA(un, vn) + cB(un, vn) =

∫
RN

(F (un, vn) + λ|un|q + µ|vn|q)dx.(2.15)

By the weakly lower semi-continuity of norms, we have from (2.12) and (2.15)
that

0 < C3 ≤ aA(u, v) + cB(u, v) ≤
∫
RN

(F (u, v) + λ|u|q + µ|v|q)dx.(2.16)

This implies that (u, v) ̸= (0, 0). If the equality in (2.16) holds, then (u, v) ∈ N .
So, arguing by contradiction, we assume that

aA(u, v) + cB(u, v) <

∫
RN

(F (u, v) + λ|u|q + µ|v|q)dx.(2.17)

Let γ(t) = J ′(tu, tv)(tu, tv). Clearly, γ(t) > 0 for small t > 0 and γ(1) < 0. So
that there exists t ∈ (0, 1) such that γ(t) = 0 and (tu, tv) ∈ N . Then we have
from (2.11) and the weakly lower semi-continuity of norms that

d ≤ J(tu, tv) = p1(∥tu∥pY + ∥tv∥pY ) + p2(∥tu∥p(τ+1)
Y + ∥tv∥p(τ+1)

Y )

+p3t
d

∫
RN

F (u, v)dx

< p1(∥u∥pY + ∥v∥pY ) + p2(∥u∥p(τ+1)
Y + ∥v∥p(τ+1)

Y ) + p3

∫
RN

F (u, v)dx

≤ p1 lim inf
n→∞

(p1A(un, vn) + p2B(un, vn) + p3

∫
RN

F (un, vn)dx)

= lim inf
n→∞

J(un, vn) = d,

where p1, p2 are given in (2.14) and p3 = q−1 − d−1 > 0.
This contradiction proves that the equality in (2.16) holds and then (u, v) ∈

N . Again, the application of the weakly lower semi-continuity of norms, we
get J(u, v) ≤ lim inf

n→∞
J(un, vn) = d. On the other hand, for every (u, v) ∈

N , J(u, v) ≥ d. So J(u, v) = d and Lemma 2.5 is proved. □

3. Proof of Theorem 1.2

We can now prove the main result of this paper by use of lemmas in Section
2.

Proof of Theorem 1.2 Clearly, it is enough to prove that u is a critical
point for J inX, that is, J ′(u, v)(φ,ψ) = 0 for all (φ,ψ) ∈ E and thus J ′(u, v) =
0 in E∗, where (u, v) is in the position of Lemma 2.5.
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For every (φ,ψ) ∈ E, we choose ε > 0 such that (u+ sφ, v+ sψ) ̸= (0, 0) for
all s ∈ (−ε, ε). Define a function ω(s, t) : (−ε, ε)× (0,∞) → R by

ω(s, t)=J ′(t(u+ sφ), t(v + sψ))(t(u+ sφ), t(v + sψ))

=c(∥t(u+ sφ)∥p(τ+1)
Y +∥t(v + sψ)∥p(τ+1)

Y )+a(∥t(u+ sφ)∥pY

+∥t(v + sψ)∥pY )−t
d

∫
RN

F (u+ sφ, v+sψ)dx−tq(λ∥u+sφ∥qq+µ∥v+sψ∥qq).

Then

ω(0, 1) = aA(u, v) + cB(u, v)−
∫
RN

F (u, v)dx

− λ∥u∥qq − µ∥v∥qq = 0

(3.1)

and

∂ω

∂t
(0, 1) = paA(u, v) + pc(τ + 1)B(u, v)

− d

∫
RN

F (u, v)dx− q(λ∥u∥qq + µ∥v∥qq)

= (p− q)aA(u, v) + c(p(τ + 1)− q)B(u, v)

+ (q − d)

∫
RN

F (u, v)dx < 0.

(3.2)

So, by the Implicit Function Theorem, there exists a C1 function t : (−ε0, ε0)
(⊆ (−ε, ε)) → R such that t(0) = 1 and ω(s, t(s)) = 0 for all s ∈ (−ε0, ε0).
This also shows that t(s) ̸= 0, at least for ε0 small enough. Therefore, t(s)(u+
sφ, v + sψ) ∈ N . Denote t = t(s) and

χ(s)=J(t(u+sφ), t(v+sψ))=
atp

p
(∥u+sφ∥pY

+∥v+sψ∥pY)+
ctp(τ+1)

p(τ+1)
(∥u+ sφ∥p(τ+1)

Y +∥v + sψ∥p(τ+1)
Y )

− 1

d

∫
RN

F (t(u+ sφ), t(v + sψ))dx− 1

q
(λ∥t(u+ sφ)∥qq + µ∥t(v + sψ)∥qq.

We see that the function χ(s) is differentiable and has a minimum point at
s = 0. Therefore,

0 = χ′(0) = t′(0)ω(0, 1) + J ′(u, v)(φ,ψ).(3.3)

Since (u, v) ∈ N , it follows from (3.1) that J ′(u, v)(φ,ψ) = 0 for every (φ,ψ) ∈
E and thus J ′(u, v) = 0 in E∗. So, (u, v) is a critical point for J and then
(u, v) is a pair of weak solutions of the problem (1.1) in E. Since J(u, v) =
J(|u|, |v|) = d > 0, we can assume u, v ≥ 0 a.e. in RN . Furthermore, the
application of maximum principle in [15] yields u(x), v(x) > 0 in RN . Thus,
the proof of Theorem 1.2 is completed.
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4. Proof of Theorem 1.3

In this Section, we use the Mountain Pass Theorem in [23] to prove Theorem
1.3. First, we have

Lemma 4.1. Let p < q < p(τ + 1) < d and (H) hold. Then, the functional J
defined by (1.11) satisfies J(0, 0) = 0 and

(I). there exist ρ > 0;α > 0 such that J(u, v) ≥ α for ∥(u, v)∥E = ρ;
(II). there exists (u0, v0) ∈ E with ∥(u0, v0)∥E ≥ ρ such that J(u0, v0) < 0.

Proof. In fact, it follows from (H) and (1.8) that

J(u, v) =
a

p
A(u, v) +

c

p(τ + 1)
B(u, v)

− 1

d

∫
RN

F (u, v)dx− 1

q

∫
RN

(λ|u|q + µ|v|q)dx

≥ 21−pa

p
∥(u, v)∥pE +

21−p(τ+1)c

p(τ + 1)
∥(u, v)∥pE

− C3∥(u, v)∥dE − C4∥(u, v)∥qE

(4.1)

where C3, C4 are the given constants. Since p < q ≤ p(τ +1) < d, The relation
(4.1) implies that (I) is true. To prove (II) , we choose (u1, v1) ∈ E, u1, v1 ̸= 0
and ∥(u1, v1)∥E = 1 such that F (u1, v1) > 0 and write

η(t) = J(tu1, tv1) =
a

p
(∥tu1∥pY + ∥tv1∥pY )

+
c

p(τ + 1)
(∥tu1∥p(τ+1)

Y + ∥tv1∥p(τ+1)
Y )

− td

d

∫
RN

F (u1, v1)dx− tq

q

∫
RN

(λ|u1|q + µ|v1|q)dx.

(4.2)

Clearly, η(t) > 0 for small t > 0 and η(t) → −∞ as t→ +∞. Then there exists
large t1 > ρ such that η(t1) < 0, that is, J(u1, v1) < 0. Denote u0 = t1u1, v0 =
t1v0. Then ∥(u0, v0)∥E = t1 > ρ and J(u0, v0) < 0. This completes the proof
of Lemma 4.1. □

Lemma 4.2. Assume (H) and p < q < p(τ+1) < d. Let {(un, vn)} be a (PS)c
sequence of J in E. Then {(un, vn)} has a strongly convergent subsequence in
E.

Proof. Let {(un, vn)} be a (PS)c sequence in E, that is,

J(un, vn) → c , J ′(un, vn) → 0, inE∗.(4.3)
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We first show that {(un, vn)} is bounded in E. In fact, for large n, we have
from Hölder inequality that

1 + c+ ∥un, vn∥E ≥ J(un, vn)− d−1J ′(un, vn)(un, vn)

= p4A(un, vn) + p5B(un, vn)− p6

∫
RN

(λ|un|q + µ|vn|q)dx

≥ 21−pp4∥(un, vn)∥pE + p52
1−p(τ+1)∥(un, vn)∥p(τ+1)

E

− p6c
q
q∥(un, vn)∥

q
E(|λ|

θ + |µ|θ)1/θ

(4.4)

with p4 = a( 1p −
1
d ) > 0, p5 = c( 1

p(τ+1) −
1
d ) > 0, p6 = ( 1q −

1
d ) > 0, θ = p(τ+1)

p(τ+1)−q .

Since 1 < p < q < p(τ + 1), (4.4) implies that {(un, vn)} is bounded in E.
Then there exists (u, v) ∈ E and a subsequence of {(un, vn)}, still denoted by
{(un, vn)}, such that (un, vn)⇀ (u, v) weakly in E. Without loss of generality,
we assume ∥(unvn)∥E ≤ M for some constant M and all n ∈ N. By Lemma
2.2, we have un → u, vn → v in Lm(RN ) with p < m < p∗ and then un(x) →
u(x), vn(x) → v(x) a.e. in RN . In particular, we have un(x) → u(x), vn(x) →
v(x) in Ld(RN ).

In the following we prove that (un, vn) → (u, v) in E. Denote

Pn=J
′(u,vn)(un−u, vn−v)

=(a+c∥un∥pτY )

∫
RN

(|∇un|p−2∇un∇(un−u)+b|un|p−2un(un−u))dx

+(a+c∥vn∥pτY )(

∫
RN

(|∇vn|p−2∇vn∇(vn−v)

+ b|vn|p−2vn(vn−v))dx)−Rn−Sn−Tn−Kn,

(4.5)

where

Rn =
∫
Rn Fu(un, vn)(un − u)dx,

Sn =
∫
RN Fv(un, vn)(vn − v)dx,(4.6)

Tn = λ
∫
RN |un|q−2un(un − u)dx,

Kn = µ
∫
RN |vn|q−2vn(vn − v)dx.

The fact J ′(un, vn) → 0 in E∗ implies that Pn → 0 as n → ∞. Similarly, the
fact un ⇀ u, vn ⇀ v in Y implies that Qn → 0 as n→ ∞, where

Qn = (a+ c∥un∥pτY )

∫
RN

(|∇un|p−2∇un∇(un − u)

+ b|un|p−2un(un − u))dx

+ (a+ c∥vn∥pτY )(

∫
RN

(|∇vn|p−2∇vn∇(vn − v)

+ b|vn|p−2vn(vn − v))dx).

(4.7)
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We now prove Rn → 0, Sn → 0, Tn → 0 and Kn → 0 as n → ∞. It follows
from the assumption (H2) and (1.8) that

|Rn| ≤
∫
RN

|Fu(un, vn)(un − u)|dx

≤ k1

∫
RN

(|un|d−1 + |vn|d−1)|un − u|dx

≤ k1(∥un∥d−1
d + ∥vn∥d−1

d )∥un − u∥d
≤ k1cd(∥un∥d−1

Y + ∥vn∥d−1
Y )∥un − u∥d

≤ 2k1cdM
d−1∥un − u∥d → 0 as n→ ∞.

(4.8)

Similarly, we have

|Sn| ≤ 2k1cdM
d−1∥vn − v∥d,

|Tn| ≤ |λ|cqMq−1∥un − u∥q,
|Kn| ≤ |µ|cqMq−1∥vn − v∥q

(4.9)

and Sn → 0, Tn → 0,Kn → 0 as n → ∞, where the constant cm was in (1.8).
Notice that

Pn −Qn = (a+ c∥un∥pτY )Un + (a+ c∥vn∥pτY )Vn

−Rn − Sn − Tn −Kn
(4.10)

where

Un =
∫
RN ((|∇un|p−2∇un − |∇u|p−2∇u)∇(un − u)(4.11)

+b(|u|p−2un − |u|p−2u)(un − u))dx,

and

Vn =
∫
RN ((|∇vn|p−2∇vn − |∇v|p−2∇v)∇(vn − v)(4.12)

+b(|v|p−2vn − |v|p−2v)(vn − v))dx.

Then it follows from (4.9) and Pn −Qn → 0 that Un → 0, Vn → 0 as n → ∞,
that is, (un, vn) → (u, v) in E as n→ ∞. Thus J(u, v) satisfies (PS) condition
on E and we finish the proof of Lemma 4.2. □

Proof of Theorem 1.3. By Lemmas 4.1 and 4.2, J(u, v) satisfies all assumptions
in Mountain Pass Theorem in [16]. Then there exists (u, v) ∈ E such that (u, v)
is a pair of solutions of (1.1). Furthermore, J(u, v) > α. This completes the
proof of Theorem 1.3. □

References

[1] C. O. Alves and G. M. Figueiredo, Nonlinear perturbations of a periodic Kirchhoff

equation in RN , Nonlinear Analysis 75 (2012), no. 5, 2750–2759.



141 Liu and Chen

[2] S. Benmouloud, R. Echarghaoui and S. M. Sbai, Multiplicity of positive solutions for

a critical quasilinear elliptic system with concave and convex nonlinearities, J. Math.
Anal. Appl. 396 (2012), no. 1, 375–385.

[3] S. Benmouloud, R. Echarghaoui and S. M. Sbäı, Existence result for quasilinear elliptic
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