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ABSTRACT. In this paper we show that expansion of a Buchsbaum sim-
plicial complex is CMy, for an optimal integer ¢ > 1. Also, by imposing
extra assumptions on a CM; simplicial complex, we prove that it can be
obtained from a Buchsbaum complex.
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1. Introduction

Set [n] := {x1,...,2,}. Let K be a field and S = KJz1,...,z,], a poly-
nomial ring over K. Let A be a simplicial complex over [n]. For an inte-
ger t > 0, Haghighi, Yassemi and Zaare-Nahandi introduced the concept of
CM;-ness which is the pure version of simplicial complexes Cohen-Macaulay in
codimension t studied in [7]. A reason for the importance of CM; simplicial
complexes is that they generalize two notions for simplicial complexes: be-
ing Cohen-Macaulay and Buchsbaum. In particular, by the results from [9,11],
CMp is the same as Cohen-Macaulayness and CM; is identical with Buchsbaum
property.

In [3], the authors described some combinatorial properties of CM; simpli-
cial complexes and gave some characterizations of them and generalized some
results of [6,8]. Then, in [1], they generalized a characterization of Cohen-
Macaulay bipartite graphs from [5] and [2] on unmixed Buchsbaum graphs.

Bayati and Herzog defined the expansion functor in the category of finitely
generated multigraded S-modules and studied some homological behaviors of
this functor (see [1]). The expansion functor helps us to present other multi-
graded S-modules from a given finitely generated multigraded S-module which
may have some of algebraic properties of the primary module. This allows
to introduce new structures of a given multigraded S-module with the same
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properties and especially to extend some homological or algebraic results for
larger classes (see for example [, Theorem 4.2]. There are some combinatorial
versions of expansion functor which we will recall in this paper.

The purpose of this paper is the study of behaviors of expansion functor on
CM; complexes. We first recall some notations and definitions of CM; simplicial
complexes in Section 1. In the next section we describe the expansion functor
in three contexts, the expansion of a simplicial complex, the expansion of a
simple graph and the expansion of a monomial ideal. We show that there is a
close relationship between these three contexts. In Section 3 we prove that the
expansion of a CM; complex A with respect to a is CM¢4e—k41 but it is not
CM;ye—x where e = dim(A%)+1 and k is the minimum of the components of «
(see Theorem 4.3). In Section 4, we introduce a new functor, called contraction,
which acts in contrast to expansion functor. As a main result of this section
we show that if the contraction of a CM; complex is pure and all components
of the vector obtained from contraction are greater than or equal to ¢ then it
is Buchsbaum (see Theorem 5.6). The section is finished with a view towards
the contraction of simple graphs.

2. Preliminaries

Let t be a non-negative integer. We recall from [3] that a simplicial complex
A is called CM; or Cohen-Macaulay in codimension t if it is pure and for every
face F € A with #(F) > t, linka (F') is Cohen-Macaulay. Every CM; complex
is also CM,. for all r > t. For t < 0, CM; means CMg. The properties CMy and
CM; are the same as Cohen-Macaulay-ness and Buchsbaum-ness, respectively.

The link of a face F' in a simplicial complex A is denoted by linka (F') and
is

linka(F) ={GeA:GNF=0,GUF € A}.

The following lemma is useful for checking the CM; property of simplicial
complexes:

Lemma 2.1. ( [9, Lemma 2.3]) Let t > 1 and let A be a nonempty complex.
Then A is CM; if and only if A is pure and linka (v) is CM;_1 for every vertex
veA.

Let G = (V(G), E(G)) be a simple graph with vertex set V' and edge set E.
The independence complezx of G is the complex Ag with vertex set V' and with
faces consisting of independent sets of vertices of G. Thus F' is a face of Ag if
and only if there is no edge of G joining any two vertices of F'.

The edge ideal of a simple graph G, denoted by I(G), is an ideal of S gener-
ated by all squarefree monomials z;z; with z;z; € E(G).

A simple graph G is called CM; if Ag is CM; and it is called unmized if Ag
is pure.
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For a monomial ideal I C S, We denote by G(I) the unique minimal set of
monomial generators of I.

3. The expansion functor in combinatorial and algebraic concepts

In this section we define the expansion of a simplicial complex and recall the
expansion of a simple graph from [10] and the expansion of a monomial ideal
from [1]. We show that these concepts are intimately related to each other.

(1) Let « = (k1,...,kn) € N*. For F = {z;,,...,2;.} C{z1,...,2,} define

F={Zi1, @ik e Tig 1y s Tighy, )
as a subset of [n]® := {&11,. .., T1kyy- s Tnly- -, Tnk, - F* is called the ex-
pansion of F' with respect to «.
For a simplicial complex A = (Fy,..., F,.) on [n], we define the expansion of

A with respect to o as the simplicial complex
AY = (Fy, ..., FE™).

(2) The duplication of a vertex z; of a simple graph G was first introduced
by Schrijver [10] and it means extending its vertex set V(G) by a new vertex
x} and replacing E(G) by

E(G)U{(e\{z:}) U{ai} : 2 € e € E(G)}.

For the n-tuple « = (k1,...,k,) € N, with positive integer entries, the ez-
pansion of the simple graph G is denoted by G% and it is obtained from G by
successively duplicating k; — 1 times every vertex x;.

(3) In [1] Bayati and Herzog defined the expansion functor in the category
of finitely generated multigraded S-modules and studied some homological be-
haviors of this functor. We recall the expansion functor defined by them only
in the category of monomial ideals and refer the reader to [1] for more general
case in the category of finitely generated multigraded S-modules.

Let S® be a polynomial ring over K in the variables

xll,...,wlkl,...,mnl,...,xnkn.

Whenever I C S is a monomial ideal minimally generated by uq,...,u,, the
expansion of I with respect to « is defined by

1o =3 "pyd) puee) ¢ ge
=1

where P; = (2j1,...,2;k,) is a prime ideal of S* and v;(u;) is the exponent of
T in u;.
It was shown in [I] that the expansion functor is exact and so (S/I)* =

S«/I%. In the following lemmas we describe the relations between the above
three concepts of expansion functor.
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Lemma 3.1. For a simplicial complex A we have IR = In«. In particular,
K[A]* = K[A9].

Proof. Let A = (Fy,...,F,). Since In = (i_, Pre, it follows from Lemma
1.1 in [1] that I = (;_, Pg. The result is obtained by the fact that Pp. =

Let w = z;, ...x;, € S be a monomial and a = (kq,...,k,) € N*. We set
u® = G((u)*) and for a set A of monomials in S, A% is defined by

AY = U u
ucA

One can easily obtain the following lemma.

Lemma 3.2. Let I C S be a monomial ideal and oo € N". Then G(I¥) =
G(I)~.

Lemma 3.3. For a simple graph G on the vertex set [n] and o € N™ we have

1(G*) = 1(9).

Proof. Let a = (k1,...,k,) and P; = (2j1,...,2x;). Then it follows from

I(GY) = (xirxjs s wiw; € E(G),1 <r <k;,1<s<k;)= Z P;P;
ziz; EE(G)

= > @)@ =0 Y (@) =1(G)"

ziz; €E(G) zix; €E(G)

4. The expansion of a CM; complex

The following proposition gives us some information about the expansion of
a simplicial complex which are useful in the proof of the next results.

Proposition 4.1. Let A be a simplicial complex and let o € N™.

() For all i < dim(A), there exists an epimorphism 6 : Hi(A*: K) —
In particular in this case

(A% ), ker(6) = Hi( K
(i) For F € A® such that F' = G* for some G € A, we have
linkaa (F) = (linka (G))%;
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(#i1) For F € A® such that F # G* for every G € A, we have
linkae F' = (UY\F) * linkaa U®

for some U € A with F C U®. Here x means the join of two simplicial
complezes.

In the third case, linka« F' is a cone and so acyclic, i.e.,
H;(linkaa F; K) = 0 for all i > 0.

Proof. (i) Consider the map 7 : [n]* — [n] by 7(x;;) = «; for all 7, j. Let the
simplicial map ¢ : A% — A be defined by o({z;,;,, ..., %i,j,}) = {7(@ij,), -,
m(2ij,)} = {®i, ..., 2, }. Actually, ¢ is an extension of m to A® by linearity.
Define 4 : éq(A“; K)— éq(A; K), for each ¢, by

0 if for some indices i, = i;

Ou([Tigjor- -1 Tigj,)) = {[@({xiojo})» A go({xiqjq})]otherwise.

It is clear from the definitions of C,(A%; K) and C,(A; K) that oy is well-
defined. Also, define ¢, : H;(A% K) — H;(A; K) by

Yo 2+ Bi(AY) = pu(z) + Bi(A).

It is trivial that ¢, is onto.

(ii) The inclusion linka« (F) 2 (linka (G))® is trivial. So we show the reverse
inclusion. Let o € linkao(G*). Then 0 N G* = () and 0 U G* € A*. We want
to show (o) € linka (G). Because in this case, w(c)* € (linka (G))* and since
o C 7w(0)%, we conclude that o € (linka (G))*.

Clearly, 7(c)UG € A. To show that m(c) NG = (J, suppose, on the contrary,
that x; € m(¢) N G. Then z;; € o for some j. Especially, z;; € G*. Therefore
o NG* # (), a contradiction.

(i) Let 7 € linkaa F. Let 7 N w(F)® = 0. It follows from 7 U F € A®
that 7(7)* Un(F)* € A®. Now by 7 C w(7)® it follows that 7 U n(F)* € A~.
Hence 7 € linkao (7(F)%). So we suppose that 7 N w(F)* # (. We write
T = (rNa(F)) U (r\m(F)*). It is clear that 7 N7 (F)* C 7(F)*\F and
T\7(F)* € linkaam(F)*. The reverse inclusion is trivial. |

Remark 4.2. Let A = (2175, z223) be a complex on [3] and o = (2,1,1) € N3,
Then A® = (211212221, T21231) is a complex on {x11, T12, T21, 31 }. Notice that
A is pure but A® is not. Therefore, the expansion of a pure simplicial complex
is not necessarily pure.

Theorem 4.3. Let A be a simplicial complez on [n] of dimension d—1 and let
t > 0 be the least integer that A is CM;. Suppose that o = (ky,...,k,) € N”
such that k; > 1 for some i and A® is pure. Then A% is CMyyc—_g41 but it is
not CMyye—r, where e = dim(A*) + 1 and k = min{k; : k; > 1} .
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Proof. We use induction on e > 2. If ¢ = 2, then dim(A%*) = 1 and A should
be only in the form A = (z4,...,2,). In particular, A® is of the form

AY = ({@iy1, i2 b, {Tio1, Tiga b, -+ {41, Ti,2}).
It is clear that A® is CM; but it is not Cohen-Macaulay.
Assume that e > 2. Let {z;;} € A% We want to show that linkae (z;;) is

CM,_j. Consider the following cases:
Case 1: k; > 1. Then

linkae (z55) = ({23 }*\@i;) * (linka (2;)).
(linka (z;))* is of dimension e — k; — 1 and, by induction hypothesis, it is
CMi+e—k;—k+1- On the other hand, ({z;}*\z;;) is Cohen-Macaulay of dimen-
sion k; — 2. Therefore, it follows from Theorem 1.1(i) of [4] that linka« (z;;) is
CMH»efk'
Case 2: k; = 1. Then

link e (ZZ?U) = (linA (xi))a

which is of dimension e — 2 and, by induction, it is CMyye_.

Now suppose that e > 2 and ks = k for some s € [n]. Let F be a facet of A
such that x4 belongs to F.

If dim(A) = 0, then k; = k for all I € [n]. In particular, e = k. It is clear
that A% is not CMy4e—x (or Cohen-Macaulay). So suppose that dim(A) > 0.
Choose z; € F\zs. Then

linkAa (x”) = <{$i}a\5€i]‘> * (linkA(xi))o‘.
By induction hypothesis, (linka (z;))® is not CM¢4e—k, —k. It follows from The-

orem 3.1(ii) of [1] that linkae(2;;) is not CM¢ye—g—1. Therefore A® is not
CMt+e_k. D

Corollary 4.4. Let A be a non-empty Cohen-Macaulay simplicial complex on
[n]. Then for any o € N™, with o # 1, A® can never be Cohen-Macaulay.

5. The contraction functor

Let A = (F4,...,F,) be a simplicial complex on [n]. Consider the equiva-
lence relation ‘~’ on the vertices of A given by

z; ~ xj < (;) * linka (x;) = (z;) * linka (z;).

In fact (x;) * linka(z;) is the cone over linka(z;), and the elements of (x;) *
linka (x;) are those faces of A, which contain z;. Hence (z;) * linka (z;) =
(x) *linka (), means the cone with vertex z; is equal to the cone with vertex
xj. In other words, x; ~ x; is equivalent to saying that for a facet F' € A, F
contains x; if and only if it contains x;.

Let [m] = {¢1,...,Ym} be the set of equivalence classes under ~. Let g; =
{Zi1,. ., Tia,}. Set a = (a1,...,an,). For F; € A, define Gy = {y; : §; C F;}
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and let T’ be a simplicial complex on the vertex set [m] with facets Gy, ..., G..
We call T the contraction of A by « and « is called the vector obtained from
contraction.

For example, consider the simplicial complex A = (z1z9x3, L2374, 12425,
x223%5) on the vertex set [5] = {x1,...,25}. Then g1 = {x1}, 2 = {2,235},
g3 = {4}, §a = {x5} and @ = (1,2,1,1). Therefore, the contraction of A by «

is I' = (J172, U293, Y1U3Y4, Y2¥s) a complex on the vertex set [4] = {F1,...,Ua}.

Remark 5.1. Note that if A is a pure simplicial complex then the contraction
of A is not necessarily pure (see the above example). In the special case where
the vector o« = (k1,...,k,) € N” and k; = k; for all 4, j, it is easy to check that
in this case A is pure if and only if A® is pure. Another case is introduced in
the following proposition.

Proposition 5.2. Let A be a simplicial complex on [n] and assume that oo =
(k1,...,kn) € N™ satisfies the following condition:

(t) for all facets F,G € A, if x; € F\G and z; € G\F then k; = k;.

Then A is pure if and only if A% is pure.

Proof. Let A be a pure simplicial complex and let F,G € A be two facets of

A. Then
|F°‘|—|G°‘|:Zki—2ki: Z ki — Z ki.

x;EF z; €EG :vLEF\G wLEG\F

Now the condition (1) implies that |F*| = |G®|. This means that all facets of
A® have the same cardinality.

Let A% be pure. Suppose that F,G are two facets in A. If |F| > |G|
then [F\G| > |G\F|. Therefore 3, p\gki >3-, cq\pki- This implies that
|[F[ =3 . crki >, cq ki = |G|, a contradiction. O

There is a close relationship between a simplicial complex and its contrac-
tion. In fact, the expansion of the contraction of a simplicial complex is the
same complex. The precise statement is the following.

Lemma 5.3. Let I be the contraction of A by . Then I'® = A,

Proof. Suppose that A and T" are on the vertex sets [n] = {z1,...,z,} and
[m] = {¥1,..-,Um}, respectively. Let o = (ay,...,ay). For g; € T, suppose
that {7;}* = {¥i1,--,Tia;}- So I'* is a simplicial complex on the vertex set
m]* ={gy; :i=1,...,m, 5 =1,...,a;}. Now define ¢ : [m]* — [n] by
©(7ij) = x;;. Extending ¢, we obtain the isomorphism ¢ : I'* — A. |

Proposition 5.4. Let A be a simplicial complex and assume that A is Cohen-
Macaulay for some o € N*. Then A is Cohen-Macaulay.
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Proof. By Lemma 4.1(i), for all i < dim(linkaF') and all F' € A there exists
an epimorphism 6 : linkao F'“ — linka F' such that

H;(linkpe F; K)/ ker(6) = H;(linka F; K).
Now suppose that ¢ < dim(linka F"). Then i < dim(linkaaG*) and by Cohen-
Macaulayness of A%, H;(linkaa« F¥; K) = 0. Therefor H;(linkaF'; K) = 0.
This means that A is Cohen-Macaulay. O

It follows from Proposition 5.4 that:

Corollary 5.5. The contraction of a Cohen-Macaulay simplicial complex A is
Cohen-Macaulay.

This can be generalized in the following theorem.

Theorem 5.6. Let I' be the contraction of a CMy simplicial complex A, for
somet >0, by a = (ky,...,kn). If ki >t for all i and T is pure, then T is
Buchsbaum.

Proof. Ift = 0, then we saw in Corollary 5.5 that I" is Cohen-Macaulay and so it
is CM;. Hence assume that ¢t > 0. Let A = (Fy,..., F,.). We have to show that
H;(linkpG; K) = 0, for all faces G € T with |G| > 1 and all i < dim(linkrG).

Let G € T with |G| > 1. Then |G%*| > t. It follows from Lemma 2.1 and
CM;-ness of A that

H;(linkrG; K) = H;(linkaG*; K) =0

for i < dim(linkaG®) and, particularly, for ¢ < dim(linkrG). Therefore T is
Buchsbaum. 0

Corollary 5.7. Let I' be the contraction of a Buchsbaum simplicial complex
A. If T is pure, then T" is also Buchsbaum.

Let G be a simple graph on the vertex set [n] and let Ag be its independence
complex on [n], i.e., a simplicial complex whose faces are the independent vertex
sets of G. Let I' be the contraction of Ag. In the following we show that I" is
the independence complex of a simple graph H. We call H the contraction of

g.

Lemma 5.8. Let G be a simple graph. The contraction of Ag is the indepen-
dence complez of a simple graph H.

Proof. Tt suffices to show that Ip is a squarefree monomial ideal generated in
degree 2. Let I be the contraction of Ag and let @ = (kq, ..., k,) be the vector
obtained from the contraction. Let [n] = {x1,...,2z,} be the vertex set of T
Suppose that u = z;, ...2;, € G(Ir). Then u® C G(Ip)* = G(Ia,) = G(I1(G).
Since u® = {xi,j, ... x5, : 1 < ji < ki, 1 <1<t} we have t = 2 and the proof
is completed. O
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Example 5.9. Let G; and Gy be, respectively, from left to right the following
graphs:

The contraction of G; and G, are

The contraction of G; is equal to itself but Gs is contracted to an edge and the
vector obtained from contraction is o = (2, 3).

We recall that a simple graph is CM; for some ¢ > 0, if the associated
independence complex is CMj.

Remark 5.10. The simple graph G’ obtained from G in Lemma 4.3 and The-
orem 4.4 of [1] is the expansion of G. Actually, suppose that G is a bipar-
tite graph on the vertex set V(G) = V U W where V = {z1,...,24} and

W ={xg441,...,224}. Then for a = (nq1,...,n4,n1,...,nq) we have G’ = G<.
It follows from Theorem 4.3 that if G is CM; for some ¢t > 0 then G’ is
CMy4n—n,,+1 where n = Z?Zl n; and n;, = min{n; > 1:4=1,...,d}. This

implies that the first part of Theorem 4.4 of [4] is an immediate consequence
of Theorem 4.3 for ¢t = 0.
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