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1. Introduction

We investigate in this paper existence of at least one positive solution to the
p(t)-Laplacian Dirichlet boundary value problem (bvp for short)

(1.1)

{
−(φ(t, u′(t)))′ = f(t, u(t)), t ∈ (0, 1),
u(0) = u(1) = 0,

where φ(t, x) = |x|p(t)−2
x, p ∈ C ([0, 1] , (1,+∞)) , f ∈ C ([0, 1]× R+,R+) and

R+ = [0,+∞) .
We mean by a positive solution to bvp (1.1) , a function u ∈ C1([0, 1],R+)

with ϕ(t, u′(t)) ∈ C1([0, 1],R) and u (t0) > 0 for some t0 ∈ (0, 1) , satisfying
both the differential equation and Dirichlet boundary conditions in bvp (1.1).

The differential operator −(φ(t, u′(t)))′ is known in the literature as the
monodimensional p(t)-Laplacian and becomes the p-Laplacian when p(t) ≡ p ∈
(1,+∞) . Because of the physical interests (see for example [1, 5, 11] and ref-
erences cited therein), differential equations involving the p(t)-Laplacian have
received a great attention in recent years and many interesting results have
been obtained (see for example [2, 6–9,12–15], and [16]).

Note that if the exponent p(t) is not constant the p(t)-Laplacian is not linear
and nonhomogeneous. This makes the study of differential equations involving
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Dirichlet p(t)-Laplacian BVPs 156

p(t)-Laplacian more complicated than the case where p(t) ≡ p ∈ (1,+∞). The
difficulties encountered when studying various aspects of differential equations
involing the p(t)-Laplacian are clearly indicated in [9, 12,14] and [15].

This work is motivated by that in [2], where the authors consider the three
point bvp

(1.2)

{
−(φ(t, u′(t)))′ = f(t, u(t)), t ∈ (0, 1),
u(0) = αu(η), u′(1) = 0,

with α, η ∈ (0, 1) and they provide existence results for at least one positive
solution in both the sublinear case and the superlinear case. The main goal of
this paper is to see if the results obtained in [2] hold (in form not in details)
or not, when we replace boundary conditions in bvp (1.2) by Dirichlet ones.
As in [2], we will use the fixed point index theory and obviously, we have
encountred the same difficulties as those described in [2].

To overcome these difficulties, we have used a characterization of the positive
eigenvalue of the p−Laplacian proved in [4] to compute the fixed point index
near 0 for the operator associated with the fixed point formulation of bvp
(1.1). The fixed point index computation at ∞, is obtained by straighforward
calculations for the sublinear case; unlike, for the superlinear case, it is obtained
by combining quadrature techniques with the homotopy property of the fixed
point index.

The paper is organized as follows. In section 2, we recall first, some lemmas
giving fixed point index calculations. Then, we present a fixed point formu-
lation for bvp (1.1) and we close this section by some lemmas making use of
homotopical argument for the superlinear case. In Section 3, we present our
main results and their proofs and it is ended by illustrative examples.

2. Preliminaries

First, let us recall some elements related to fixed point index theory. Let X
be a real Banach space. A nonempty closed convex subset K of X is said to
be an ordered cone if K ∩ (−K) = {0} and (tK) ⊂ K for all t ≥ 0.

LetK be an ordered cone of X, for R > 0, KR denotes the intersection of the
cone K with B(0, R) the ball in X of radius R centered at 0. Let T : KR → K
be a compact mapping. The following lemmas can be found in [10]. They
provide fixed point index computations.

Lemma 2.1. If Tu ⩾̸ u for all u ∈ ∂KR, then i(T,KR,K) = 1.

Lemma 2.2. If Tu ⩽̸ u for all u ∈ ∂KR, then i(T,KR,K) = 0.

Lemma 2.3. If T (u) ̸= λu for all u ∈ ∂KR and λ ≥ 1 then i (f,KR,K) = 1.

Lemma 2.4. If
• T (x) ̸= λx for all x ∈ ∂KR = ∂B(0, R) ∩K and λ ∈ (0, 1] and
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• inf {∥T (x)∥ : x ∈ ∂KR} > 0
then

i (f,KR,K) = 0.

Throughout this paper, E will denote the Banach space of all continuous
functions defined on [0, 1] equipped with the sup-norm denoted by ∥·∥, K and
P are cones of E defined by

K = {u ∈ E : u ≥ 0 in [0, 1]} ,

and

P = {u ∈ K : u(t) ≥ ρ(t) ∥u∥ , for t ∈ [0, 1]}
where

ρ (t) = min (t, 1− t) .

Throughout this paper, ψ (t, ·) denotes the inverse function of φ (t, ·) and we
have

ψ(t, x) = |x|q(t)−2
x where q (t) = p(t)

p(t)−1 .

The real numbers, p−, p+ are defined by

p− = min
t∈[0,1]

p(t), p+ = max
t∈[0,1]

p(t)

and we have

q− = min
t∈[0,1]

q(t) = p+

p+−1 , q+ = max
t∈[0,1]

q(t) = p−

p−−1 .

We need also to introduce the following functions:

φ− (x) =

{
xp

+−1 if x ≤ 1,

xp
−−1 if x ≥ 1,

φ+ (x) =

{
xp

−−1 if x ≤ 1,

xp
+−1 if x ≥ 1,

and

ψ− (x) =

{
xq

+−1 if x ≤ 1,

xq
−−1 if x ≥ 1,

ψ+ (x) =

{
xq

−−1 if x ≤ 1,

xq
+−1 if x ≥ 1.

Note that ψ+ and ψ− are respectively the inverse functions of φ− and φ+.
Note also that for all s ∈ (0, 1) and x ≥ 0,

(2.1)

sp
+−1ϕ− (x) ≤ ϕ− (sx) ≤ sp

−−1ϕ− (x) ,

sp
+−1ϕ+ (x) ≤ ϕ+ (sx) ≤ sp

−−1ϕ+ (x) ,

sq
+−1ψ− (x) ≤ ψ− (sx) ≤ sq

−−1ψ− (x) ,

sq
+−1ψ+ (x) ≤ ψ+ (sx) ≤ sq

−−1ψ+ (x) .
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Let

ϕ−i (x) =

{
ϕ− (x) if x ≥ 0,
−ϕ+ (−x) if x ≤ 0,

ϕ+i (x) =

{
ϕ+ (x) if x ≥ 0,
−ϕ− (−x) if x ≤ 0,

ψ−
i (x) =

{
ψ− (x) if x ≥ 0,
−ψ+ (−x) if x ≤ 0,

ψ+
i (x) =

{
ψ+ (x) if x ≥ 0,
−ψ− (−x) if x ≤ 0.

and observe that for all t ∈ [0, 1] and x ∈ R,

ϕ−i (x) ≤ ϕ (t, x) ≤ ϕ+i (x)

and
ψ−
i (x) ≤ ψ (t, x) ≤ ψ+

i (x) .

In the particular case where the exponent p is constant, the function φ is
denoted by ϕp and in this case we have ψ = ϕq.

The main goal of the three following lemmas is to provide a fixed point
formulation to bvp (1.1).

Lemma 2.5. For all h ∈ L1 [0, 1] there exists a unique c(h) solution of∫ 1

0

ψ

(
t, ϕ (0, c)−

∫ t

0

h (s) ds

)
dt = 0.

Moreover the map H : L1 [0, 1] → R defined by H (h) = c (h) is continuous.

Proof. Fix h ∈ L1 [0, 1] and consider the mapping ĥ : R → R with

ĥ (c) =

∫ 1

0

ψ

(
t, φ (0, c)−

∫ t

0

h (s) ds

)
dt.

Since for all t ∈ R, ψ (t, ·) is an increasing function, the mapping ĥ is increasing,

moreover ĥ satisfies for all c ∈ R.
ψ−
i (φ (0, c)− |h|1) ≤ ĥ (c) ≤ ψ+

i (φ (0, c) + |h|1) .

These inequalities lead to limc→−∞ ĥ (c) = −∞ and limc→+∞ ĥ (c) = +∞ and

so equation ĥ (c) = 0 admits a unique solution.
Now, suppose that the mapping H is not continuous and there exists ϵ0 > 0

and a sequence (hn) ⊂ L1 [0, 1] converging to h ∈ L1 [0, 1] such that |c (hn)−c (h)|>
ϵ0.

Observe that for all n ∈ N, there exists tn ∈ (0, 1) such that

ψ

(
tn, φ (0, c (hn))−

∫ tn

0

h (s) ds

)
= 0

leading to
|c (hn)| ≤ ψ (0, |hn|1) .

This inequality together with the convergence of (hn) to h in L1 [0, 1] means
that the sequence (c (hn)) is bounded and up to a subsequence, (c (hn)) con-
verges to some c∗.
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At this stage, we obtain from Lebesgue dominated convergence theorem,
that ∫ 1

0

ψ

(
t, φ (0, c∗)−

∫ t

0

h (s) ds

)
dt = 0

then uniqueness of c (h) leads to c (h) = c∗.
Combining all the above, yields the contradiction

0 < ϵ0 ≤ lim |c (hn)− c (h)| = |c∗ − c (h)| = 0,

ending the proof □

Now, let Nφ : L1 [0, 1] → C1 [0, 1] be the operator defined for h ∈ L1 [0, 1]
by

Nφh (x) =

∫ x

0

ψ

(
t, φ (0, c (h))−

∫ t

0

h (s) ds

)
dt

where the real number c (h) is that in Lemma 2.5.
It is easy to prove the following lemma.

Lemma 2.6. Consider for h ∈ L1 [0, 1] , the bvp

(2.2)

{
−(φ(t, u′(t)))′ = h(t), a. e. t ∈ (0, 1),
u(0) = u(1) = 0.

Then u is a solution to bvp (2.2) if and only if u = Nφh.

Let F : K → K be the mapping given for u ∈ K by Fu (t) = f (t, u (t)) and
let i, j be respectively the compact embeding of C1 [0, 1] in E and the continuous
embeding of E in L1 [0, 1] and consider the operator Tφ = i ◦Nφ ◦ j ◦ F. The
proof of the following lemma is easy, so we omit it.

Lemma 2.7. We have that

• Tφ (K) ⊂ K
• Tφ is completely continuous
• u is a positive solution of bvp (1.1) if and only if u is a fixed point of
Tφ.

In the remainder of this section, we will recall and prove some results for
the case of p-Laplacian operator (the case where the weight p is constant).
These results are use singular form for proofs of the main results of this paper.
Especially, we need to establish a fixed point index calculation for the case of
p-Laplacian operator in order to obtain by a homotopical argument, fixed point
index computation at ∞ for the superlinear case.
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Let λ (p0) be the positive eigenvalue of{
−(ϕp0 (u

′(t)))′ = λϕp0(u(t)), t ∈ (0, 1),
u(0) = u(1) = 0.

It is well known that

λ (p0) = (p0 − 1)

(
2

∫ 1

0

ds
p0
√
1−sp0

)p0

.

Consider the operator Np0 : E → E defined by

Np0u (t) =


∫ t

0
ϕq0

(∫ 1/2

s
ϕp0 (u (s)) ds

)
dt if t ∈ [0, 1/2]∫ 1

t
ϕq0

(∫ s

1/2
ϕp0 (u (s)) ds

)
dt if t ∈ [1/2, 1]

where q0 = p0

p0−1 . Clearly, we have that (λ (p0))
−1

is the unique positive eigen-

value of Np0 and Theorem 3.15 in [4] states that

(λ (p0))
−1

= supΛ
Np0

K = inf Θ
Np0

K

where

Λ
Np0

K = {λ ≥ 0 : there exists u ∈ K ∖ {0} such that Np0u ≤ λu} ,

Θ
Np0

K = {θ ≥ 0 : there exists u ∈ K ∖ {0} such that Np0u ≥ θu} .
Observe also that λ (p0) is the positive eigenvalue to each of the bvps,{

−(ϕp0
(u′(t)))′ = λϕp0

(u(t)), t ∈ (0, 1/2),
u(0) = u′(1/2) = 0

and {
−(ϕp0 (u

′(t)))′ = λϕp0(u(t)), t ∈ (1/2, 1),
u′(1/2) = u(1) = 0.

Similarly, we have that

(λ (p0))
−1

= supΛ
Nr

p0

K = inf Θ
Nr

p0

K = supΛ
N l

p0

K = inf Θ
N l

p0

K

where

Nr
p0
u (t) =

∫ 1

t

ϕq0

(∫ s

1/2

ϕp0 (u (s)) ds

)
dt, t ∈ [1/2, 1]

N l
p0
u (t) =

∫ t

0

ϕq0

(∫ 1/2

s

ϕp0 (u (s)) ds

)
dt, t ∈ [0, 1/2]

and for ν = r or l,

Λ
Nν

p0

K =
{
λ ≥ 0 : there exists u ∈ K ∖ {0} such that Nν

p0
u ≤ λu

}
,

Θ
Nν

p0

K =
{
θ ≥ 0 : there exists u ∈ K ∖ {0} such that Nν

p0
u ≥ θu

}
.
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Lemma 2.8. (Lemma 2.4 in [3])Assume that p ≡ p0 is constant, then Tϕp0
(K)⊂

P.

Lemma 2.9. Assume that p ≡ p0 is constant,

(2.3) f (t, u) > 0 for all (t, u) ∈ [0, 1]× (0,+∞) .

and f0∞ > λ (p0) where

f0∞ = lim inf
u→ν

(
min
t∈[0,1]

f(t,u)
up0−1

)
.

Then there exists R∞ > 0 such that i
(
Tϕp0

,KR,K
)
= 0 for all R > R∞.

Proof. Because of Lemma 2.8 and the permanance property of the fixed point
index, we have that for all R > 0, i

(
Tϕp0

,KR,K
)
= i
(
Tϕp0

, PR, P
)
.

In order to use Lemma 2.4, we claim that there exists R1
∞ > 0 such that

for all R > R1
∞, Tϕp0

u ̸= λu for all u ∈ ∂PR and λ ∈ (0, 1] . To the contrary,
assume that there exists sequences (λn) ⊂ (0, 1] and (un) ⊂ P such that
limn→∞ ∥un∥ = +∞ and Tϕp0

un = λnun. We have that

(2.4)

{
−(ϕp0 (u

′
n(t)))

′ = ϕp0

(
λ−1

)
f(t, un(t)), t ∈ (0, 1),

un(0) = un(1) = 0.

Let tn ∈ (0, 1) be such that u′n (tn) = 0 and un (tn) = ∥un∥ .We deduce from
the hypothesis (2.3) that tn is the unique critical point of un. Indeed, if there
exists t∗n ∈ (0, tn)∪(tn, 1) such that u′n (t

∗
n) = 0 then one gets the contradiction,

0 =

∫ tn

t∗n

− (ϕm0 (u
′
n (s)))

′
ds =

∫ tn

t∗n

ϕm0

(
λ−1

)
f (s, un (s)) ds ̸= 0.

Let ϵ > 0 be such that
(
f0∞ − ϵ

)
> λ (p0) , there exists R∗ large such that

f(t, x) ≥
(
f0∞ − ϵ

)
xm0−1 for all x ≥ R∗ and t ∈ [0, 1] . Multiplying the differ-

ential equation in (2.4) by u′n and integrating between t and tn, we obtain:

1
p0

|u′n(t)|
p0 =

∫ tn

t

ϕp0

(
λ−1

)
f(s, un(s))u

′(s)ds

then,

u′n (tn) =

(
p0

∫ tu

t

ϕp0

(
λ−1

)
f(s, un(s))u

′(s)ds

)1/m0

, for t ∈ (0, tu)

−u′n (tn) =

(
p0

∫ tu

t

ϕp0

(
λ−1

)
f(s, un(s))u

′(s)ds

)1/m0

, for t ∈ (tu, 1) .
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Consequently, we have

tn =

∫ un(tu)

un(0)

dun(t)
u′
n(t)

=

∫ ∥un∥

0

dun(t)

(p0

∫ tn
t

ϕp0 (λ
−1)f(s,un(s))u′

n(s)ds)
1/p0

≤
∫ ∥un∥

0

dun(t)

(p0

∫ tn
t

f(s,un(s))u′
n(s)ds)

1/p0
.

Let tn∗ be the unique point in (0, tn) such that un (t
n
∗ ) = R∗. We have

tn ≤
∫ R∗

0

dun(t)

(p0

∫ tn
t

f(s,un(s))u′
n(s)ds)

1/p0
+

∫ ∥un∥

R∗

dun(t)

(p0

∫ tn
t

f(s,un(s))u′
n(s)ds)

1/p0

≤
∫ R∗

0

dun(t)(
p0

∫ tn
tn∗

f(s,un(s))u′
n(s)ds

)1/p0
+

∫ ∥un∥

R∗

dun(t)

(p0

∫ tn
t

f(s,un(s))u′
n(s)ds)

1/p0

≤ R∗

((f0
∞−ϵ)(∥un∥p0−R

p0
∗ ))

1/p0
+

∫ ∥un∥

0

dun(t)

((f0
∞−ϵ)(∥un∥p0−u

p0
n (t)))

1/p0

which leads to

(2.5) tn ≤ R∗

((f0
∞−ϵ)(∥un∥p0−R

p0
∗ ))

1/p0
+
(

λ(p0)
2p0 (f0

∞−ϵ)

)1/p0

.

Similarly, we have

(2.6) 1− tn = R∗

((f0
∞−ϵ)(∥un∥p0−R

p0
∗ ))

1/p0
+
(

λ(p0)
2p0 (f0

∞−ϵ)

)1/p0

.

Adding (2.5) and (2.6), we get

(2.7) 1 ≤ 2R∗

((f0
∞−ϵ)(∥un∥p0−R

p0
∗ ))

1/p0
+
(

λ(p0)
(f0

∞−ϵ)

)1/p0

.

Letting n→ ∞ in (2.7), yields the contradiction

1 ≤
(

λ(p0)
(f0

∞−ϵ)

)1/p0

< 1.

Thus, the claim is proved.
Now, set R∞ = 4R1

∞ and let u ∈ ∂PR with R ≥ R∞ and tu ∈ (0, 1) such

that Tϕp0
u (tu) =

∥∥Tϕp0
u
∥∥ and

(
Tϕp0

u
)′
(tu) = 0. We distinguish two cases

1) tu ≥ 1/2, in this case we have

u (s) ≥ ρ (s) ∥u∥ ≥ 1
4 ∥u∥ ≥ R1

∞ for all s ∈ [1/4, 1/2]
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which yields the estimate,∥∥Tϕp0
u
∥∥ = Tϕp0

u (tu) =

∫ tu

0

ϕq0

(∫ tu

t

f (s, u (s)) ds

)
dt

≥
∫ 1/2

1/4

ϕq0

(∫ 1/2

t

f (s, u (s)) ds

)
dt

≥
∫ 1/2

1/4

ϕq0

(∫ 1/2

t

(
f0∞ − ϵ

)
ϕp0 (u (s)) ds

)
dt

≥ ϕq0
(
f0∞ − ϵ

) ∫ 1/2

0

ϕq0

(∫ 1/2

t

ϕp0 (ρ (s) ∥u∥) ds

)
dt

≥ ϕq0
(
f0∞ − ϵ

)
R1

∞

∫ 1/2

1/4

ϕq0

(∫ 1/2

t

ϕp0 (ρ (s)) ds

)
dt > 0

2) tu ≥ 1/2, in this case we have,

u (s) ≥ ρ (s) ∥u∥ ≥ 1
4 ∥u∥ ≥ R1

∞ for all s ∈ [1/2, 3/4]

which yields the estimate∥∥Tϕp0
u
∥∥ = Tϕp0

u (tu) =

∫ 1

tu

ϕq0

(∫ t

tu

f (s, u (s)) ds

)
dt

≥
∫ 3/4

1/2

ϕq0

(∫ t

1/2

f (s, u (s)) ds

)
dt

≥
∫ 3/4

1/2

ϕq0

(∫ t

1/2

(f∞ − ϵ)ϕp0
(u (s)) ds

)
dt

≥ ϕn0

(
f0∞ − ϵ

) ∫ 3/4

1/2

ϕq0

(∫ t

1/2

ϕp0 (ρ (s) ∥u∥) ds

)
dt

≥ ϕq0
(
f0∞ − ϵ

)
R1

∞

∫ 3/4

1/2

ϕq0

(∫ 1/2

t

ϕp0 (ρ (s)) ds

)
dt > 0.

Therefore, we have that

inf
{∥∥Tϕm0

u
∥∥ , u ∈ ∂PR

}
≥ ϕq0

(
f0∞ − ϵ

)
R1

∞I0 > 0

with

I0 = min

(∫ 1/2

1/4

ϕq0

(∫ 1/2

t

ϕp0
(ρ (s)) ds

)
dt,

∫ 3/4

1/2

ϕq0

(∫ 1/2

t

ϕp0
(ρ (s)) ds

)
dt

)
and so, from Lemma 2.4 we deduce that

i
(
Tϕm0

,KR,K
)
= i
(
Tϕm0

, PR, P
)
= 0 for all R > R∞.



Dirichlet p(t)-Laplacian BVPs 164

This ends the proof □

3. Main results

We begin this section by introducing some notations. Set

γ− (p) = q−
(
p− − 1

)
=

p+(p−−1)
(p+−1) ,

γ+ (p) = q+
(
p+ − 1

)
=

p−(p+−1)
(p−−1) if p+

(
p− − 2

)
+ 1 > 0,

I (p) =

∫ 1

0

ds

(1−sγ+(p))
1/γ−(p)

,

Λ∞ (p) = (2I (p))
γ+(p) (

p+ − 1
)

if p+
(
p− − 2

)
+ 1 > 0,

W+ = Γ+ ◦ ϕ+ where for x ≥ 0, Γ+ (x) =

∫ x

0

ψ+ (t) dt, Π =W−1
+ .

Note that γ+ (p) ≥ p+, I (p) <∞ if and only if p+ (p− − 2) + 1 > 0 and for all
s ∈ (0, 1) , x ≥ 0

sγ
+(p)W+ (x) ≤W+ (sx) ≤ sγ

−(p)W+ (x) ,

s1/γ
−(p)Π(x) ≤ Π(sx) ≤ s1/γ

+(p)Π(x) .

We have also,

lim
x→+∞

W+(x)

xγ+(p)
= 1

q+ , lim
x→+∞

Γ−(x)
x2 = 1

2 .

It easy to see from the above limits that for all η > 0

(3.1) lim
y→+∞

y

Π(ηyγ+(p))
=
(

1
ηq+

)1/γ+(p)

.

Let

Λ1 = φ+ (λ (p−)) Λ2 = φ− (λ (p+)) Λ3 = q−2q
−

Λ4 = max(Λ∞ (p) , λ(p+))

and

f0 = lim inf
u→0

(
min
t∈[η,1]

f(t,u)

up−−1

)
, f0 = lim sup

u→0

(
max
t∈[0,1]

f(t,u)

u
p+−1

)
,

f∞ = lim sup
u→+∞

(
max
t∈[0,1]

f(t,u)

u
p−−1

)
, f∞ = lim inf

u→+∞

(
min

t∈[η,1]

f(t,u)

u
γ+(p)−1

)
.

Theorem 3.1 (sublinear case). Assume that

(3.2) f∞/Λ3 < 1 < f0/Λ1.

Then bvp (1.1) admits at least one positive solution.
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Proof. Note that Lemma 2.7 implies that fixed points of the operator Tφ are
nonnegative solutions to bvp (1.1) . Consequently, we have to prove that Tφ has
a fixed point inK∖{0} . To this aim, let ϵ > 0 be such that (f0 − ϵ) > Λ1; there

exists δ > 0 such that for all t ∈ [0, 1] and u ∈ [0, δ] , f(t, u) ≥ (f0 − ϵ)up
−−1.

Set r0 = min(1, δ) and let r ∈ (0, r0) and u ∈ ∂Kr such that Tφu ≤ u.
Thus, we have

u(t) ≥ Tφu(t) =

∫ t

0

ψ

(
s,

∫ tu

s

f(τ, u(τ))dτ

)
ds for all t ∈ [0, tu]

and

u(t) ≥ Tφu(t) =

∫ 1

t

ψ

(
s,

∫ s

tu

f(τ, u(τ))dτ

)
ds for all t ∈ [tu, 1]

where tu is such that Tφu(tu) = ∥Tφu∥ and (Tφu)
′
(tu) = 0.

Without loss of generality, assume that tu ≥ 1/2, then we have from (2.1)

u(t) ≥ Tφu(t) ≥
∫ t

0

ψ−

(∫ 1/2

s

f(τ, u(τ))dτ

)
ds

≥
∫ t

0

ψ−

(∫ 1/2

s

(f0 − ϵ)up
−−1(τ)dτ

)
ds

≥ ψ− (f0 − ϵ)

∫ t

0

ϕp−

(∫ 1/2

s

ϕp− (u(τ)) dτ

)
ds

= ψ− (f0 − ϵ)N l
ϕp−

u (t) .

This implies that (ψ− (f0 − ϵ))
−1 ∈ Λ

N l
ϕ
p−

K and(
ψ− (f0 − ϵ)

)−1 ≥
(
λ
(
p−
))−1

= inf Λ
N l

ϕ
p−

K .

So, we obtain the contradiction,

Λ1 = φ+
(
λ
(
p−
))

≥ (f0 − ϵ) > Λ1.

At this stage, we have proved that for all r ∈ (0, r0) , Tφu ≱ u for all u ∈ ∂Kr.
Thus, Lemma 2.2 guarantees that

i (Tφ,Kr,K) = 0 for all r ∈ (0, r0) .

Let ε > 0 be such that (f∞ + ε) < Λ3. There exists a positive constant c∞
such that

f (t, x) ≤ (f∞ + ε)xp
−−1 + c∞ for all t ∈ [0, 1] and x ≥ 0.

We claim that there exists R∞ large such that for all R ∈ (R∞,+∞) ,

Tφu ̸= λu for all u ∈ ∂KR and λ ≥ 1.
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Suppose that this is not the case and there are sequences (λn) ⊂ [1,+∞) , (un) ⊂
K with ∥un∥ → ∞, such that Tφun = λnun. Let for all n ∈ N, tn ∈ (0, 1) be
such that un (tn) = ∥un∥ and u′n (tn) = 0.

We have

∥un∥ = un (tn) ≤ λnun (tn) =

∫ tn

0

ψ

(
s,

∫ tn

s

f(τ, u(τ))dτ

)
ds

≤
∫ tn

0

ψ+

(∫ tn

s

f(τ, u(τ))dτ

)
ds

≤
∫ tn

0

ψ+

(∫ tn

s

(
(f∞ + ε)up

−−1
n (τ) + c∞

)
dτ

)
ds

≤
∫ tn

0

ψ+
(
(tn − s)

(
(f∞ + ε) ∥un∥p

−−1
+ c∞

))
ds.

This together with (2.1) leads to

1 ≤ 1

∥un∥

∫ tn

0

ψ+
(
(tn − s)

(
(f∞ + ε) ∥un∥p

−−1
+ c∞

))
ds

≤
∫ tn

0

ψ+
(
(tn − s)

(
(f∞ + ε) + c∞

∥un∥p−−1

))
ds

≤ ψ+
(
(f∞ + ε) + c∞

∥un∥p−−1

)∫ tn

0

(tn − s)
q−−1

ds

= ψ+
(
(f∞ + ε) + c∞

∥un∥p−−1

)
tq

−
n

q− .

Similarly, we obtain from

∥un∥ = un (tn) ≤ λnun (tn) =

∫ 1

tn

ψ

(
s,

∫ s

tn

f(τ, u(τ))dτ

)
ds

that

1 ≤ ψ+
(
(f∞ + ε) + c∞

∥un∥p−−1

)∫ 1

tn

(s− tn)
q−−1

ds

= ψ+
(
(f∞ + ε) + c∞

∥un∥p−−1

)
(1−tn)

q−

q− .

Thus, we have

1 ≤ ψ+
(
(f∞ + ε) + c∞

∥un∥p−−1

) min
(
(1−tn)

q− ,tq
−

n

)
q−

≤ ψ+
(
(f∞ + ε) + c∞

∥un∥p−−1

)
1

q−2q−
.

Letting n→ ∞, yields the contradiction

Λ3 = q−2q
−
≤ ψ+ (f∞ + ε) < Λ3.
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Our claim is then proved and there exists R∞ large such that for all R ∈
(R∞,+∞) ,

Tφu ̸= λu for all u ∈ ∂KR and λ ≥ 1

and so, we have from Lemma 2.3 that

i (Tφ,KR,K) = 1 for all R ∈ (R∞,+∞) .

At the end, if r1 and R1 are such that 0 < r1 < r0 < R∞ < R1 then we have

i
(
Tφ,KR1 ∖Kr1 ,K

)
= i (Tφ,KR1 ,K)− i (Tφ,Kr1 ,K) = 1

and Tφ has a fixed point u ∈ KR1∖Kr1 which by iii) of Lemma 2.7, is a positive
solution to bvp (1.1). □

Theorem 3.2 (superlinear case). Assume that
f (t, u) > 0 for all t ∈ [0, 1] and u > 0,

p+ (p− − 2) + 1 > 0 and
f0/Λ2 < 1 < f∞/Λ4.

Then bvp (1.1) admits at least one positive solution.

Proof. As in the proof of Theorem 3.1 we have to prove that the operator Tφ
has a fixed point in K ∖ {0} .

Let ϵ > 0 be such that ψ+
(
f0 + ϵ

)
< λ (p+) . There exists δ > 0 such that

for all t ∈ [0, 1] and x ∈ [0, δ] , f(t, x) ≤ (f0 − ϵ)xp
+−1.

Set r0 = min(1, δ) and let r ∈ (0, r0) , u ∈ ∂Kr and λ ≥ 1 be such that
Tφu = λu. Let tu ∈ (0, 1) be such that u (tu) = ∥u∥ , u′ (tu) = 0 and without
loss of generality assume that tu ≤ 1/2, then we have for all t ∈ [0, tu] ,

u(t) ≤ λu(t) = Tφu(t) =

∫ t

0

ψ

(
s,

∫ tu

s

f(τ, u(τ))dτ

)
ds

≤
∫ t

0

ψ+

(∫ tu

s

f(τ, u(τ))dτ

)
ds

≤
∫ t

0

ψ+

(∫ tu

s

(
f0 − ϵ

)
up

+−1(τ)dτ

)
ds

≤
∫ t

0

ψ+

(∫ 1/2

s

(
f0 − ϵ

)
up

+−1(τ)dτ

)
ds

≤ ψ+
(
f0 − ϵ

) ∫ t

0

ψp+

(∫ 1/2

s

ϕp+ (u(τ)) dτ

)
ds

= ψ+
(
f0 − ϵ

)
N l

ϕp+
u (t)
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and for all t ∈ [tu, 1/2]

u (t) ≤ ∥u∥ = u(tu) ≤ λu(tu) = Tu(tu)

≤
∫ tu

0

ψ+

(∫ tu

s

f(τ, u(τ))dτ

)
ds

≤
∫ t

0

ψ

(
s,

∫ tu

s

f(τ, u(τ))dτ

)
ds

≤
∫ t

0

ψ

(
s,

∫ 1/2

s

f(τ, u(τ))dτ

)
ds

≤
∫ t

0

ψ+

(∫ 1/2

s

(
f0 − ϵ

)
up

+−1(τ)dτ

)
ds

≤ ψ+
(
f0 − ϵ

) ∫ t

0

ϕp+

(∫ 1/2

s

ϕp+ (u(τ)) dτ

)
ds

= ψ+
(
f0 − ϵ

)
N l

ϕp+
u (t) .

Thus, the above estimates show that for all t ∈ [0, 1/2]

u (t) ≤ ψ+
(
f0 − ϵ

)
N l

ϕp+
u (t) ,

leading to(
ψ+
(
f0 − ϵ

))−1 ∈ Θ
N l

ϕ
p+

K and
(
ψ+
(
f0 − ϵ

))−1 ≤
(
λ
(
p+
))−1

and so, this yields the contradiction

λ
(
p+
)
≤ ψ+

(
f0 − ϵ

)
< λ

(
p+
)
.

Therefore, we conclude that for all r ∈ (0, r0) and u ∈ ∂Kr, Tφu ̸= λu for all
λ ≥ 1 and by Lemma 2.3, we have

i (Tϕ,Kr,K) = 1 for all r ∈ (0, r0) .

Now consider the homotopical equation

(3.3) u = Tφθ
u

where for θ ∈ [0, 1] , φθ (x) = |x|pθ(t)−2
x and pθ (t) = (1− θ) p(t) + θp+.

Clearly, Equation (3.3) is equivalent to bvp

(3.4)

{
−(φθ(t, u

′(t)))′ = f(t, u(t)), t ∈ (0, 1),
u(0) = u(1) = 0.

In order to use the homotopy property of the fixed point index, let us prove ex-
istence of R∞ large, such that for all R > R∞ bvp (3.4) (respectively, Equation
(3.3)) has no solution in ∂KR.
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To the contrary, suppose that there exist sequences (θn) ⊂ [0, 1] and (un) ⊂
K with ∥un∥ → ∞ such that

(3.5a)

{
−(φθn(t, u

′
n(t)))

′ = f(t, un(t)), t ∈ (0, 1),
un(0) = un(1) = 0.

Arguing as in the proof of Lemma 2.9, we see that un admits a unique critical
point tn ∈ (0, 1) at which it reaches its supremum.

Let ϵ > 0 be such that (f∞ − ϵ) > Λ4 ≥ (2I (p))
γ+(p)

(p+ − 1) . There exists

M∞ > 0 such that f(t, x) > (f∞ − ϵ)xγ
+(p)−1 for all t ∈ [0, 1] and x > M∞.

It is easy to see that p+ ≤ γ+ (p) and γ+ (pθ) ≤ γ+ (p) . Therefore, we have

(3.6) lim inf
x→+∞

(
min
t∈[0,1]

f(t,x)

xγ+(pθ)−1

)
≥ f∞ > Λ4 ≥ (2I (p))

γ+(p) (
p+ − 1

)
and

(3.7) lim inf
x→+∞

(
min
t∈[0,1]

f(t,x)

xp+−1

)
≥ f∞ > Λ4 ≥ λ

(
p+
)
.

We have also that for all (t, x) ∈ [0, 1]× R+ and θ ∈ [0, 1]

φθ (t, x) ≤ φ+ (x) and ψθ (t, x) ≤ ψ+ (x)

where ψθ (t, ·) is the inverse function of φθ (t, ·) .
Therefore, multiplying the differential equation in (3.5a) by u′n and inegrat-

ing between t and tn we get,∫ tn

t

−(φθn(s, u
′
n(s)))

′u′n(s)ds =

∫ tn

t

f(s, un(s))u
′
n(s)ds.

Therefore, we have for each of the cases t < tn and tn < t,∫ tn

t

−(φθn(s, u
′
n(s)))

′u′n(s)ds =

∫ tn

t

−(φθn(s, u
′
n(s)))

′ψθn (s, φθn(s, u
′
n(s)) ds

≤
∫ tn

t

−(φθn(s, u
′
n(s)))

′ψ+ (φθn(s, u
′
n(s)) ds

= Γ+ (φθn(t, |u′n(t)|) ≤ Γ+
(
φ+(|u′n(t)|

)
= W+ (|u′n(t)|) .

That is

W+ (|u′n(t)|) ≥
∫ tn

t

f(s, un(s))u
′
n(s)ds, for all t ∈ [0, 1]

and so,

u′n(t) ≥ Π

(∫ tn

t

f(s, un(s))u
′
n(s)ds

)
, for all t ∈ (0, tn)
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and

−u′n(t) ≥ Π

(∫ tn

t

f(s, un(s))u
′
n(s)ds

)
, for all t ∈ (0, tn) .

The above estimates lead to

(3.8) tn =

∫ un(tn)

un(0)

dun(t)
u′
n(t)

≤
∫ ∥un∥

0

dun(t)

Π(
∫ tn
t

f(s,un(s))u′
n(s)ds)

and

(3.9) 1− tn =

∫ un(tn)

un(1)

dun(t)
−u′

n(t)
≤
∫ ∥un∥

0

dun(t)

Π(
∫ tn
t

f(s,un(s))u′
n(s)ds)

.

Let ξn and ηn be such that 0 < ξn < tn < ηn < 1 and un (ξn) = un (ηn) =M∞.
We have from (3.8) and (3.9),

tn≤
∫ M∞

0

dun(t)

Π(
∫ tn
t

f(s,un(s))u′
n(s)ds)

+

∫ ∥un∥

M∞

dun(t)

Π(
∫ tn
t

f(s,un(s))u′
n(s)ds)

≤
∫ M∞

0

dun(t)

Π(
∫ tn
ξn

f(s,un(s))u′
n(s)ds)

+

∫ ∥un∥

M∞

dun(t)

Π(
∫ tn
t

f(s,un(s))u′
n(s)ds)

≤
∫ M∞

0

dun(t)

Π
(∫ tn

ξn
(f∞−ϵ)u

γ+(p)−1
n (s))u′

n(s)ds
) +

∫ ∥un∥

M∞

dun(t)

Π
(∫ tn

t
(f∞−ϵ)u

γ+(p)−1
n (s))u′

n(s)ds
)

≤ M∞

Π
(

f∞−ϵ

γ+

(
∥un∥γ+(p)−M

γ+(p)
∞

)) +

∫ ∥un∥

M∞

dun(t)

Π
(

f∞−ϵ

γ+

(
∥un∥γ+(p)−u

γ+(p)
n (t)

))
and

1−tn ≤ M∞

Π

(
(f∞−ϵ)

(
∥un∥γ+(p)−1−M

γ+(p)−1
∞

))+

∫ ∥un∥

M∞

dun(t)

Π

(
(f∞−ϵ)

(
∥un∥γ+(p)−1−u

γ+(p)−1
n (t)

)) .
Adding, we get

1 ≤ 2M∞

Π
(

f∞−ϵ

γ+(p)

(
∥un∥γ+(p)−M

γ+(p)
∞

)) + 2

∫ ∥un∥

M∞

dun(t)

Π
(

f∞−ϵ

γ+

(
∥un∥γ+(p)−u

γ+(p)
n (t)

))

≤ 2M∞

Π
(

f∞−ϵ

γ+(p)

(
∥un∥γ+(p)−M

γ+(p)
∞

)) + 2

∫ ∥un∥

0

dun(t)

Π
(

f∞−ϵ

γ+

(
∥un∥γ+(p)−u

γ+(p)
n (t)

))
≤ 2M∞

Π
(

f∞−ϵ

γ+(p)

(
∥un∥γ+(p)−M

γ+(p)
∞

)) + 2∥un∥I(p)
Π
(

f∞−ϵ

γ+(p)
∥un∥γ+(p)

) .
Letting n→ ∞, we get from (3.1) the contradiction

1 ≤ lim 2∥un∥I(p)
Π
(

f∞−ϵ

γ+(p)
∥un∥γ+(p)

) =
(
(2I (p))

γ+(p) γ+(p)
(f∞−ϵ)q+

)1/γ+(p)

=

(
(2I(p))γ

+(p)(p+−1)
(f∞−ϵ)

)1/γ+(p)

< 1.
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Thus, we have proved existence of such a real number R∞ and we have from
the homotopy property of the fixed point index, (3.7) and Lemma 2.9 that for
all R ≥ R∞

i (Tφ,KR,K) = i (Tφθ
,KR,K) = i

(
Tϕp+

,KR,K
)
= 0.

At the end, if r1 and R1 are such that 0 < r1 < r0 < R∞ < R1 then we have

i
(
Tφ,KR1 ∖Kr1 ,K

)
= i (Tφ,KR1 ,K)− i (Tφ,Kr1 ,K) = −1

and Tφ has a fixed point u ∈ KR1∖Kr1 which by iii) of Lemma 2.7, is a positive
solution to bvp (1.1) □

Remark 3.3. Observe that if p− ≥ 2 then p+ (p− − 2) + 1 > 0.
Observe also that Theorem 3.2 does not hold if p− < 3/2 < 2 < p+. Indeed,

in this case we have 1/ (2− p−) < 2.
It is easy to check that in the case where the weight p ≡ p0 ∈ (1,+∞) , we

have γ+ (p) = γ− (p) = p0 and then Λ∞ (p) = λ (p0) .

Example 3.4. Consider bvp (1.1) and f(t, u) = uσ with σ ≥ 0. We conclude
from Theorem 3.1 and Theorem 3.2 that in this case bvp (1.1) admits a positive
solution for all σ ∈ [0, p− − 1) and for all σ ∈ (γ+ (p) ,+∞) if p+ (p− − 2)+1 >
0.

Example 3.5. Consider bvp (1.1) with

p(t) = 3+t
1+t and f(t, u) = Au+Bu2

1+u

where A,B are positive real numbers.
By simple computations we get that p− = 2, p+ = 3, and

f0 = A, f∞ = B, Λ1 = π4, Λ3 = 3
√
2.

We deduce from Theorem 3.1 that bvp (1.1) admits a positive solution if

B < 3
√
2 < π4 < A.

Example 3.6. Consider bvp (1.1) with

p(t) = 2 + 2t and f(t, u) = Au+Bu5

1+u

where A,B are positive real numbers.
By simple computations we get that

p− = 2 p+ = 4 γ− (p) = 4/3 γ+ (p) = 6

and

f0 = A, f∞ = B, Λ2 = λ (4) , Λ4 = max

(
λ (4) , 3

(
2

∫ 1

0

ds
(1−s6)3/4

)6
)
.

We deduce from Theorem 3.2 that bvp (1.1) admits a positive solution if
A < λ (4) < Λ4 < B.
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Concluding remarks. In the end of this work, we want to compare results
obtained in this paper with those in [2]. Since the boundary conditions in bvp
(1.1) considerd in [2] are of diffrent nature than Dirichlet ones, the comparison
will be in form not in details.

As in [2], there is no restriction here on the weight p in the sublinear case.
Contrary to [2], there is a restriction here on the weight p in the superlinear
case. For example, the case where p(t) = t+3/2 (we have p+(p− − 2)+ 1 < 0)
is not covered by Theorem 3.2.

In fact the condition p+(p− − 2) + 1 > 0 in Theorem 3.2, was imposed
by quadrature techniques used in the proof of this result and note that it is
satisfied in the case p ≡ p0 ∈ (1,+∞) . So, Theorems 3.1 and 3.2 cover the case
where the exponent p is constant.

The fact that there was no restriction on the weight p in [2] is mainly due
to the fact that the boundary conditions in [2], set in advance the point x0 = 1
as the point where a possible positive solution reaches its maximum. In fact,
this is what allowed us technically to convert the problem of seeking positive
solution to bvp (1.1) in [2] to the problem of finding those of a first order initial
value problem, on which homotopical argument on the nonlinearity permits us
to compute the fixed point index at ∞ . Clearly, here it is not the case, the
point where a possible positive solution to bvp (1.1) reaches it maximum is
unknown.
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