Title:
A note on lacunary series in \mathcal{Q}_K spaces

Author(s):
J. Zhou
A NOTE ON LACUNARY SERIES IN Q_K SPACES

J. ZHOU

(Communicated by Ali Abkar)

Abstract. In this paper, under the condition that K is concave, we characterize lacunary series in Q_K spaces. We improve a result due to H. Wulan and K. Zhu.

Keywords: Q_K spaces; lacunary series; concave.

MSC(2010): Primary: 30H25; Secondary: 30B10, 30H05.

1. Introduction

Let D be the unit disk in the complex plane \mathbb{C} and denote by ∂D the boundary of D. As usual, $H(D)$ is the class of functions analytic in D. The Green function in the unit disk with singularity at $a \in D$ is given by

$$g(z,a) = \log \frac{1}{|\sigma_a(z)|}, \ z \in D.$$

Here

$$\sigma_a(z) = \frac{a - z}{1 - \overline{a}z},$$

is the Möbius transformation of D.

Throughout this paper, we assume that $K : [0, \infty) \to [0, \infty)$ is an increasing function. A function $f \in H(D)$ belongs to the space Q_K if

$$\left\|f\right\|_{Q_K}^2 = \sup_{a \in D} \int_D |f'(z)|^2 K(g(z,a)) \ dA(z) < \infty,$$

where dA is the element of Euclidean area on D normalized so that $dA(z) = \pi^{-1} dx dy$. Q_K spaces are Möbius invariant in the sense that $\left\|f \circ \sigma_a\right\|_{Q_K} = \left\|f\right\|_{Q_K}$ for every $f \in Q_K$ and $a \in D$. See [3–5] for more results of Q_K spaces. If $K(t) = t^p$, $0 \leq p < \infty$, then the space Q_K reduces to the space Q_p (cf. [7,8]). In particular, Q_0 is the Dirichlet space; $Q_1 = BMOA$, the space of bounded mean oscillation; Q_p is the Bloch space for all $p > 1$.

Received: 27 September 2014, Accepted: 29 November 2014.

©2016 Iranian Mathematical Society
Recall that a function \(f(z) = \sum_{k=1}^{\infty} a_k z^{n_k} \in H(\mathbb{D}) \) is called a lacunary series if
\[
\lambda = \inf_k \frac{n_{k+1}}{n_k} > 1.
\]
Such series are often used to give examples of functions in various analytic function spaces. It is well known that a lacunary series belongs to BMOA if and only if it is in the Hardy space \(H^2 \) (see [2]). By [1], if \(0 < p < 1 \), then the lacunary series \(f \in Q_p \) if and only if \(\sum_{k=1}^{\infty} n_k^{1-p} |a_k|^2 < \infty \).

Theorem A ([6]). Let \(K \) satisfy
\[
\int_1^{\infty} \frac{\varphi_K(s)}{s^2} ds < \infty,
\]
where
\[
\varphi_K(s) = \sup_{0 \leq t \leq 1} K(st)/K(t), \quad 0 < s < \infty.
\]
Then a lacunary series
\[
f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}
\]
belongs to \(Q_K \) if and only if
\[
\sum_{k=1}^{\infty} n_k |a_k|^2 K \left(\frac{1}{n_k} \right) < \infty.
\]

By [3], the space \(Q_K \) only depends on the weight function \(K \) in a neighbourhood of the origin. If \(K_0(t) = t \log \frac{e}{t}, \ 0 < t < 1 \), then \(Q_{K_0} \) is the analytic version of \(Q_1(\partial \mathbb{D}) \) space (see [7] and [9]). An elementary calculation shows that \(\varphi_{K_0}(s) = s \) when \(s \geq 1 \). Thus, \(K_0 \) does not satisfy the condition (1.1). In other words, Theorem A misses the case of the analytic version of \(Q_1(\partial \mathbb{D}) \) space. It was pointed out in [6] that Theorem A also misses the classical case of BMOA. The goal of this article is to characterize lacunary series in \(Q_K \) spaces under a weaker condition of \(K \). Our result covers the cases of BMOA and the analytic version of \(Q_1(\partial \mathbb{D}) \) space.

We write \(A \lesssim B \) if there exists a constant \(C \) such that \(A \leq CB \), in addition, the symbol \(A \approx B \) means that \(A \lesssim B \lesssim A \).

2. Main result

In [6], we can find many nice estimates of the weight function \(K \) under the condition (1.1). In recent years, the study of \(Q_K \) spaces benefits from these estimates. In particular, if \(K \) satisfies (1.1), then there exists an increasing function \(K^* \) on \((0, \infty) \) such that \(K^*(t) \approx K(t) \) for all \(t \in (0, \infty) \). Moreover,
K^* is twice differentiable on $(0, \infty)$ and concave. Namely, $K''(t) \leq 0$ for $t \in (0, \infty)$. Next we state the main result of this paper.

Theorem 2.1. Let K be a concave function. Then a lacunary series

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

belongs to Q_K if and only if

$$\sum_{k=1}^{\infty} n_k |a_k|^2 K \left(\frac{1}{n_k} \right) < \infty. \quad (2.1)$$

Proof. We prove the result by following the proof of Theorem A in [6]. First suppose that $f(z) = \sum_{k=1}^{\infty} a_k z^{n_k} \in Q_K$. Then

$$\int |f'(z)|^2 K \left(\log \frac{1}{|z|} \right) dA(z) < \infty.$$

Bearing in mind that K is increasing, we get

$$\infty > \sum_{k=1}^{\infty} n_k^2 |a_k|^2 \int_0^1 r^{2n_k-1} K \left(\frac{1}{r} \right) dr$$

$$\geq \sum_{k=1}^{\infty} n_k^2 |a_k|^2 \int_0^\infty e^{-2n_k t} K(t) dt$$

$$\geq \sum_{k=1}^{\infty} n_k |a_k|^2 K \left(\frac{1}{n_k} \right).$$

On the other hand, suppose that the condition (2.1) holds. Since K is concave, the estimates in [6, page 226] show that

$$\sup_{a \in D} \int \int |f'(z)|^2 K(g(z,a)) dA(z) \leq 2 \int_0^1 r \left(\sum_{k=1}^{\infty} n_k |a_k| r^{n_k-1} \right)^2 K \left(\log \frac{1}{r} \right) dr.$$

Write $I_n = \{ k : 2^n \leq k < 2^{n+1}, k \in \mathbb{N} \}$. The Hölder inequality gives

$$\left(\sum_{k=1}^{\infty} n_k |a_k|^2 r^{n_k} \right)^2 \leq \left(\sum_{n=0}^{\infty} \sum_{n_k \in I_n} n_k |a_k|^2 r^{n_k} \right)^2$$

$$\leq \sum_{n=0}^{\infty} 2^{n/2} r^{2n} \sum_{n=0}^{\infty} 2^{-n/2} r^{-2n} \left(\sum_{n_k \in I_n} n_k |a_k| \right)^2$$

$$\leq \left(\log \frac{1}{r} \right)^{-1/2} \sum_{n=0}^{\infty} 2^{-n/2} r^{2n} \left(\sum_{n_k \in I_n} n_k |a_k| \right)^2.$$
Thus,
\[
\sup_{a \in \mathcal{D}} \int_D |f'(z)|^2 K(g(z, a)) dA(z) \lesssim \sum_{n=0}^{\infty} 2^{-n/2} \left(\sum_{n_k \in I_n} n_k|a_k| \right)^2 \int_0^1 r^{2^n-1} \left(\log \frac{1}{r} \right)^{-1/2} K \left(\log \frac{1}{r} \right) dr.
\]

Since \(K \) is increasing, we see that
\[
\int_{e^{-2^n}}^1 r^{2^n-1} \left(\log \frac{1}{r} \right)^{-1/2} K \left(\log \frac{1}{r} \right) dr \leq K \left(\frac{1}{2^n} \right) \int_{1/2^n}^{1/2^n} e^{-2^n t} t^{-1/2} dt = 2^{-\frac{3}{4}} K \left(\frac{1}{2^n} \right) \int_0^1 e^{-s} s^{-1/2} ds.
\]
If \(K(0) \neq 0 \), by [3], we can assume that \(K \) is constant. Of course, \(K(t)/t \) is decreasing on \((0, \infty)\). If \(K(0) = 0 \), we claim that \(K(t)/t \) is decreasing on \((0, \infty)\). Choose \(s, t \in (0, \infty) \) such that \(s < t \). By the basic property of a concave function, we have
\[
\frac{K(s)}{s} = \frac{K(s) - K(0)}{s - 0} \geq \frac{K(t) - K(s)}{t - s}.
\]
Thus
\[
\frac{K(s)}{s} - \frac{K(t)}{t} = t \frac{K(s) - sK(t)}{st} = \frac{1}{st} [s(K(s) - K(t)) + (t - s)K(s)] = \frac{t - s}{t} \left[\frac{K(s)}{s} - \frac{K(t) - K(s)}{t - s} \right] \geq 0.
\]
Hence,
\[
\int_{e^{-2^n}}^1 r^{2^n-1} \left(\log \frac{1}{r} \right)^{-1/2} K \left(\log \frac{1}{r} \right) dr \leq 2^n K \left(\frac{1}{2^n} \right) \int_{1/2^n}^{\in\infty} e^{-2^n t} t^{1/2} dt = 2^{-\frac{3}{2}} K \left(\frac{1}{2^n} \right) \int_1^{\infty} e^{-s} s^{1/2} ds.
\]
Therefore,
\[
\sup_{a \in \mathcal{D}} \int_D |f'(z)|^2 K(g(z, a)) dA(z) \lesssim \sum_{n=0}^{\infty} 2^{-n} K \left(\frac{1}{2^n} \right) \left(\sum_{n_k \in I_n} n_k \right)^2.
\]
If \(n_k \in I_n \), then \(n_k \geq 2^n \). Using the monotonicity of \(K(t)/t \), one gets
\[
n_k K \left(\frac{1}{n_k} \right) \geq 2^n K \left(\frac{1}{2^n} \right).
\]
This gives
\[
\sup_{a \in \mathbb{D}} \int_{D} |f'(z)|^2 K(g(z,a)) dA(z)
\leq \sum_{n=0}^{\infty} 2^{-2n} \left(\sum_{n_k \in I_n} n_k |a_k| \sqrt{n_k K \left(\frac{1}{n_k} \right)} \right)^2
\approx \sum_{n=0}^{\infty} \left(\sum_{n_k \in I_n} n_k |a_k| \sqrt{n_k K \left(\frac{1}{n_k} \right)} \right)^2.
\]
Since \(f \) is a lacunary series, then there exists a positive constant \(\lambda \) such that \(\frac{n_{k+1}}{n_k} \geq \lambda > 1 \) for all \(k \). It is well known that the Taylor series of \(f(z) \) has at most \(\lfloor \log_2 2 \rfloor + 1 \) terms \(a_k z^{n_k} \) such that \(n_k \in I_n \) for all \(n \in \mathbb{N} \). By Hölder inequality, we obtain
\[
\sup_{a \in \mathbb{D}} \int_{D} |f'(z)|^2 K(g(z,a)) dA(z)
\leq (\lfloor \log_2 2 \rfloor + 1) \sum_{n=0}^{\infty} \sum_{n_k \in I_n} n_k |a_k| K \left(\frac{1}{n_k} \right)
\approx \sum_{k=1}^{\infty} n_k |a_k| K \left(\frac{1}{n_k} \right) < \infty.
\]
The proof is complete. \(\square \)

Note that \(K(t) = t^p \), \(0 \leq p \leq 1 \) is concave. The following result follows easily from Theorem 2.1.

Corollary 2.2 ([7]). Let \(p \in [0, 1] \). Then a lacunary series
\[
f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}
\]
belongs to \(Q_p \) if and only if
\[
\sum_{k=1}^{\infty} n_k^{1-p} |a_k|^2 < \infty.
\]
Since \(K_0(t) = t \log \frac{t}{t} \) is also concave, we have the following statement.

Corollary 2.3 ([9]). A lacunary series
\[
f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}
\]
belongs to $Q_1(\partial \mathbb{D})$ if and only if
\[
\sum_{k=1}^{\infty} \log(1 + n_k) |a_k|^2 < \infty.
\]

Acknowledgment

The author thanks Dr G. Bao for providing a number of helpful suggestions and corrections. The work is supported by NFS of Anhui Province of China (No. 1608085MA01).

REFERENCES

(Jizhen Zhou) School of Sciences, Anhui University of Science and Technology, Huainan, Anhui 232001, China.

E-mail address: hope1890163.com