ISSN: 1017-060X (Print)

ISSN: 1735-8515 (Online)

Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 1, pp. 223-232

Title:

Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

Author(s):

R. Rahmati-Asghar

Published by Iranian Mathematical Society http://bims.ims.ir

Bull. Iranian Math. Soc. Vol. 42 (2016), No. 1, pp. 223–232 Online ISSN: 1735-8515

COHEN-MACAULAY-NESS IN CODIMENSION FOR SIMPLICIAL COMPLEXES AND EXPANSION FUNCTOR

R. RAHMATI-ASGHAR

(Communicated by Siamak Yassemi)

ABSTRACT. In this paper we show that expansion of a Buchsbaum simplicial complex is CM_t , for an optimal integer $t \ge 1$. Also, by imposing extra assumptions on a CM_t simplicial complex, we prove that it can be obtained from a Buchsbaum complex.

Keywords: CM_t simplicial complex, expansion functor, simple graph MSC(2010): Primary: 13H10; Secondary: 05C75.

1. Introduction

Set $[n] := \{x_1, \ldots, x_n\}$. Let K be a field and $S = K[x_1, \ldots, x_n]$, a polynomial ring over K. Let Δ be a simplicial complex over [n]. For an integer $t \geq 0$, Haghighi, Yassemi and Zaare-Nahandi introduced the concept of CM_t -ness which is the pure version of simplicial complexes Cohen-Macaulay in codimension t studied in [7]. A reason for the importance of CM_t simplicial complexes is that they generalize two notions for simplicial complexes: being Cohen-Macaulay and Buchsbaum. In particular, by the results from [9,11], CM_0 is the same as Cohen-Macaulayness and CM_1 is identical with Buchsbaum property.

In [3], the authors described some combinatorial properties of CM_t simplicial complexes and gave some characterizations of them and generalized some results of [6, 8]. Then, in [4], they generalized a characterization of Cohen-Macaulay bipartite graphs from [5] and [2] on unmixed Buchsbaum graphs.

Bayati and Herzog defined the expansion functor in the category of finitely generated multigraded S-modules and studied some homological behaviors of this functor (see [1]). The expansion functor helps us to present other multigraded S-modules from a given finitely generated multigraded S-module which may have some of algebraic properties of the primary module. This allows to introduce new structures of a given multigraded S-module with the same

C2016 Iranian Mathematical Society

Article electronically published on February 22, 2016.

Received: 30 September 2014, Accepted: 7 December 2014.

²²³

properties and especially to extend some homological or algebraic results for larger classes (see for example [1, Theorem 4.2]. There are some combinatorial versions of expansion functor which we will recall in this paper.

The purpose of this paper is the study of behaviors of expansion functor on CM_t complexes. We first recall some notations and definitions of CM_t simplicial complexes in Section 1. In the next section we describe the expansion functor in three contexts, the expansion of a simplicial complex, the expansion of a simple graph and the expansion of a monomial ideal. We show that there is a close relationship between these three contexts. In Section 3 we prove that the expansion of a CM_t complex Δ with respect to α is $\operatorname{CM}_{t+e-k+1}$ but it is not $\operatorname{CM}_{t+e-k}$ where $e = \dim(\Delta^{\alpha}) + 1$ and k is the minimum of the components of α (see Theorem 4.3). In Section 4, we introduce a new functor, called contraction, which acts in contrast to expansion functor. As a main result of this section we show that if the contraction of a CM_t complex is pure and all components of the vector obtained from contraction are greater than or equal to t then it is Buchsbaum (see Theorem 5.6). The section is finished with a view towards the contraction of simple graphs.

2. Preliminaries

Let t be a non-negative integer. We recall from [3] that a simplicial complex Δ is called CM_t or *Cohen-Macaulay in codimension* t if it is pure and for every face $F \in \Delta$ with $\#(F) \geq t$, $link_{\Delta}(F)$ is Cohen-Macaulay. Every CM_t complex is also CM_r for all $r \geq t$. For t < 0, CM_t means CM_0 . The properties CM_0 and CM_1 are the same as Cohen-Macaulay-ness and Buchsbaum-ness, respectively.

The link of a face F in a simplicial complex Δ is denoted by $link_{\Delta}(F)$ and is

$$link_{\Delta}(F) = \{ G \in \Delta : G \cap F = \emptyset, G \cup F \in \Delta \}.$$

The following lemma is useful for checking the CM_t property of simplicial complexes:

Lemma 2.1. ([3, Lemma 2.3]) Let $t \ge 1$ and let Δ be a nonempty complex. Then Δ is CM_t if and only if Δ is pure and $link_{\Delta}(v)$ is CM_{t-1} for every vertex $v \in \Delta$.

Let $\mathcal{G} = (V(\mathcal{G}), E(\mathcal{G}))$ be a simple graph with vertex set V and edge set E. The *independence complex* of \mathcal{G} is the complex $\Delta_{\mathcal{G}}$ with vertex set V and with faces consisting of independent sets of vertices of \mathcal{G} . Thus F is a face of $\Delta_{\mathcal{G}}$ if and only if there is no edge of \mathcal{G} joining any two vertices of F.

The *edge ideal* of a simple graph \mathcal{G} , denoted by $I(\mathcal{G})$, is an ideal of S generated by all squarefree monomials $x_i x_j$ with $x_i x_j \in E(\mathcal{G})$.

A simple graph \mathcal{G} is called CM_t if $\Delta_{\mathcal{G}}$ is CM_t and it is called *unmixed* if $\Delta_{\mathcal{G}}$ is pure.

For a monomial ideal $I \subset S$, We denote by G(I) the unique minimal set of monomial generators of I.

3. The expansion functor in combinatorial and algebraic concepts

In this section we define the expansion of a simplicial complex and recall the expansion of a simple graph from [10] and the expansion of a monomial ideal from [1]. We show that these concepts are intimately related to each other.

(1) Let $\alpha = (k_1, \ldots, k_n) \in \mathbb{N}^n$. For $F = \{x_{i_1}, \ldots, x_{i_r}\} \subseteq \{x_1, \ldots, x_n\}$ define

$$F^{\alpha} = \{x_{i_11}, \dots, x_{i_1k_{i_1}}, \dots, x_{i_r1}, \dots, x_{i_rk_{i_r}}\}$$

as a subset of $[n]^{\alpha} := \{x_{11}, \ldots, x_{1k_1}, \ldots, x_{n1}, \ldots, x_{nk_n}\}$. F^{α} is called the expansion of F with respect to α .

For a simplicial complex $\Delta = \langle F_1, \ldots, F_r \rangle$ on [n], we define the expansion of Δ with respect to α as the simplicial complex

$$\Delta^{\alpha} = \langle F_1^{\alpha}, \dots, F_r^{\alpha} \rangle.$$

(2) The duplication of a vertex x_i of a simple graph \mathcal{G} was first introduced by Schrijver [10] and it means extending its vertex set $V(\mathcal{G})$ by a new vertex x'_i and replacing $E(\mathcal{G})$ by

$$E(\mathcal{G}) \cup \{(e \setminus \{x_i\}) \cup \{x'_i\} : x_i \in e \in E(\mathcal{G})\}.$$

For the *n*-tuple $\alpha = (k_1, \ldots, k_n) \in \mathbb{N}^n$, with positive integer entries, the *expansion* of the simple graph \mathcal{G} is denoted by \mathcal{G}^{α} and it is obtained from \mathcal{G} by successively duplicating $k_i - 1$ times every vertex x_i .

(3) In [1] Bayati and Herzog defined the expansion functor in the category of finitely generated multigraded S-modules and studied some homological behaviors of this functor. We recall the expansion functor defined by them only in the category of monomial ideals and refer the reader to [1] for more general case in the category of finitely generated multigraded S-modules.

Let S^{α} be a polynomial ring over K in the variables

$$x_{11},\ldots,x_{1k_1},\ldots,x_{n1},\ldots,x_{nk_n}.$$

Whenever $I \subset S$ is a monomial ideal minimally generated by u_1, \ldots, u_r , the expansion of I with respect to α is defined by

$$I^{\alpha} = \sum_{i=1}^{r} P_1^{\nu_1(u_i)} \dots P_n^{\nu_n(u_i)} \subset S^{\alpha}$$

where $P_j = (x_{j1}, \ldots, x_{jk_j})$ is a prime ideal of S^{α} and $\nu_j(u_i)$ is the exponent of x_j in u_i .

It was shown in [1] that the expansion functor is exact and so $(S/I)^{\alpha} = S^{\alpha}/I^{\alpha}$. In the following lemmas we describe the relations between the above three concepts of expansion functor.

Lemma 3.1. For a simplicial complex Δ we have $I^{\alpha}_{\Delta} = I_{\Delta^{\alpha}}$. In particular, $K[\Delta]^{\alpha} = K[\Delta^{\alpha}]$.

Proof. Let $\Delta = \langle F_1, \ldots, F_r \rangle$. Since $I_{\Delta} = \bigcap_{i=1}^r P_{F_i^c}$, it follows from Lemma 1.1 in [1] that $I_{\Delta}^{\alpha} = \bigcap_{i=1}^r P_{F_i^c}^{\alpha}$. The result is obtained by the fact that $P_{F_i^c}^{\alpha} = P_{(F_i^{\alpha})^c}$.

Let $u = x_{i_1} \dots x_{i_t} \in S$ be a monomial and $\alpha = (k_1, \dots, k_n) \in \mathbb{N}^n$. We set $u^{\alpha} = G((u)^{\alpha})$ and for a set A of monomials in S, A^{α} is defined by

$$A^{\alpha} = \bigcup_{u \in A} u^{\alpha}.$$

One can easily obtain the following lemma.

Lemma 3.2. Let $I \subset S$ be a monomial ideal and $\alpha \in \mathbb{N}^n$. Then $G(I^{\alpha}) = G(I)^{\alpha}$.

Lemma 3.3. For a simple graph \mathcal{G} on the vertex set [n] and $\alpha \in \mathbb{N}^n$ we have $I(\mathcal{G}^{\alpha}) = I(\mathcal{G})^{\alpha}$.

Proof. Let $\alpha = (k_1, \ldots, k_n)$ and $P_j = (x_{j1}, \ldots, x_{jk_j})$. Then it follows from Lemma 11(ii,iii) of [1] that

$$I(\mathcal{G}^{\alpha}) = (x_{ir}x_{js} : x_ix_j \in E(\mathcal{G}), 1 \le r \le k_i, 1 \le s \le k_j) = \sum_{x_ix_j \in E(\mathcal{G})} P_iP_j$$
$$= \sum_{x_ix_j \in E(\mathcal{G})} (x_i)^{\alpha} (x_j)^{\alpha} = (\sum_{x_ix_j \in E(\mathcal{G})} (x_i)(x_j))^{\alpha} = I(\mathcal{G})^{\alpha}.$$

4. The expansion of a CM_t complex

The following proposition gives us some information about the expansion of a simplicial complex which are useful in the proof of the next results.

Proposition 4.1. Let Δ be a simplicial complex and let $\alpha \in \mathbb{N}^n$.

(i) For all $i \leq \dim(\Delta)$, there exists an epimorphism $\theta : \tilde{H}_i(\Delta^{\alpha}; K) \to \tilde{H}_i(\Delta; K)$.

In particular in this case $% \left(f_{i},f_$

$$\tilde{H}_i(\Delta^{\alpha}; K) / \ker(\theta) \cong \tilde{H}_i(\Delta; K);$$

(ii) For $F \in \Delta^{\alpha}$ such that $F = G^{\alpha}$ for some $G \in \Delta$, we have

$$\operatorname{link}_{\Delta^{\alpha}}(F) = (\operatorname{link}_{\Delta}(G))^{\alpha};$$

(iii) For $F \in \Delta^{\alpha}$ such that $F \neq G^{\alpha}$ for every $G \in \Delta$, we have

$$\operatorname{link}_{\Delta^{\alpha}} F = \langle U^{\alpha} \backslash F \rangle * \operatorname{link}_{\Delta^{\alpha}} U^{\alpha}$$

for some $U \in \Delta$ with $F \subseteq U^{\alpha}$. Here * means the join of two simplicial complexes.

In the third case,
$$link_{\Delta^{\alpha}}F$$
 is a cone and so acyclic, i.e.,
 $\tilde{H}_i(link_{\Delta^{\alpha}}F; K) = 0$ for all $i > 0$.

Proof. (i) Consider the map $\pi : [n]^{\alpha} \to [n]$ by $\pi(x_{ij}) = x_i$ for all i, j. Let the simplicial map $\varphi : \Delta^{\alpha} \to \Delta$ be defined by $\varphi(\{x_{i_1j_1}, \ldots, x_{i_qj_q}\}) = \{\pi(x_{i_1j_1}), \ldots, \pi(x_{i_qj_q})\} = \{x_{i_1}, \ldots, x_{i_q}\}$. Actually, φ is an extension of π to Δ^{α} by linearity. Define $\varphi_{\#} : \tilde{\mathcal{C}}_q(\Delta^{\alpha}; K) \to \tilde{\mathcal{C}}_q(\Delta; K)$, for each q, by

$$\varphi_{\#}([x_{i_0j_0},\ldots,x_{i_qj_q}]) = \begin{cases} 0 & \text{if for some indices } i_r = i_t \\ [\varphi(\{x_{i_0j_0}\}),\ldots,\varphi(\{x_{i_qj_q}\})] & \text{otherwise.} \end{cases}$$

It is clear from the definitions of $\tilde{\mathcal{C}}_q(\Delta^{\alpha}; K)$ and $\tilde{\mathcal{C}}_q(\Delta; K)$ that $\varphi_{\#}$ is welldefined. Also, define $\varphi_{\alpha} : \tilde{H}_i(\Delta^{\alpha}; K) \to \tilde{H}_i(\Delta; K)$ by

$$\varphi_{\alpha}: z + B_i(\Delta^{\alpha}) \to \varphi_{\#}(z) + B_i(\Delta).$$

It is trivial that φ_{α} is onto.

(ii) The inclusion $\operatorname{link}_{\Delta^{\alpha}}(F) \supseteq (\operatorname{link}_{\Delta}(G))^{\alpha}$ is trivial. So we show the reverse inclusion. Let $\sigma \in \operatorname{link}_{\Delta^{\alpha}}(G^{\alpha})$. Then $\sigma \cap G^{\alpha} = \emptyset$ and $\sigma \cup G^{\alpha} \in \Delta^{\alpha}$. We want to show $\pi(\sigma) \in \operatorname{link}_{\Delta}(G)$. Because in this case, $\pi(\sigma)^{\alpha} \in (\operatorname{link}_{\Delta}(G))^{\alpha}$ and since $\sigma \subseteq \pi(\sigma)^{\alpha}$, we conclude that $\sigma \in (\operatorname{link}_{\Delta}(G))^{\alpha}$.

Clearly, $\pi(\sigma) \cup G \in \Delta$. To show that $\pi(\sigma) \cap G = \emptyset$, suppose, on the contrary, that $x_i \in \pi(\sigma) \cap G$. Then $x_{ij} \in \sigma$ for some *j*. Especially, $x_{ij} \in G^{\alpha}$. Therefore $\sigma \cap G^{\alpha} \neq \emptyset$, a contradiction.

(iii) Let $\tau \in \operatorname{link}_{\Delta^{\alpha}} F$. Let $\tau \cap \pi(F)^{\alpha} = \emptyset$. It follows from $\tau \cup F \in \Delta^{\alpha}$ that $\pi(\tau)^{\alpha} \cup \pi(F)^{\alpha} \in \Delta^{\alpha}$. Now by $\tau \subset \pi(\tau)^{\alpha}$ it follows that $\tau \cup \pi(F)^{\alpha} \in \Delta^{\alpha}$. Hence $\tau \in \operatorname{link}_{\Delta^{\alpha}}(\pi(F)^{\alpha})$. So we suppose that $\tau \cap \pi(F)^{\alpha} \neq \emptyset$. We write $\tau = (\tau \cap \pi(F)^{\alpha}) \cup (\tau \setminus \pi(F)^{\alpha})$. It is clear that $\tau \cap \pi(F)^{\alpha} \subset \pi(F)^{\alpha} \setminus F$ and $\tau \setminus \pi(F)^{\alpha} \in \operatorname{link}_{\Delta^{\alpha}} \pi(F)^{\alpha}$. The reverse inclusion is trivial. \Box

Remark 4.2. Let $\Delta = \langle x_1 x_2, x_2 x_3 \rangle$ be a complex on [3] and $\alpha = (2, 1, 1) \in \mathbb{N}^3$. Then $\Delta^{\alpha} = \langle x_{11} x_{12} x_{21}, x_{21} x_{31} \rangle$ is a complex on $\{x_{11}, x_{12}, x_{21}, x_{31}\}$. Notice that Δ is pure but Δ^{α} is not. Therefore, the expansion of a pure simplicial complex is not necessarily pure.

Theorem 4.3. Let Δ be a simplicial complex on [n] of dimension d-1 and let $t \geq 0$ be the least integer that Δ is CM_t . Suppose that $\alpha = (k_1, \ldots, k_n) \in \mathbb{N}^n$ such that $k_i > 1$ for some i and Δ^{α} is pure. Then Δ^{α} is $CM_{t+e-k+1}$ but it is not CM_{t+e-k} , where $e = \dim(\Delta^{\alpha}) + 1$ and $k = \min\{k_i : k_i > 1\}$.

227

Proof. We use induction on $e \ge 2$. If e = 2, then $\dim(\Delta^{\alpha}) = 1$ and Δ should be only in the form $\Delta = \langle x_1, \ldots, x_n \rangle$. In particular, Δ^{α} is of the form

$$\Delta^{\alpha} = \langle \{x_{i_11}, x_{i_12}\}, \{x_{i_21}, x_{i_22}\}, \dots, \{x_{i_r1}, x_{i_r2}\} \rangle.$$

It is clear that Δ^{α} is CM₁ but it is not Cohen-Macaulay.

Assume that e > 2. Let $\{x_{ij}\} \in \Delta^{\alpha}$. We want to show that $\operatorname{link}_{\Delta^{\alpha}}(x_{ij})$ is CM_{e-k} . Consider the following cases:

Case 1: $k_i > 1$. Then

$$\operatorname{link}_{\Delta^{\alpha}}(x_{ij}) = \langle \{x_i\}^{\alpha} \backslash x_{ij} \rangle * (\operatorname{link}_{\Delta}(x_i))^{\alpha}$$

 $(\operatorname{link}_{\Delta}(x_i))^{\alpha}$ is of dimension $e - k_i - 1$ and, by induction hypothesis, it is $\operatorname{CM}_{t+e-k_i-k+1}$. On the other hand, $\langle \{x_i\}^{\alpha} \setminus x_{ij} \rangle$ is Cohen-Macaulay of dimension $k_i - 2$. Therefore, it follows from Theorem 1.1(i) of [4] that $\operatorname{link}_{\Delta^{\alpha}}(x_{ij})$ is $\operatorname{CM}_{t+e-k}$.

Case 2: $k_i = 1$. Then

1

$$\operatorname{link}_{\Delta^{\alpha}}(x_{ij}) = (\operatorname{link}_{\Delta}(x_i))^{\alpha}$$

which is of dimension e - 2 and, by induction, it is CM_{t+e-k} .

Now suppose that e > 2 and $k_s = k$ for some $s \in [n]$. Let F be a facet of Δ such that x_s belongs to F.

If $\dim(\Delta) = 0$, then $k_l = k$ for all $l \in [n]$. In particular, e = k. It is clear that Δ^{α} is not $\operatorname{CM}_{t+e-k}$ (or Cohen-Macaulay). So suppose that $\dim(\Delta) > 0$. Choose $x_i \in F \setminus x_s$. Then

$$\operatorname{ink}_{\Delta^{\alpha}}(x_{ij}) = \langle \{x_i\}^{\alpha} \setminus x_{ij} \rangle * (\operatorname{link}_{\Delta}(x_i))^{\alpha}.$$

By induction hypothesis, $(\operatorname{link}_{\Delta}(x_i))^{\alpha}$ is not $\operatorname{CM}_{t+e-k_i-k}$. It follows from Theorem 3.1(ii) of [4] that $\operatorname{link}_{\Delta^{\alpha}}(x_{ij})$ is not $\operatorname{CM}_{t+e-k-1}$. Therefore Δ^{α} is not $\operatorname{CM}_{t+e-k}$.

Corollary 4.4. Let Δ be a non-empty Cohen-Macaulay simplicial complex on [n]. Then for any $\alpha \in \mathbb{N}^n$, with $\alpha \neq \mathbf{1}$, Δ^{α} can never be Cohen-Macaulay.

5. The contraction functor

Let $\Delta = \langle F_1, \ldots, F_r \rangle$ be a simplicial complex on [n]. Consider the equivalence relation '~' on the vertices of Δ given by

$$x_i \sim x_j \Leftrightarrow \langle x_i \rangle * \operatorname{link}_\Delta(x_i) = \langle x_j \rangle * \operatorname{link}_\Delta(x_j).$$

In fact $\langle x_i \rangle * \text{link}_{\Delta}(x_i)$ is the cone over $\text{link}_{\Delta}(x_i)$, and the elements of $\langle x_i \rangle * \text{link}_{\Delta}(x_i)$ are those faces of Δ , which contain x_i . Hence $\langle x_i \rangle * \text{link}_{\Delta}(x_i) = \langle x_j \rangle * \text{link}_{\Delta}(x_j)$, means the cone with vertex x_i is equal to the cone with vertex x_j . In other words, $x_i \sim x_j$ is equivalent to saying that for a facet $F \in \Delta$, F contains x_i if and only if it contains x_j .

Let $[\bar{m}] = \{\bar{y}_1, \ldots, \bar{y}_m\}$ be the set of equivalence classes under \sim . Let $\bar{y}_i = \{x_{i1}, \ldots, x_{ia_i}\}$. Set $\alpha = (a_1, \ldots, a_m)$. For $F_t \in \Delta$, define $G_t = \{\bar{y}_i : \bar{y}_i \subset F_t\}$

and let Γ be a simplicial complex on the vertex set [m] with facets G_1, \ldots, G_r . We call Γ the contraction of Δ by α and α is called the vector obtained from contraction.

For example, consider the simplicial complex $\Delta = \langle x_1 x_2 x_3, x_2 x_3 x_4, x_1 x_4 x_5, x_2 x_3 x_5 \rangle$ on the vertex set $[5] = \{x_1, \ldots, x_5\}$. Then $\bar{y}_1 = \{x_1\}, \bar{y}_2 = \{x_2, x_3\}, \bar{y}_3 = \{x_4\}, \bar{y}_4 = \{x_5\}$ and $\alpha = (1, 2, 1, 1)$. Therefore, the contraction of Δ by α is $\Gamma = \langle \bar{y}_1 \bar{y}_2, \bar{y}_2 \bar{y}_3, \bar{y}_1 \bar{y}_3 \bar{y}_4, \bar{y}_2 \bar{y}_4 \rangle$ a complex on the vertex set $[\bar{4}] = \{\bar{y}_1, \ldots, \bar{y}_4\}$.

Remark 5.1. Note that if Δ is a pure simplicial complex then the contraction of Δ is not necessarily pure (see the above example). In the special case where the vector $\alpha = (k_1, \ldots, k_n) \in \mathbb{N}^n$ and $k_i = k_j$ for all i, j, it is easy to check that in this case Δ is pure if and only if Δ^{α} is pure. Another case is introduced in the following proposition.

Proposition 5.2. Let Δ be a simplicial complex on [n] and assume that $\alpha = (k_1, \ldots, k_n) \in \mathbb{N}^n$ satisfies the following condition:

(†) for all facets $F, G \in \Delta$, if $x_i \in F \setminus G$ and $x_j \in G \setminus F$ then $k_i = k_j$. Then Δ is pure if and only if Δ^{α} is pure.

Proof. Let Δ be a pure simplicial complex and let $F, G \in \Delta$ be two facets of Δ . Then

$$|F^{\alpha}| - |G^{\alpha}| = \sum_{x_i \in F} k_i - \sum_{x_i \in G} k_i = \sum_{x_i \in F \setminus G} k_i - \sum_{x_i \in G \setminus F} k_i.$$

Now the condition (†) implies that $|F^{\alpha}| = |G^{\alpha}|$. This means that all facets of Δ^{α} have the same cardinality.

Let Δ^{α} be pure. Suppose that F, G are two facets in Δ . If |F| > |G| then $|F \setminus G| > |G \setminus F|$. Therefore $\sum_{x_i \in F \setminus G} k_i > \sum_{x_i \in G \setminus F} k_i$. This implies that $|F^{\alpha}| = \sum_{x_i \in F} k_i > \sum_{x_i \in G} k_i = |G^{\alpha}|$, a contradiction.

There is a close relationship between a simplicial complex and its contraction. In fact, the expansion of the contraction of a simplicial complex is the same complex. The precise statement is the following.

Lemma 5.3. Let Γ be the contraction of Δ by α . Then $\Gamma^{\alpha} \cong \Delta$.

Proof. Suppose that Δ and Γ are on the vertex sets $[n] = \{x_1, \ldots, x_n\}$ and $[\bar{m}] = \{\bar{y}_1, \ldots, \bar{y}_m\}$, respectively. Let $\alpha = (a_1, \ldots, a_m)$. For $\bar{y}_i \in \Gamma$, suppose that $\{\bar{y}_i\}^{\alpha} = \{\bar{y}_{i1}, \ldots, \bar{y}_{ia_i}\}$. So Γ^{α} is a simplicial complex on the vertex set $[\bar{m}]^{\alpha} = \{\bar{y}_{ij} : i = 1, \ldots, m, j = 1, \ldots, a_i\}$. Now define $\varphi : [\bar{m}]^{\alpha} \to [n]$ by $\varphi(\bar{y}_{ij}) = x_{ij}$. Extending φ , we obtain the isomorphism $\varphi : \Gamma^{\alpha} \to \Delta$.

Proposition 5.4. Let Δ be a simplicial complex and assume that Δ^{α} is Cohen-Macaulay for some $\alpha \in \mathbb{N}^n$. Then Δ is Cohen-Macaulay.

229

Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor 230

Proof. By Lemma 4.1(i), for all $i \leq \dim(\operatorname{link}_{\Delta} F)$ and all $F \in \Delta$ there exists an epimorphism $\theta : \operatorname{link}_{\Delta^{\alpha}} F^{\alpha} \to \operatorname{link}_{\Delta} F$ such that

$$\tilde{H}_i(\operatorname{link}_{\Delta^{\alpha}} F^{\alpha}; K) / \operatorname{ker}(\theta) \cong \tilde{H}_i(\operatorname{link}_{\Delta} F; K).$$

Now suppose that $i < \dim(\operatorname{link}_{\Delta} F)$. Then $i < \dim(\operatorname{link}_{\Delta^{\alpha}} G^{\alpha})$ and by Cohen-Macaulayness of Δ^{α} , $\tilde{H}_i(\operatorname{link}_{\Delta^{\alpha}} F^{\alpha}; K) = 0$. Therefor $\tilde{H}_i(\operatorname{link}_{\Delta} F; K) = 0$. This means that Δ is Cohen-Macaulay.

It follows from Proposition 5.4 that:

Corollary 5.5. The contraction of a Cohen-Macaulay simplicial complex Δ is Cohen-Macaulay.

This can be generalized in the following theorem.

Theorem 5.6. Let Γ be the contraction of a CM_t simplicial complex Δ , for some $t \geq 0$, by $\alpha = (k_1, \ldots, k_n)$. If $k_i \geq t$ for all i and Γ is pure, then Γ is Buchsbaum.

Proof. If t = 0, then we saw in Corollary 5.5 that Γ is Cohen-Macaulay and so it is CM_t. Hence assume that t > 0. Let $\Delta = \langle F_1, \ldots, F_r \rangle$. We have to show that $\tilde{H}_i(\operatorname{link}_{\Gamma}G; K) = 0$, for all faces $G \in \Gamma$ with $|G| \ge 1$ and all $i < \operatorname{dim}(\operatorname{link}_{\Gamma}G)$.

Let $G \in \Gamma$ with $|G| \ge 1$. Then $|G^{\alpha}| \ge t$. It follows from Lemma 2.1 and CM_t -ness of Δ that

$$H_i(\operatorname{link}_{\Gamma}G;K) \cong H_i(\operatorname{link}_{\Delta}G^{\alpha};K) = 0$$

for $i < \dim(\operatorname{link}_{\Delta}G^{\alpha})$ and, particularly, for $i < \dim(\operatorname{link}_{\Gamma}G)$. Therefore Γ is Buchsbaum.

Corollary 5.7. Let Γ be the contraction of a Buchsbaum simplicial complex Δ . If Γ is pure, then Γ is also Buchsbaum.

Let \mathcal{G} be a simple graph on the vertex set [n] and let $\Delta_{\mathcal{G}}$ be its independence complex on [n], i.e., a simplicial complex whose faces are the independent vertex sets of G. Let Γ be the contraction of $\Delta_{\mathcal{G}}$. In the following we show that Γ is the independence complex of a simple graph \mathcal{H} . We call \mathcal{H} the *contraction* of \mathcal{G} .

Lemma 5.8. Let \mathcal{G} be a simple graph. The contraction of $\Delta_{\mathcal{G}}$ is the independence complex of a simple graph \mathcal{H} .

Proof. It suffices to show that I_{Γ} is a squarefree monomial ideal generated in degree 2. Let Γ be the contraction of $\Delta_{\mathcal{G}}$ and let $\alpha = (k_1, \ldots, k_n)$ be the vector obtained from the contraction. Let $[n] = \{x_1, \ldots, x_n\}$ be the vertex set of Γ . Suppose that $u = x_{i_1} \ldots x_{i_t} \in G(I_{\Gamma})$. Then $u^{\alpha} \subset G(I_{\Gamma})^{\alpha} = G(I_{\Delta_{\mathcal{G}}}) = G(I(\mathcal{G}))$. Since $u^{\alpha} = \{x_{i_1j_1} \ldots x_{i_tj_t} : 1 \leq j_l \leq k_{i_l}, 1 \leq l \leq t\}$ we have t = 2 and the proof is completed.

Example 5.9. Let \mathcal{G}_1 and \mathcal{G}_2 be, respectively, from left to right the following graphs:

The contraction of \mathcal{G}_1 is equal to itself but \mathcal{G}_2 is contracted to an edge and the vector obtained from contraction is $\alpha = (2, 3)$.

We recall that a simple graph is CM_t for some $t \ge 0$, if the associated independence complex is CM_t .

Remark 5.10. The simple graph \mathcal{G}' obtained from \mathcal{G} in Lemma 4.3 and Theorem 4.4 of [4] is the expansion of \mathcal{G} . Actually, suppose that \mathcal{G} is a bipartite graph on the vertex set $V(\mathcal{G}) = V \cup W$ where $V = \{x_1, \ldots, x_d\}$ and $W = \{x_{d+1}, \ldots, x_{2d}\}$. Then for $\alpha = (n_1, \ldots, n_d, n_1, \ldots, n_d)$ we have $\mathcal{G}' = \mathcal{G}^{\alpha}$. It follows from Theorem 4.3 that if \mathcal{G} is CM_t for some $t \geq 0$ then \mathcal{G}' is $CM_{t+n-n_{i_0}+1}$ where $n = \sum_{i=1}^d n_i$ and $n_{i_0} = \min\{n_i > 1 : i = 1, \ldots, d\}$. This implies that the first part of Theorem 4.4 of [4] is an immediate consequence of Theorem 4.3 for t = 0.

Acknowledgment

The author would like to thank Hassan Haghighi from K. N. Toosi University of Technology and Rahim Zaare-Nahandi from University of Tehran for careful reading an earlier version of this article and for their helpful comments. The research was in part supported by a grant from IPM (No. 93130029).

References

- S. Bayati and J. Herzog, Expansions of monomial ideals and multigraded modules, *Rocky Mountain J.* Math. 44 (2014), no. 6, 1781–1804.
- D. Cook and U. Nagel, Cohen-Macaulay graphs and face vectors of flag complexes, SIAM J. Discrete Math. 26 (2012), no. 1, 89–101.
- [3] H. Haghighi, S. Yassemi and R. Zaare-Nahandi, A generalization of k-Cohen-Macaulay simplicial complexes, Ark. Mat. 50 (2012), no. 2, 279–290.

231

 $\label{eq:cohen-Macaulay-ness} Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor \quad 232$

- [4] H. Haghighi, S. Yassemi, R. Zaare-Nahandi, Cohen-Macaulay-ness in codimension for bipartite graphs, Proc. Amer. Math. Soc., Accepted.
- [5] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005), no. 3, 289–302.
- [6] T. Hibi, Level rings and algebras with straightening laws, I, 117 (1988), no. 2, 343–362.
- [7] E. Miller, I. Novik and E. Swartz, Face rings of simplicial complexes with singularities, Math. Ann. 351 (2011), no. 4, 857–875.
- [8] M. Miyazaki, Characterizations of Buchsbaum complexes, Manuscripta Math. 63 (1989), no. 2, 245–254.
- [9] G. A. Reisner, Cohen-Macaulay quotients of polynomial rings, Adv. Math. 21 (1976) 30-49.
- [10] A. Schrijver, Combinatorial Optimization, Algorithms and Combinatorics, 24, Springer-Verlag, Berlin, 2003.
- [11] P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), no. 1, 125–142.
- [12] R. P. Stanley, Combinatorics and Commutative Algebra, Second Edition, Birkhäuser, 1995.

(Rahim Rahmati-Asghar) DEPARTMENT OF MATHEMATICS, FACULTY OF BASIC SCIENCES, UNIVERSITY OF MARAGHEH, P.O. BOX 55181-83111, MARAGHEH, IRAN AND

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: rahmatiasghar.r@gmail.com