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Abstract. The main aim of this article is to study (v, k, λ)-symmetric
designs admitting a flag-transitive and point-primitive automorphism group

G whose socle is PSL(3, q). We indeed show that the only possible design
satisfying these conditions is a Desarguesian projective plane PG(2, q)
and G ⩾ PSL(3, q).
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1. Introduction

A t-(v, k, λ) design D = (V,B) is an incidence structure consisting of a set V
of v points, and a set B of k-element subsets of V, called blocks, such that every
t-element subset of points lies in exactly λ blocks. The design is nontrivial
if t < k < v − t, and is symmetric if |B| = v. Indeed, if D is symmetric
and nontrivial, then t ⩽ 2 (see [5, Theorem 1.1] or [13, Theorem 1.27]). This
motivates the study of nontrivial symmetric 2-(v, k, λ) designs which we simply
call symmetric (v, k, λ) designs. A flag of D is an incident pair (α,B) where
α and B are a point and a block of D, respectively. An automorphism of a
symmetric design D is a permutation of the points permuting the blocks and
preserving the incidence relation. An automorphism group G of D is called
flag-transitive if it is transitive on the set of flags of D. If G is primitive on
the point set V, then G is said to be point-primitive. A group G is said to
be almost simple with socle X if X ⊴G ⩽ Aut(X) where X is a (nonabelian)
simple group. Further notation and definitions in both design theory and group
theory are standard and can be found, for example, in [7, 13,17].
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Symmetric designs with λ small have been of most interest. Kantor [15]
classified flag-transitive symmetric (v, k, 1) designs (projective planes) of order
n and showed that either D is a Desarguesian projective plane and PSL(3, n)⊴
G, or G is a sharply flag-transitive Frobenius group of odd order (n2 + n +
1)(n + 1) , where n is even and n2 + n + 1 is prime. Regueiro [21] gave a
complete classification of biplanes (λ = 2) with flag-transitive automorphism
groups apart from those admitting a 1-dimensional affine group (see also [22–
25]). Zhou and Dong studied nontrivial symmetric (v, k, 3) designs (triplanes)
and proved that if D is a nontrivial symmetric (v, k, 3) design with a flag-
transitive and point-primitive automorphism group G, then D has parameters
(11, 6, 3), (15, 7, 3), (45, 12, 3) or G is a subgroup of AΓL(1, q) where q = pm

with p ⩾ 5 prime [9, 30–33]. Nontrivial symmetric (v, k, 4) designs admitting
flag-transitive and point-primitive almost simple automorphism group whose
socle is an alternating group or PSL(2, q) have also been investigated [8, 34].
It is known [28] that if a nontrivial (v, k, λ)-symmetric design D with λ ⩽ 100
admitting a flag-transitive, point-primitive automorphism group G, then G
must be an affine or almost simple type. Therefore, it is interesting to study
such designs whose socle is of almost simple type or affine type.

In this paper, however, we are interested in large λ. In this direction, it
is recently shown in [1] that there are only four possible symmetric (v, k, λ)
designs admitting a flag-transitive and point-primitive automorphism group G
satisfying X ⊴ G ⩽ Aut(X) where X = PSL(2, q). In the case where X is
a sporadic simple group, there also exist four possible parameters (see [29]).
This paper is devoted to studying symmetric designs admitting a flag-transitive
and point-primitive almost simple automorphism group G whose socle is X :=
PSL(3, q). We prove Theorem 1.1 below in Section 3.1.

Theorem 1.1. Let D be a (v, k, λ)-symmetric design and G be an automor-
phism group of D with the socle X = PSL(3, q). If G is flag-transitive and
point-primitive, then λ = 1 and D is a Desarguesian projective plane PG(2, q)
and PSL(3, q) ⩽ G.

In order to prove Theorem 1.1, we need to know the complete list [3, Table
8.3] of maximal subgroups of almost simple groups with socle PSL(3, q) (see
Lemma 2.4 below). We frequently apply Lemma 2.1 below as a key tool and
use GAP [10] for computations.

In the case where G is imprimitive, Praeger and Zhou [26] studied point-
imprimitive symmetric (v, k, λ) designs, and determined all such possible de-
signs for λ ⩽ 10. This motivates Praeger and Reichard [18] to classify flag-
transitive symmetric (96, 20, 4) designs. As a result of their work, the only
examples for flag-transitive, point-imprimitive symmetric (v, k, 4) designs are
(15, 8, 4) and (96, 20, 4) designs. In a recent study of imprimitive flag-transitive
designs [4], Cameron and Praeger gave a construction of a family of designs
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with a specified point-partition, and determined the subgroup of automor-
phisms leaving invariant the point-partition. They gave necessary and suffi-
cient conditions for a design in the family to possess a flag-transitive group
of automorphisms preserving the specified point-partition. Consequently, they
gave examples of flag-transitive designs in the family, including a new sym-
metric 2-(1408, 336, 80) design with automorphism group 212 : ((3 ·M22) : 2),
and a construction of one of the families of the symplectic designs exhibiting a
flag-transitive, point-imprimitive automorphism group.

2. Preliminaries

In this section, we state some useful facts in both design theory and group
theory. Our notation and terminology are standard and can be found in [6,12,
17] for design theory and in [7] for group theory. The following Lemma 2.1 is
a key result in our approach to prove Theorem 1.1:

Lemma 2.1. Let D be a symmetric (v, k, λ) design, and let G be a flag-
transitive automorphism group of D. If α is a point in V and M := Gα,
then

(a) k(k − 1) = λ(v − 1);
(b) k | |M | and λv < k2;
(c) k | gcd(λ(v − 1), |M |);
(d) k | λd, for all subdegrees d of G.

Proof. (a) This part follows from [17, Proposition 1.1].

(b) The equality k(k − 1) = λ(v − 1) implies that k2 = λv − λ + k. Since G
is flag-transitive, M is transitive on the set of blocks containing α, and so k
divides |M |. Moreover, as λ < k, we have that λv = k2 − k + λ < k2.

(c) This part follows from (a) and (b).

(d) To prove this part, we use the same treatment as in [34, Lemma 2.2].
Suppose that Γ is a nontrivial suborbit of G of size d and let ∆ be an orbital
of the G-action on V × V. Define S = {(α, β,B)|α ̸= β, β ∈ B, (α, β) ∈ ∆}.
Then we can count S in two ways, and so λ|∆| = vkt, where vk is the number
of flags (α,B) and t is the number of triples containing the flag (α,B). Note
that t is independent of the choice of the flag (α,B). Since |∆| = vd, it follows
that λvd = vkt. Thus λd = kt, and hence k | λd. □

Recall that a group G is called almost simple if X ⊴ G ⩽ Aut(X) where
X is a (nonabelian) simple group. If M is a maximal subgroup of an almost
simple group G with socle X, then G = MX, and since we may identify X
with Inn(X), the group of inner automorphisms of X, we also conclude that
|M | divides |Out(X)| · |X ∩ M |. This implies the following elementary and
useful fact:



Flag-transitive Point-primitive symmetric designs 204

Lemma 2.2. Let G be an almost simple group with socle X, and let M be
maximal in G not containing X. Then

(a) G = MX;
(b) |M | divides |Out(X)| · |X ∩M |.

Lemma 2.3. Suppose that D is a symmetric (v, k, λ) design admitting a flag-
transitive and point-primitive almost simple automorphism group G with socle
X of Lie type in odd characteristic p. Suppose also that the point-stabiliser Gα,
not containing X, is not a parabolic subgroup of G. Then gcd(p, v − 1) = 1.

Proof. Note that Gα is maximal in G, then by Tits’ Lemma [27, (1.6)], p divides
|G : Gα| = v, and so gcd(p, v − 1) = 1. □

If a group G acts primitively on a set V and α ∈ V (with |V| ⩾ 2), then
the point-stabiliser Gα is maximal in G [7, Corollary 1.5A]. Therefore, in
our study, we need a list of all maximal subgroups of almost simple group G
with socle X := PSL(3, q). Note that if M is a maximal subgroup of G, then
M0 := M ∩ X is not necessarily maximal in X in which case M is called a
novelty. By [3, Table 8.3], the complete list of maximal subgroups of an almost
simple group G with socle PSL(3, q) are known, and in this case, there arose
only three novelties (see also [2, 11,16,20]).

Lemma 2.4. Let G be a group such that X = PSL(3, q) ◁ G ⩽ Aut(X), and
let M be a maximal subgroup of G not containing X. Then M0 = X ∩M, is
(isomorphic to) one of the following subgroups:

(a) ˆ[q2] : GL(2, q) (the stabiliser of a point of the projective space);
(b) ˆ[q]1+2 : (q − 1)2 (novelty);
(c) ˆGL(2, q) (novelty);
(d) ˆ(q − 1)2 : S3;
(e) ˆ(q2 + q + 1) : 3 (novelty if q = 4),

(f) ˆSL(3, q0) · gcd(3,
q − 1

q0 − 1
), where q = qr0;

(g) PSU(3, q0) for q = q20 ;
(h) 32 : Q8 with q odd;
(i) SO3(q) with q odd;
(j) PSL(2, 7) with q odd;
(k) 32.SL(2, 3) with q odd;
(l) A6 with q odd.

Proof. It follows from [2,11,16,20] and [3, Table 8.3]. □

3. Proof of the main result

In this section, suppose that D is a nontrivial (v, k, λ)-symmetric design and
G is an almost simple automorphism group G with simple socleX := PSL(3, q),
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where q = pf (p prime), that is to say, X ◁ G ⩽ Aut(X). Suppose also that
V = GF(q)3 is the underlying vector space of X over the finite field GF(q).

Let now G be a flag-transitive and point-primitive automorphism group of
D. Then the point-stabiliser M := Gα is maximal in G [7, Corollary 1.5A]. Set
M0 := X∩M . So M0 is (isomorphic to) one of the subgroups in Lemma 2.4(a)-
(l). Moreover, by Lemma 2.2,

v =
|X|
|M0|

=
q3(q2 − 1)(q3 − 1)

gcd(3, q − 1).|M0|
.(3.1)

Note that |Out(X)| = 2f · gcd(3, q − 1). Therefore, by Lemma 2.1(c) and
Lemma 2.2(b),

k | 2f · gcd(3, q − 1) · |M0|.(3.2)

In what follows, considering possible structure for the subgroup M0 as in
Lemma 2.4(a)-(l), we prove that the only case might occur is Lemma 2.4(a).
Indeed, we show that other cases lead to a contradiction.

Remark 3.1. Note that we may exclude the case where X = PSL(3, 2) in
our arguments. This is as PSL(3, 2) ∼= PSL(2, 7) and there exists the unique
symmetric (7, 3, 1) design known as Fano Plane where PSL(2, 7) is its full
automorphism group and S4 is its point-stabiliser. Moreover, PSL(2, 7) is flag-
transitive and point-primitive. The complement of Fano Plane is the unique
symmetric (7, 4, 2) design which is also flag-transitive and point-primitive (see
[23, Section 1.2.1]).

Lemma 3.2. The subgroup M0 cannot be ˆ[q]1+2 : (q − 1)2.

Proof. Let V be the underlying vector space of X = PSL(3, q) over the finite
field GF(q). Then, in this case, M stabilises a pair {U,W} of subspaces of
dimension 1 and 2, respectively, with U ⊆ W .

By (3.1), we have that v = q3+2q2+2q+1. It follows from [19, Lemma 3.9]
and Lemma 2.1(e) that k divides 2λq. Let now m be a positive integer such
that mk = 2λq. Since λ < k, we have that

m < 2q.(3.3)

By Lemma 2.1(a), k(k − 1) = λ(v − 1), and so

2λq

m
(k − 1) = λ(q3 + 2q2 + 2q).

Thus,

2k = m(q2 + 2q + 2) + 2(3.4)

2λ = m2(q + 2) +
2m2 +m

q
(3.5)
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Since λ is integer, (3.5) implies that

q | 2m2 +m.(3.6)

Therefore, q divides either m, or 2m+ 1. We now consider these two cases:

Case 1. Let q divide m. By (3.3), we must have m = q, and so by (3.4) and
(3.5), k and λ must satisfy

2k = q(q2 + 2q + 2) + 2;(3.7)

2λ = q2(q + 2) + 2q + 1.(3.8)

The equation (3.8) implies that q is odd, and by (3.7), q must divide 2k − 2,
and hence q divides k − 1. Consequently, gcd(k, q) = 1, and since k divides
2fq3(q − 1)2 by (3.2), the parameter k must divide 2f(q − 1)2. Thus by (3.7),
q(q2 + 2q + 2) + 2 divides 4f(q − 1)2. Therefore,

q(q2 + 2q + 2) + 2

(q − 1)2
< 4f.

This leads to a contradiction as this inequality does not hold for any q = pf .

Case 2: Let q divide 2m + 1. Then p is odd and is coprime to m. Since q is
odd, (3.3) implies that 2m+ 1 = q or 2m+ 1 = 3q.

If 2m+1 = q, then m = (q−1)/2, and so (3.4) implies that 4k = q3+q2+2.
It follows from (3.2) that k divides 2fq3(q− 1)2, then 4k = q3 + q2 + 2 divides
8fq3(q−1)2. Since q is odd, gcd(q3+q2+2, q) = gcd(2, q) = 1, and so q3+q2+2
must divide 8f(q − 1)2. Therefore, q3 + q2 + 2 < 8f(q − 1)2. This holds only
for q = 9. Thus k = 203 and λ = mk/2q = 406/9 which is impossible.

If 2m + 1 = 3q, then m = (3q − 1)/2, and so 4k = 3q3 + 5q2 + 4q + 2
by (3.4). By (3.2), 4k = 3q3 + 5q2 + 4q + 2 divides 8fq3(q − 1)2. Note that
gcd(q, 3q3 +5q2 +4q+2) = 1. Then 3q3 +5q2 +4q+2 must divide 8f(q− 1)2,
and so 3q3 + 5q2 + 4q + 2 < 8f(q − 1)2. This does not hold for each value of
q = pf , which is a contradiction. □

Lemma 3.3. The subgroup M0 cannot be ˆGL(2, q).

Proof. Suppose that V is the underlying vector space of X = PSL(3, q) over
the finite field GF(q). Then, M is the stabiliser of a pair {U,W} of subspaces
of dimension 1 and 2, respectively, where V = U ⊕W .

By (3.1), we have that v = q2(q2 + q + 1). Let x = {⟨v1⟩, ⟨v2, v3⟩} and
y = {⟨v1, v2⟩, ⟨v3⟩}. Then |Gx : Gxy| = q2(q + 1) is a subdegree of G. Thus
by Lemma 2.1(e), we conclude that k divides λq2(q + 1). On the other hand,
k divides λ(v − 1), where v = q2(q2 + q + 1). As v − 1 and q are coprime,
k must divide λ(q + 1), and hence there exists a positive integer m such that
mk = λ(q + 1). Since k(k − 1) = λ(v − 1), it follows that

λ(q + 1)

m
(k − 1) = λ(q4 + q3 + q2 − 1).
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Thus,

k = m(q3 + q − 1) + 1(3.9)

Note by (3.2) that k | 2fq(q − 1)(q2 − 1). Then, by (3.9), we must have

m(q3 + q − 1) + 1 | 2mfq(q − 1)(q2 − 1).(3.10)

Note also that

2f(q − 1)[m(q3 + q − 1) + 1]−2mfq(q − 1)(q2 − 1)

=4mf(q2 − q)− 2(m− 1)f(q − 1).

Then by (3.10), we must have that m(q3 + q − 1) + 1 divides 4mf(q2 − q) −
2(m− 1)f(q − 1), and so

m(q3 + q − 1) + 1 < 4mf(q2 − q)− 2(m− 1)f(q − 1).

Therefore, m(q3 + q − 1) < 4mf(q2 − q), and hence

q3 + q − 1

q2 − q
< 4f.

This holds only for q = 2f with f ⩽ 3. Recall that mk = λ(q + 1), and since
λ < k, we have that

m < q + 1.(3.11)

If q = 2, then v = q2(q2 + q + 1) = 28 and m = 1, 2, 3 by (3.11), and so (3.9)
implies that k = 8, 17, 26, respectively. This is impossible as for each values
of k and v the fraction λ = k(k − 1)/(v − 1) is not integer. If q = 4 or 8, then
m is at most 5 or 9, respectively. In both cases, by the same argument, we
observe that the fraction k(k− 1)/(v − 1) is not an integer number, which is a
contradiction. □
Lemma 3.4. The subgroup M0 cannot be ˆ(q2 + q + 1) : 3.

Proof. Here, by (3.1), we have v = q3(q2 − 1)(q − 1)/3. Note that |Out(X)| =
2 · gcd(3, q − 1) · f . Then by (3.2), we conclude that k divides 6f(q2 + q + 1).
By [24,33], we may assume that λ ⩾ 4, and so Lemma 2.1(c) yields

4q3(q2 − 1)(q − 1)

3
⩽ λv < k2 ⩽ 36f2(q2 + q + 1)2.

Then q6 − q5 − q4 + q3 < 27f2(q2 + q + 1)2, and so

q6 − q5 − q4 + q3

(q2 + q + 1)2
< 27f2.

This inequality holds when

p = 2, f ⩽ 4;
p = 3, f ⩽ 2;
p = 5 f = 1.

(3.12)
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Recall that k is a divisor of 6f(q2 + q + 1). Then, for each q = pf with p and
f as in (3.12), the possible values of k and v are listed in Table 1 below:

Table 1. Possible value for k and v when q = pf with p and
f as in (3.12).

q 2 3 4 5 8 9 16
v 8 144 960 4000 75264 155520 5222400

k divides 42 78 252 186 1314 1092 6552

This is a contradiction as for each k and v as in Table 1, the fraction k(k −
1)/(v − 1) is not integer. □

Lemma 3.5. The subgroup M0 cannot be ˆ(q − 1)2 : S3.

Proof. The argument here is the same as that of Lemma 3.4. By (3.1), we have
v = q3(q + 1)(q2 + q + 1)/6, and since |Out(X)| = 2f · gcd(3, q − 1), it follows
from (3.2) that k divides 12f(q − 1)2. By [24, 33] and Lemma 2.1(c), we may
assume that λ is at least 4, and so

4q3(q + 1)(q2 + q + 1)

6
⩽ λv < k2 ⩽ 144f2(q − 1)4.

This implies that q3(q + 1)(q2 + q + 1) < 216f2(q − 1)4, and so

q3(q + 1)(q2 + q + 1)

(q − 1)4
< 216f2.

This is true only when

p = 2, f ⩽ 6;
p = 3, f ⩽ 3;
p = 5, f ⩽ 2;
p = 7, 11 f = 1.

(3.13)

Recall that k is a divisor of 12f(q− 1)2. Then for each q = pf with p and f as
in (3.13), the possible values of k and v are listed in Table 2 below:
This leads us to a contradiction as, for each parameter k and v as in Table 2,
the fraction k(k − 1)/(v − 1) is not integer. □

Lemma 3.6. The subgroup M0 cannot be A6, with q odd.

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 − 1)

360 · gcd(3, q − 1)
.(3.14)
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Table 2. Possible value for k and v when q = pf is as in (3.13).

q v k divides
2 28 12
3 234 48
4 1120 216
5 3875 192
7 26068 432
8 56064 1764
9 110565 1536

q v k divides
11 354046 1200
16 3168256 10800
25 44078125 13824
27 69533478 24336
32 190496768 57660
64 11816796160 285768

Note by (3.2) that k divides 2160f . By [24, 33] ,we may only focus on λ ⩾ 4,
and so Lemma 2.1(c) yields

4q3(q2 − 1)(q3 − 1)

1080
⩽ λv < k2 ⩽ 21602f2.

This implies that

q8 − q6 − q5 + q3 < 1259712000f2.(3.15)

Since q = pf is odd, (3.15) implies that q ∈ {3, 5, 7, 9, 11, 13}. Since also the
fraction (3.14) must be integer, the only acceptable value of q is q = 9, and so
v = 117936. It follows from (3.2) that k divides 1440. We then easily observe
that, for each divisor k of 1440, the fraction k(k − 1)/(v − 1) is not integer,
which is a contradiction. □

Our arguments to prove Lemmas 3.7–3.9 below are the same as those of
Lemma 3.6.

Lemma 3.7. The subgroup M0 cannot be 32 : Q8 with q odd.

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 − 1)

72 · gcd(3, q − 1)
.(3.16)

Note that |Out(X)| = 2f · gcd(3, q − 1). Then by (3.2), we conclude that k
divides 432f . By [24, 33], we may assume that λ ⩾ 4, and so Lemma 2.1(c)
implies that

4q3(q2 − 1)(q3 − 1)

216
⩽ λv < k2 ⩽ 4322f2.

Therefore

q8 − q6 − q5 + q3 < 10077696f2.(3.17)

As q = pf is odd, it follows from (3.17) that q ∈ {3, 5, 7}. Since the fraction in
(3.16) must be integer, the only possible value for q is 3 or 7. Recall that k is
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a divisor of 144f · gcd(3, q − 1), and so, for each q ∈ {3, 7}, the possible values
of k and v are listed in Table 3 below:

Table 3. Possible values for k and v when q = 3 and 7.

q 3 7
v 78 26068
k divides 144 432

For each parameter k and v as in Table 3, by straightforward calculation, we
observe that the fraction k(k−1)/(v−1) is not integer, which is a contradiction.

□

Lemma 3.8. The subgroup M0 cannot be 32 · SL(2, 3) with q odd.

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 − 1)

216 · gcd(3, q − 1)
.(3.18)

Since by (3.2), k divides 1296f , and since λ ⩾ 4 by [24, 33], it follows from
Lemma 2.1(c) that

4q3(q2 − 1)(q3 − 1)

648
⩽ λv < k2 ⩽ 12962f2.

This implies that

q3(q2 − 1)(q3 − 1) < 272097792f2.(3.19)

Since q = pf is odd, it follows from (3.19) that q ∈ {3, 5, 7, 9, 11}. Note that
the fraction in (3.18) must be integer. Then q = 3 or 9. Since k is a divisor of
432f · gcd(3, q − 1), for each value of q ∈ {3, 9}, the possible values of k and v
are given in Table 4 below. Again for each parameter k and v as in Table 4,

Table 4. Possible values for k and v when q = 3 and 9.

q 3 9
v 26 196560
k divides 432 864

the fraction k(k − 1)/(v − 1) is not integer, which is a contradiction. □

Lemma 3.9. The subgroup M0 cannot be PSL(2, 7) with q odd.

Proof. By (3.1), we have that

v =
q3(q2 − 1)(q3 − 1)

168 · gcd(3, q − 1)
.(3.20)
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Note by (3.2) that k divides 1008f . Moreover, we may assume that λ ⩾ 4
by [24,33]. Then by Lemma 2.1(c),

4q3(q2 − 1)(q3 − 1)

504
⩽ λv < k2 ⩽ 10082f2.

Then

q3(q2 − 1)(q3 − 1) < 128024064f2.(3.21)

Since q = pf is odd and the fraction in (3.20) must be integer, the inequality
(3.21) implies that q ∈ {7, 9}. Again using the fact that k is a divisor of
336f · gcd(3, q − 1), possible values of k and v are obtained in Table 5 below:

Table 5. Possible valued for k and v when q = 7 and 9.

q 7 9
v 33516 252720
k divides 1008 672

None of the values of k and v is acceptable as for each of those, the fraction
k(k − 1)/(v − 1) is not integer in each case, which is a contradiction. □

Lemma 3.10. The subgroup M0 cannot be SO3(q) with q odd.

Proof. By (3.1), we have that v = q2(q3−1)/d with d = gcd(3, q−1). It follows
from (3.2) that k divides 2dfq(q2 − 1), and so k is a divisor of 6fq(q2 − 1).
Moreover, Lemma 2.1(a) implies that k divides λ(v − 1). Note by Lemma 2.3
that v − 1 is coprime to q. Thus k divides 6λf gcd(q2 − 1, v − 1). Since every
divisor of q2 − 1 which also divides (q5 − q2 − d)/d is a divisor of 15, we
conclude that k divides 90λf . Then there exists a positive integer m such that
mk = 90λf . Since k(k − 1) = λ(v − 1), it follows that

90λf

m
(k − 1) =

λ(q5 − q2 − d)

d
,

where d = gcd(3, q − 1). Thus

k =
m(q5 − q2 − d)

90 · d · f
+ 1.(3.22)

Since d = 1, 3, we have by (3.2) that k | 6fq(q2 − 1). Then (3.22) yields

m(q5 − q2 − d) ⩽ 540df2q(q2 − 1).

Since also m ⩾ 1 and d ⩽ 3, we have that

q5 − q2 − 3

q(q2 − 1)
⩽ 1620f2.
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This inequality only holds for

q ∈ {3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 27, 29, 31, 37}.(3.23)

For these values of q, since k divides 2dfq(q2 − 1), the possible values of k can
be found as in Table 6.

Table 6. Possible values for k and v when q is as in (3.23).

q v k divides
3 234 48
5 3100 240
7 5586 2016
9 58968 2880
11 160930 2640
13 123708 13104
17 1419568 9792

q v k divides
19 825246 41040
23 6435814 24288
25 3255000 187200
27 14348178 117936
29 20510308 48720
31 9542730 178560
37 23114196 303696

This leads us to a contradiction as for each value of v and k as in Table 6, the
fraction k(k − 1)/(v − 1) is not integer. □

Lemma 3.11. The subgroup M0 cannot be PSU(3, q0), where q = q20.

Proof. By (3.1), we have that

v = q30(q
2
0 + 1)(q30 − 1) · b,(3.24)

where b = gcd(3, q0 + 1)/ gcd(3, q20 − 1). We now consider the following two

cases:

Case 1: Let b = 1. Then v = q30(q
2
0 + 1)(q30 − 1) and (3.2) implies that

k divides 2fq30(q
2
0 − 1)(q30 + 1). It also follows from Lemma 2.1(a) that k

divides λ(v − 1). By Lemma 2.3, v − 1 is coprime to q0. Thus k divides
2λf gcd(v − 1, (q20 − 1)(q30 + 1)). Note that

v − 1 = (q20 − 1)(q30 + 1) · (q30 + 2q0 − 2) + h(q0),

where h(q0) = 2q40 − 4q30 + 2q20 + 2q0 − 3. Note also that h(q0) is odd and

2(q20 − 1)(q30 + 1) = h(q0) · (q0 + 2) + r(q0),

where r(q0) = 4q30 − 4q20 − q0 + 4. Therefore,

gcd(v − 1, (q20 − 1)(q30 + 1)) = gcd(h(q0), r(q0)).

Set R := R(f, q0) = 2f ·r(q0). Then k divides λR, and so there exists a positive
integer m such that mk = λR. Since k(k − 1) = λ(v − 1), it follows that

λR

m
(k − 1) = λ(v − 1),
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where v = q30(q
2
0 + 1)(q30 − 1), and so

k =
m(v − 1)

R
+ 1.(3.25)

Since k | 2fq30(q20 − 1)(q30 + 1), it follows from (3.25) that

m(v − 1) +R | 2mfq30(q
2
0 − 1)(q30 + 1) ·R.(3.26)

Let now

T := T (q0) = 4q30 − 4q20 − 9q0 + 20;

G := G(q0) = 2q70 − 34q60 + 24q50 − 8q40 + 20q30 − 4q20 − 9q0 + 20.

Then

4mf2G− 4f2T ·R =2mfq30(q
2
0 − 1)(q30 + 1) ·R

− 4f2T · [m(v − 1) +R].

Therefore (3.26) implies that

m(v − 1) +R ⩽ 4f2|mG− T ·R|
⩽ 4f2(mG+ T ·R).

So m[(v − 1)− 4f2G] < 4f2T ·R, and since m ⩾ 1, it follows that

q30(q
2
0 + 1)(q30 − 1) ⩽ 4f2(G+ T ·R) + 1.(3.27)

Since also G + T · R < 2fq70 for all q0 ⩾ 2, the inequality (3.27) implies that
pf/2 = q0 < 8f3, and this holds when p ⩽ 61 and f ⩽ 36. Since q0 = pf/2, for
these values of q0, considering the fact that b = gcd(3, q0+1)/ gcd(3, q20−1) = 1,
it follows from (3.27) that

q0 ∈ {2, 3, 5, 8, 9, 11, 17, 23, 27, 29, 32, 41, 81, 125, 128, 243, 512, 729, 2048}.
(3.28)

Recall that k is a divisor of 2fq30(q
2
0 − 1)(q30 + 1), and so for each value of q0

as in (3.28), the possible values of k and v are listed in Table 7 below. This
leads us a contradiction as for each value of v and k as in Table 7, the fraction
k(k − 1)/(v − 1) is not integer.

Case 2: Let b = 1/3. Then gcd(3, q0 − 1) = 3. By (3.24), we have that
v = q30(q

2
0 + 1)(q30 − 1)/3 and (3.2) implies that k divides 6fq30(q

2
0 − 1)(q30 + 1).

Moreover, Lemma 2.1(a) implies that k divides 3λ(v − 1). By Lemma 2.3 and
the fact that gcd(3, q0) = 1, we conclude that 3(v − 1) and q0 are coprime.
Since also

gcd(3(v − 1), q0 + 1) = 1,

it follows that k divides 6λf gcd(3(v − 1), (q0 − 1)(q20 − q0 + 1)). Set

R := R(f, q0) = 6f(q0 − 1)(q20 − q0 + 1).
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Table 7. Possible values for k and v.

q0 v k divides
2 280 864
3 7020 24192
5 403000 1512000
8 17006080 198567936
9 43518384 340588800
11 215968060 850988160
17 6998470240 27812139264
23 78452572660 312677494272
27 282802588380 3384677342592
29 500820700744 1998688305600
32 1100551782400 21969428152320
41 7989559408240 31921163648640
81 1853299131072480 29643859929093120
125 59608428953125000 715210327125000000
128 72061957722603520 2017490449773625344
243 12157870502886065100 243149208303981893760
512 4722384462083648389120 170004546131593449701376
729 79766592965616287347344 1914391036515070980921600
2048 309485083572292557954088960 13617337187097492741886574592

Then there exists a positive integer m such that mk = λR. Since k(k − 1) =
λ(v − 1), it follows that

λR

m
(k − 1) = λ(v − 1).

where v = q30(q
2
0 + 1)(q30 − 1)/3. Thus

k =
m(v − 1)

R
+ 1.(3.29)

Note by (3.2) that k | 6fq30(q20 − 1)(q30 +1). Then by (3.35), we must have that

m(v − 1) +R | 6mf · q30(q20 − 1)(q30 + 1) ·R.(3.30)

Let

T := T (q0) = 3q30 − 6q20 + 15;

G := G(q0) = 6q70 + 2q60 − 4q50 + 2q40 − 9q30 + 6q20 − 15.

Then

36mf2 ·G+ 36f2 · T ·R =36f2 · T · (m(v − 1) +R)

− 6mfq30(q
2
0 − 1)(q30 + 1) ·R,(3.31)
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and so it follows from (3.30) that m(v−1)+R divides 36mf2 ·G+36f2 ·T ·R.
Thus

m(v − 1) +R ⩽ 36mf2 ·G+ 36f2 · T ·R.

So m(v − 1− 36f2 ·G) ⩽ 36f2 · T ·R, and since m ⩾ 1, we conclude that

q30(q
2
0 + 1)(q30 − 1) < 108f2(G+ T ·R) + 3.(3.32)

Note that G + T · R + 3 < 8fq70 , for all q0 ⩾ 2. Then (3.32) implies that
pf/2 = q0 < 108 · 8f3, and this holds when p ⩽ 6911 and f ⩽ 54. Note
also that gcd(3, q0 − 1) = 3 and k is a divisor of 6fq30(q

2
0 − 1)(q30 + 1). As in

Case 1, considering these two facts, we obtain possible values of v and k, and
hence for such v and k, the fraction k(k − 1)/(v − 1) is not integer, which is a
contradiction. □

Lemma 3.12. The subgroup M0 cannot be ˆSL(3, q0) · c, where q = qr0 and

c := gcd

(
3,

q − 1

q0 − 1

)
.

Proof. In this case, |M0| = c · q30(q20 − 1)(q30 − 1)/ gcd(3, q − 1). It follows
from (3.1) that

v =
1

c
· q

3r
0 (q2r0 − 1)(q3r0 − 1)

q30(q
2
0 − 1)(q30 − 1)

.(3.33)

Note by (3.2) that k divides 6fq30(q
2
0 − 1)(q30 − 1). By [24,33], we may assume

that λ ⩾ 4. Moreover, c ⩽ 3 and f2 ⩽ qr0 as q = qr0. Since λv < k2 by
Lemma 2.1(c), we must have

4q3r0 (q2r0 − 1)(q3r0 − 1)

3q30(q
2
0 − 1)(q30 − 1)

⩽ λv < k2 ⩽ 36f2 · q60(q20 − 1)2(q30 − 1)2

⩽ 36 · q6+r
0 (q20 − 1)2(q30 − 1)2

and hence

λ · q3r0 (q2r0 − 1)(q3r0 − 1) < 27 · q9+r
0 (q20 − 1)3(q30 − 1)3.

Note that q8r−1
0 ⩽ q3r0 (q2r0 − 1)(q3r0 − 1) and q9+r

0 (q20 − 1)3(q30 − 1)3 ⩽ q24+r
0 .

Then q8r−1
0 < 27 · q24+r

0 , and so q7r−25
0 < 27. As q0 ⩾ 2, this implies that r = 2

or 3.

Case 1. Suppose first r = 2. By (3.33), we have that

v =
q30(q

2
0 + 1)(q30 + 1)

c
,(3.34)

where c = gcd(3, q0 + 1). We now consider the following two cases:

Subcase 1. If c = 1, then v = q30(q
2
0 + 1)(q30 + 1). It follows from (3.2) that k

divides 2fq30(q
2
0 − 1)(q30 − 1). Moreover, by Lemma 2.1(a), k divides λ(v − 1),

and since v − 1 is coprime to q0 by Lemma 2.3, k must divide 2λf gcd((q20 −
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1)(q30 − 1), v − 1). Since also gcd(v − 1, q0 + 1) = 1, k must divide 2λf gcd(v −
1, (q0 − 1)(q30 − 1)). Note that

v − 1 = (q0 − 1)(q30 − 1) · (q40 + q30 + 2q20 + 4q0 + 4) + r(q0),

where r(q0) = 6q30 + 2q20 − 5. Therefore,

gcd(v − 1, (q20 − 1)(q30 − 1)) = gcd(r(q0), (q
2
0 − 1)(q30 + 1)).

Set R := R(f, q0) = 2f ·r(q0). Then k divides λR, and so there exists a positive
integer m such that mk = λR. Since k(k − 1) = λ(v − 1), it follows that

λR

m
(k − 1) = λ(v − 1),

where v = q30(q
2
0 + 1)(q30 + 1). Thus

k =
m(v − 1)

R
+ 1.(3.35)

Since k | 2fq30(q20 − 1)(q30 − 1), it follows from (3.35) that

m(v − 1) +R | 2mfq30(q
2
0 − 1)(q30 − 1) ·R.(3.36)

Set

T := T (q0) := 24q30 + 8q20 − 48q0 − 84;

G := G(q0) := 32q70 + 152q60 + 104q50 + 48q40 + 88q30 + 8q20 − 48q0 − 84.

Then

2mfq30(q
2
0 − 1)(q30 + 1) ·R = f2T · [m(v − 1) +R]− f2T ·R+mf2G.

This together with (3.36) implies that

m(v − 1) +R ⩽ f2|mG− T ·R|
⩽ f2(mG+ T ·R).(3.37)

Then m[(v − 1)− f2G] < f2T ·R, and since m ⩾ 1, it follows that

q30(q
2
0 + 1)(q30 + 1) ⩽ f2(G+ T ·R) + 1.(3.38)

Since also G+ T ·R < 190fq70 for all q0 ⩾ 2, the inequality (3.27) implies that
q0 < 190f3. This holds when p ⩽ 1511 and f ⩽ 48 (recall that q0 = pf/2).

By the same manner as in the proof of Lemma 3.11, for such possible values
of q0, considering the fact that c = gcd(3, q0 + 1) = 1, the inequality (3.37)
implies that

q0 ∈ {3, 4, 7, 9, 13, 16, 19, 25, 27, 31, 37, 43, 49, 61, 64, 67, 73, 79, 81, 97,
103, 109, 121, 127, 139, 169, 243, 256, 289, 343, 361, 529, 625, 729,

1024, 2187, 4096, 6561, 16384}.

For each q0 = pf/2 as above, k is a divisor of 2fq30(q
2
0 − 1)(q30 − 1), but in each

case, the fraction k(k − 1)/(v − 1) is not integer, which is a contradiction.
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Subcase 2: If c = 3, then v = q30(q
2
0 + 1)(q30 + 1)/3. By (3.2), k divides

6fq30(q
2
0 − 1)(q30 − 1). On the other hand, Lemma 2.1(a) implies that k divides

3λ(v−1), and so k divides 6λf gcd(q30(q
2
0−1)(q30−1), 3(v−1)). By Lemma 2.3,

v − 1 and q0 are coprime. Moreover, as c = 3, q0 is not a power of 3. Then
3(v − 1) and q0 are coprime. Since also q0 − 1 and 3(v − 1) are coprime, k
must divide gcd((q0+1)(q20 + q0+1), 3(v−1)). Therefore, k divides λR, where
R := R(f, q0) = 6f(q0+1)(q20 +q0+1). Then there is a positive integer m such
that mk = λR. Since k(k − 1) = λ(v − 1), it follows that

λR

m
(k − 1) = λ(v − 1),

where v = q30(q
2
0 + 1)(q30 + 1)/3. Thus

k =
m(v − 1)

R
+ 1.(3.39)

Note by (3.2) that k | 6fq30(q20 − 1)(q30 − 1). Then by (3.39), we must have

m(v − 1) +R | 6mfq30(q
2
0 − 1)(q30 − 1) ·R.(3.40)

Set

T := T (q0) := 108q30 + 216q20 − 540;

G := G(q0) := 216q70 − 72q60 − 144q50 − 72q40 − 324q30 − 216q20 + 540.

Then

6mfq30(q
2
0 − 1)(q30 − 1) ·R = f2T · [m(v − 1) +R]− f2T ·R− f2mG.

This together with (3.40) implies that

m(v − 1) +R ⩽ f2(mG+ T ·R).

So m(v − 1− f2G) < f2T ·R. Since now m ⩾ 1, we conclude that

q30(q
2
0 + 1)(q30 + 1)− 3 ⩽ 3f2(G+ T ·R).(3.41)

Since also G+T ·R < 1282fq70 for all q0 ⩾ 2, the inequality (3.27) implies that
q0 < 1282f3. This holds when p ⩽ 10253 and f ⩽ 54 (recall that q0 = pf/2).

By the same manner as in the proof of Lemma 3.11, for such possible values
of q0, considering the fact that c = gcd(3, q0 + 1) = 3, the inequality (3.37)
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holds for q0 as one of the following:

2, 5, 8, 11, 17, 23, 29, 32, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 125, 128, 131,

137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311,

317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509,

512, 521, 557, 563, 569, 587, 593, 599, 617, 641, 647, 653, 659, 677, 683, 701, 719,

743, 761, 773, 797, 809, 821, 827, 839, 857, 863, 881, 887, 911, 929, 941, 947, 953,

971, 977, 983, 1013, 1019, 1031, 1049, 1061, 1091, 1097, 1103, 1109, 1151, 1163,

1181, 1187, 1193, 1217, 1223, 1229, 1259, 1277, 1283, 1289, 1301, 1307, 1319,

1331, 1361, 1367, 1373, 1409, 1427, 1433, 1439, 1451, 1481, 1487, 1493, 1499,

1511, 1523, 1553, 1559, 1571, 1583, 1601, 1607, 1613, 1619, 1637, 1667, 1697,

1709, 1721, 1733, 1787, 1811, 1823, 1847, 1871, 1877, 1889, 1901, 1907, 1913,

1931, 1949, 1973, 1979, 1997, 2003, 2027, 2039, 2048, 2063, 2069, 2081, 2087,

2099, 2111, 2129, 2141, 2153, 2207, 2213, 2237, 2243, 2267, 2273, 2297, 2309,

2333, 2339, 2351, 2357, 2381, 2393, 2399, 2411, 2417, 2423, 2441, 2447, 2459,

2477, 2531, 2543, 2549, 2579, 2591, 3125, 4913, 8192, 12167, 32768, 78125,

131072, 524288.

For each q0 = qf/2 as above, k is a divisor of 6fq30(q
2
0 − 1)(q30 − 1) and we can

obtain v = q30(q
2
0 +1)(q30 +1)/3. But in each case, the fraction k(k− 1)/(v− 1)

is not integer, which is a contradiction.

Case 2. Suppose now r = 3. By (3.33), we have that

v = (
1

c
) · q

6
0(q

3
0 + 1)(q90 − 1)

q20 − 1
(3.42)

where c = gcd(3, q20 + q0 + 1). By (3.2), k divides 6fq30(q
2
0 − 1)(q30 − 1). Then

by Lemma 2.1(c), we have that

λ · q
6
0(q

3
0 + 1)(q90 − 1)

c · (q20 − 1)
< k2 ⩽ 36f2q60(q

2
0 − 1)2(q30 − 1)2.

Therefore

λ < 36cf2 · (q
2
0 − 1)3(q30 − 1)2

(q30 + 1)(q90 − 1)
⩽ 108f2.(3.43)

It follows from (3.2) that k divides 6fq30(q
2
0−1)(q30−1). Moreover, Lemma 2.1(a)

implies that k divides λ(v− 1), and since v− 1 is coprime to q0 by Lemma 2.3,
k must divide 6λf(q20 − 1)(q30 − 1). Using this fact and Lemma 2.1(c), we have
that

λ · q
6
0(q

3
0 + 1)(q90 − 1)

c · (q20 − 1)
< k2 ⩽ 36λ2f2(q20 − 1)2(q30 − 1)2,
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and so

q60(q
3
0 + 1)(q90 − 1)

(q20 − 1)3(q30 − 1)2
< 36λf2c.(3.44)

Since c ⩽ 3 and λ ⩽ 108f2 by (3.43), it follows that

q60 < 11664f4.

Since also q0 is at least 2, 23f < 11664 · f4, and this implies that f ⩽ 8. Then
p3f = q60 < 1166f4, and so p ⩽ 7. Considering (3.44), the only possibilities for
q0 is 2, 3, 4 5, 8 or 9. Since now k divides 6fq30(q

2
0 − 1)(q30 − 1), for each such

value of q0, the possible values of k and v are listed in Table 8 below:

Table 8. Possible values for k and v when q0 ∈ {2, 3, 4, 5, 7, 8, 9}.

q0 v k divides
2 32704 2016
3 50218623 67392
4 4652863488 1451520
5 53405734375 4464000
8 95500437815296 593381376
9 1878756575514273 1018967040

For each such parameter k and v as in Table 8, by straightforward calcula-
tion, we observe that the fraction k(k − 1)/(v − 1) is not integer, which is a
contradiction. □

3.1. Proof of Theorem 1.1. Suppose thatD is a nontrivial (v, k, λ)-symmetric
design and G is an almost simple automorphism group G with simple socle
X = PSL(3, q). Suppose also that V = GF(q)3 is the underlying vector space
of X over the finite field GF(q). If G is a flag-transitive and point-primitive
automorphism group of D, then the point-stabiliser M := Gα is maximal in G,
and so M0 := X∩M is isomorphic to one of the subgroups in Lemma 2.4(a)-(l).
It follows from Lemmas 3.2–3.12 that M0 = ˆ[q2] : GL(2, q). In this case, M0

is transitive on the set of projective points of V (the set of one dimensional
subspaces of V ), and so G is 2-transitive. It follows from [14, 15] that D is a
Desarguesian plane and G ⩾ PSL(3, q). □
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