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Abstract. In this paper we show that expansion of a Buchsbaum sim-

plicial complex is CMt, for an optimal integer t ≥ 1. Also, by imposing
extra assumptions on a CMt simplicial complex, we prove that it can be
obtained from a Buchsbaum complex.
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1. Introduction

Set [n] := {x1, . . . , xn}. Let K be a field and S = K[x1, . . . , xn], a poly-
nomial ring over K. Let ∆ be a simplicial complex over [n]. For an inte-
ger t ≥ 0, Haghighi, Yassemi and Zaare-Nahandi introduced the concept of
CMt-ness which is the pure version of simplicial complexes Cohen-Macaulay in
codimension t studied in [7]. A reason for the importance of CMt simplicial
complexes is that they generalize two notions for simplicial complexes: be-
ing Cohen-Macaulay and Buchsbaum. In particular, by the results from [9,11],
CM0 is the same as Cohen-Macaulayness and CM1 is identical with Buchsbaum
property.

In [3], the authors described some combinatorial properties of CMt simpli-
cial complexes and gave some characterizations of them and generalized some
results of [6, 8]. Then, in [4], they generalized a characterization of Cohen-
Macaulay bipartite graphs from [5] and [2] on unmixed Buchsbaum graphs.

Bayati and Herzog defined the expansion functor in the category of finitely
generated multigraded S-modules and studied some homological behaviors of
this functor (see [1]). The expansion functor helps us to present other multi-
graded S-modules from a given finitely generated multigraded S-module which
may have some of algebraic properties of the primary module. This allows
to introduce new structures of a given multigraded S-module with the same
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properties and especially to extend some homological or algebraic results for
larger classes (see for example [1, Theorem 4.2]. There are some combinatorial
versions of expansion functor which we will recall in this paper.

The purpose of this paper is the study of behaviors of expansion functor on
CMt complexes. We first recall some notations and definitions of CMt simplicial
complexes in Section 1. In the next section we describe the expansion functor
in three contexts, the expansion of a simplicial complex, the expansion of a
simple graph and the expansion of a monomial ideal. We show that there is a
close relationship between these three contexts. In Section 3 we prove that the
expansion of a CMt complex ∆ with respect to α is CMt+e−k+1 but it is not
CMt+e−k where e = dim(∆α)+1 and k is the minimum of the components of α
(see Theorem 4.3). In Section 4, we introduce a new functor, called contraction,
which acts in contrast to expansion functor. As a main result of this section
we show that if the contraction of a CMt complex is pure and all components
of the vector obtained from contraction are greater than or equal to t then it
is Buchsbaum (see Theorem 5.6). The section is finished with a view towards
the contraction of simple graphs.

2. Preliminaries

Let t be a non-negative integer. We recall from [3] that a simplicial complex
∆ is called CMt or Cohen-Macaulay in codimension t if it is pure and for every
face F ∈ ∆ with #(F ) ≥ t, link∆(F ) is Cohen-Macaulay. Every CMt complex
is also CMr for all r ≥ t. For t < 0, CMt means CM0. The properties CM0 and
CM1 are the same as Cohen-Macaulay-ness and Buchsbaum-ness, respectively.

The link of a face F in a simplicial complex ∆ is denoted by link∆(F ) and
is

link∆(F ) = {G ∈ ∆ : G ∩ F = ∅, G ∪ F ∈ ∆}.
The following lemma is useful for checking the CMt property of simplicial
complexes:

Lemma 2.1. ( [3, Lemma 2.3]) Let t ≥ 1 and let ∆ be a nonempty complex.
Then ∆ is CMt if and only if ∆ is pure and link∆(v) is CMt−1 for every vertex
v ∈ ∆.

Let G = (V (G), E(G)) be a simple graph with vertex set V and edge set E.
The independence complex of G is the complex ∆G with vertex set V and with
faces consisting of independent sets of vertices of G. Thus F is a face of ∆G if
and only if there is no edge of G joining any two vertices of F .

The edge ideal of a simple graph G, denoted by I(G), is an ideal of S gener-
ated by all squarefree monomials xixj with xixj ∈ E(G).

A simple graph G is called CMt if ∆G is CMt and it is called unmixed if ∆G
is pure.
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For a monomial ideal I ⊂ S, We denote by G(I) the unique minimal set of
monomial generators of I.

3. The expansion functor in combinatorial and algebraic concepts

In this section we define the expansion of a simplicial complex and recall the
expansion of a simple graph from [10] and the expansion of a monomial ideal
from [1]. We show that these concepts are intimately related to each other.

(1) Let α = (k1, . . . , kn) ∈ Nn. For F = {xi1 , . . . , xir} ⊆ {x1, . . . , xn} define

Fα = {xi11, . . . , xi1ki1
, . . . , xir1, . . . , xirkir

}

as a subset of [n]α := {x11, . . . , x1k1 , . . . , xn1, . . . , xnkn}. Fα is called the ex-
pansion of F with respect to α.

For a simplicial complex ∆ = ⟨F1, . . . , Fr⟩ on [n], we define the expansion of
∆ with respect to α as the simplicial complex

∆α = ⟨Fα
1 , . . . , F

α
r ⟩.

(2) The duplication of a vertex xi of a simple graph G was first introduced
by Schrijver [10] and it means extending its vertex set V (G) by a new vertex
x′
i and replacing E(G) by

E(G) ∪ {(e\{xi}) ∪ {x′
i} : xi ∈ e ∈ E(G)}.

For the n-tuple α = (k1, . . . , kn) ∈ Nn, with positive integer entries, the ex-
pansion of the simple graph G is denoted by Gα and it is obtained from G by
successively duplicating ki − 1 times every vertex xi.

(3) In [1] Bayati and Herzog defined the expansion functor in the category
of finitely generated multigraded S-modules and studied some homological be-
haviors of this functor. We recall the expansion functor defined by them only
in the category of monomial ideals and refer the reader to [1] for more general
case in the category of finitely generated multigraded S-modules.

Let Sα be a polynomial ring over K in the variables

x11, . . . , x1k1 , . . . , xn1, . . . , xnkn .

Whenever I ⊂ S is a monomial ideal minimally generated by u1, . . . , ur, the
expansion of I with respect to α is defined by

Iα =
r∑

i=1

P
ν1(ui)
1 . . . P νn(ui)

n ⊂ Sα

where Pj = (xj1, . . . , xjkj ) is a prime ideal of Sα and νj(ui) is the exponent of
xj in ui.

It was shown in [1] that the expansion functor is exact and so (S/I)α =
Sα/Iα. In the following lemmas we describe the relations between the above
three concepts of expansion functor.
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Lemma 3.1. For a simplicial complex ∆ we have Iα∆ = I∆α . In particular,
K[∆]α = K[∆α].

Proof. Let ∆ = ⟨F1, . . . , Fr⟩. Since I∆ =
∩r

i=1 PF c
i
, it follows from Lemma

1.1 in [1] that Iα∆ =
∩r

i=1 P
α
F c

i
. The result is obtained by the fact that Pα

F c
i
=

P(Fα
i )c . □

Let u = xi1 . . . xit ∈ S be a monomial and α = (k1, . . . , kn) ∈ Nn. We set
uα = G((u)α) and for a set A of monomials in S, Aα is defined by

Aα =
∪
u∈A

uα.

One can easily obtain the following lemma.

Lemma 3.2. Let I ⊂ S be a monomial ideal and α ∈ Nn. Then G(Iα) =
G(I)α.

Lemma 3.3. For a simple graph G on the vertex set [n] and α ∈ Nn we have
I(Gα) = I(G)α.

Proof. Let α = (k1, . . . , kn) and Pj = (xj1, . . . , xjkj ). Then it follows from
Lemma 11(ii,iii) of [1] that

I(Gα) = (xirxjs : xixj ∈ E(G), 1 ≤ r ≤ ki, 1 ≤ s ≤ kj) =
∑

xixj∈E(G)

PiPj

=
∑

xixj∈E(G)

(xi)
α(xj)

α = (
∑

xixj∈E(G)

(xi)(xj))
α = I(G)α.

□

4. The expansion of a CMt complex

The following proposition gives us some information about the expansion of
a simplicial complex which are useful in the proof of the next results.

Proposition 4.1. Let ∆ be a simplicial complex and let α ∈ Nn.

(i) For all i ≤ dim(∆), there exists an epimorphism θ : H̃i(∆
α;K) →

H̃i(∆;K).
In particular in this case

H̃i(∆
α;K)/ ker(θ) ∼= H̃i(∆;K);

(ii) For F ∈ ∆α such that F = Gα for some G ∈ ∆, we have

link∆α(F ) = (link∆(G))α;
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(iii) For F ∈ ∆α such that F ̸= Gα for every G ∈ ∆, we have

link∆αF = ⟨Uα\F ⟩ ∗ link∆αUα

for some U ∈ ∆ with F ⊆ Uα. Here ∗ means the join of two simplicial
complexes.

In the third case, link∆αF is a cone and so acyclic, i.e.,
H̃i(link∆αF ;K) = 0 for all i > 0.

Proof. (i) Consider the map π : [n]α → [n] by π(xij) = xi for all i, j. Let the
simplicial map φ : ∆α → ∆ be defined by φ({xi1j1 , . . . , xiqjq}) = {π(xi1j1), . . . ,
π(xiqjq )} = {xi1 , . . . , xiq}. Actually, φ is an extension of π to ∆α by linearity.

Define φ# : C̃q(∆α;K) → C̃q(∆;K), for each q, by

φ#([xi0j0 , . . . , xiqjq ]) =

{
0 if for some indices ir = it[
φ({xi0j0}), . . . , φ({xiqjq})

]
otherwise.

It is clear from the definitions of C̃q(∆α;K) and C̃q(∆;K) that φ# is well-

defined. Also, define φα : H̃i(∆
α;K) → H̃i(∆;K) by

φα : z +Bi(∆
α) → φ#(z) +Bi(∆).

It is trivial that φα is onto.
(ii) The inclusion link∆α(F ) ⊇ (link∆(G))α is trivial. So we show the reverse

inclusion. Let σ ∈ link∆α(Gα). Then σ ∩Gα = ∅ and σ ∪Gα ∈ ∆α. We want
to show π(σ) ∈ link∆(G). Because in this case, π(σ)α ∈ (link∆(G))α and since
σ ⊆ π(σ)α, we conclude that σ ∈ (link∆(G))α.

Clearly, π(σ)∪G ∈ ∆. To show that π(σ)∩G = ∅, suppose, on the contrary,
that xi ∈ π(σ) ∩G. Then xij ∈ σ for some j. Especially, xij ∈ Gα. Therefore
σ ∩Gα ̸= ∅, a contradiction.

(iii) Let τ ∈ link∆αF . Let τ ∩ π(F )α = ∅. It follows from τ ∪ F ∈ ∆α

that π(τ)α ∪ π(F )α ∈ ∆α. Now by τ ⊂ π(τ)α it follows that τ ∪ π(F )α ∈ ∆α.
Hence τ ∈ link∆α(π(F )α). So we suppose that τ ∩ π(F )α ̸= ∅. We write
τ = (τ ∩ π(F )α) ∪ (τ\π(F )α). It is clear that τ ∩ π(F )α ⊂ π(F )α\F and
τ\π(F )α ∈ link∆απ(F )α. The reverse inclusion is trivial. □

Remark 4.2. Let ∆ = ⟨x1x2, x2x3⟩ be a complex on [3] and α = (2, 1, 1) ∈ N3.
Then ∆α = ⟨x11x12x21, x21x31⟩ is a complex on {x11, x12, x21, x31}. Notice that
∆ is pure but ∆α is not. Therefore, the expansion of a pure simplicial complex
is not necessarily pure.

Theorem 4.3. Let ∆ be a simplicial complex on [n] of dimension d−1 and let
t ≥ 0 be the least integer that ∆ is CMt. Suppose that α = (k1, . . . , kn) ∈ Nn

such that ki > 1 for some i and ∆α is pure. Then ∆α is CMt+e−k+1 but it is
not CMt+e−k, where e = dim(∆α) + 1 and k = min{ki : ki > 1} .
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Proof. We use induction on e ≥ 2. If e = 2, then dim(∆α) = 1 and ∆ should
be only in the form ∆ = ⟨x1, . . . , xn⟩. In particular, ∆α is of the form

∆α = ⟨{xi11, xi12}, {xi21, xi22}, . . . , {xir1, xir2}⟩.
It is clear that ∆α is CM1 but it is not Cohen-Macaulay.

Assume that e > 2. Let {xij} ∈ ∆α. We want to show that link∆α(xij) is
CMe−k. Consider the following cases:

Case 1: ki > 1. Then

link∆α(xij) = ⟨{xi}α\xij⟩ ∗ (link∆(xi))
α.

(link∆(xi))
α is of dimension e − ki − 1 and, by induction hypothesis, it is

CMt+e−ki−k+1. On the other hand, ⟨{xi}α\xij⟩ is Cohen-Macaulay of dimen-
sion ki − 2. Therefore, it follows from Theorem 1.1(i) of [4] that link∆α(xij) is
CMt+e−k.

Case 2: ki = 1. Then

link∆α(xij) = (link∆(xi))
α

which is of dimension e− 2 and, by induction, it is CMt+e−k.
Now suppose that e > 2 and ks = k for some s ∈ [n]. Let F be a facet of ∆

such that xs belongs to F .
If dim(∆) = 0, then kl = k for all l ∈ [n]. In particular, e = k. It is clear

that ∆α is not CMt+e−k (or Cohen-Macaulay). So suppose that dim(∆) > 0.
Choose xi ∈ F\xs. Then

link∆α(xij) = ⟨{xi}α\xij⟩ ∗ (link∆(xi))
α.

By induction hypothesis, (link∆(xi))
α is not CMt+e−ki−k. It follows from The-

orem 3.1(ii) of [4] that link∆α(xij) is not CMt+e−k−1. Therefore ∆α is not
CMt+e−k. □

Corollary 4.4. Let ∆ be a non-empty Cohen-Macaulay simplicial complex on
[n]. Then for any α ∈ Nn, with α ̸= 1, ∆α can never be Cohen-Macaulay.

5. The contraction functor

Let ∆ = ⟨F1, . . . , Fr⟩ be a simplicial complex on [n]. Consider the equiva-
lence relation ‘∼’ on the vertices of ∆ given by

xi ∼ xj ⇔ ⟨xi⟩ ∗ link∆(xi) = ⟨xj⟩ ∗ link∆(xj).

In fact ⟨xi⟩ ∗ link∆(xi) is the cone over link∆(xi), and the elements of ⟨xi⟩ ∗
link∆(xi) are those faces of ∆, which contain xi. Hence ⟨xi⟩ ∗ link∆(xi) =
⟨xj⟩∗ link∆(xj), means the cone with vertex xi is equal to the cone with vertex
xj . In other words, xi ∼ xj is equivalent to saying that for a facet F ∈ ∆, F
contains xi if and only if it contains xj .

Let [m̄] = {ȳ1, . . . , ȳm} be the set of equivalence classes under ∼. Let ȳi =
{xi1, . . . , xiai}. Set α = (a1, . . . , am). For Ft ∈ ∆, define Gt = {ȳi : ȳi ⊂ Ft}
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and let Γ be a simplicial complex on the vertex set [m] with facets G1, . . . , Gr.
We call Γ the contraction of ∆ by α and α is called the vector obtained from
contraction.

For example, consider the simplicial complex ∆ = ⟨x1x2x3, x2x3x4, x1x4x5,
x2x3x5⟩ on the vertex set [5] = {x1, . . . , x5}. Then ȳ1 = {x1}, ȳ2 = {x2, x3},
ȳ3 = {x4}, ȳ4 = {x5} and α = (1, 2, 1, 1). Therefore, the contraction of ∆ by α
is Γ = ⟨ȳ1ȳ2, ȳ2ȳ3, ȳ1ȳ3ȳ4, ȳ2ȳ4⟩ a complex on the vertex set [4̄] = {ȳ1, . . . , ȳ4}.

Remark 5.1. Note that if ∆ is a pure simplicial complex then the contraction
of ∆ is not necessarily pure (see the above example). In the special case where
the vector α = (k1, . . . , kn) ∈ Nn and ki = kj for all i, j, it is easy to check that
in this case ∆ is pure if and only if ∆α is pure. Another case is introduced in
the following proposition.

Proposition 5.2. Let ∆ be a simplicial complex on [n] and assume that α =
(k1, . . . , kn) ∈ Nn satisfies the following condition:

(†) for all facets F,G ∈ ∆, if xi ∈ F\G and xj ∈ G\F then ki = kj.
Then ∆ is pure if and only if ∆α is pure.

Proof. Let ∆ be a pure simplicial complex and let F,G ∈ ∆ be two facets of
∆. Then

|Fα| − |Gα| =
∑
xi∈F

ki −
∑
xi∈G

ki =
∑

xi∈F\G

ki −
∑

xi∈G\F

ki.

Now the condition (†) implies that |Fα| = |Gα|. This means that all facets of
∆α have the same cardinality.

Let ∆α be pure. Suppose that F,G are two facets in ∆. If |F | > |G|
then |F\G| > |G\F |. Therefore

∑
xi∈F\G ki >

∑
xi∈G\F ki. This implies that

|Fα| =
∑

xi∈F ki >
∑

xi∈G ki = |Gα|, a contradiction. □

There is a close relationship between a simplicial complex and its contrac-
tion. In fact, the expansion of the contraction of a simplicial complex is the
same complex. The precise statement is the following.

Lemma 5.3. Let Γ be the contraction of ∆ by α. Then Γα ∼= ∆.

Proof. Suppose that ∆ and Γ are on the vertex sets [n] = {x1, . . . , xn} and
[m̄] = {ȳ1, . . . , ȳm}, respectively. Let α = (a1, . . . , am). For ȳi ∈ Γ, suppose
that {ȳi}α = {ȳi1, . . . , ȳiai}. So Γα is a simplicial complex on the vertex set
[m̄]α = {ȳij : i = 1, . . . ,m, j = 1, . . . , ai}. Now define φ : [m̄]α → [n] by
φ(ȳij) = xij . Extending φ, we obtain the isomorphism φ : Γα → ∆. □

Proposition 5.4. Let ∆ be a simplicial complex and assume that ∆α is Cohen-
Macaulay for some α ∈ Nn. Then ∆ is Cohen-Macaulay.
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Proof. By Lemma 4.1(i), for all i ≤ dim(link∆F ) and all F ∈ ∆ there exists
an epimorphism θ : link∆αFα → link∆F such that

H̃i(link∆αFα;K)/ ker(θ) ∼= H̃i(link∆F ;K).

Now suppose that i < dim(link∆F ). Then i < dim(link∆αGα) and by Cohen-

Macaulayness of ∆α, H̃i(link∆αFα;K) = 0. Therefor H̃i(link∆F ;K) = 0.
This means that ∆ is Cohen-Macaulay. □

It follows from Proposition 5.4 that:

Corollary 5.5. The contraction of a Cohen-Macaulay simplicial complex ∆ is
Cohen-Macaulay.

This can be generalized in the following theorem.

Theorem 5.6. Let Γ be the contraction of a CMt simplicial complex ∆, for
some t ≥ 0, by α = (k1, . . . , kn). If ki ≥ t for all i and Γ is pure, then Γ is
Buchsbaum.

Proof. If t = 0, then we saw in Corollary 5.5 that Γ is Cohen-Macaulay and so it
is CMt. Hence assume that t > 0. Let ∆ = ⟨F1, . . . , Fr⟩. We have to show that

H̃i(linkΓG;K) = 0, for all faces G ∈ Γ with |G| ≥ 1 and all i < dim(linkΓG).
Let G ∈ Γ with |G| ≥ 1. Then |Gα| ≥ t. It follows from Lemma 2.1 and

CMt-ness of ∆ that

H̃i(linkΓG;K) ∼= H̃i(link∆G
α;K) = 0

for i < dim(link∆G
α) and, particularly, for i < dim(linkΓG). Therefore Γ is

Buchsbaum. □

Corollary 5.7. Let Γ be the contraction of a Buchsbaum simplicial complex
∆. If Γ is pure, then Γ is also Buchsbaum.

Let G be a simple graph on the vertex set [n] and let ∆G be its independence
complex on [n], i.e., a simplicial complex whose faces are the independent vertex
sets of G. Let Γ be the contraction of ∆G . In the following we show that Γ is
the independence complex of a simple graph H. We call H the contraction of
G.

Lemma 5.8. Let G be a simple graph. The contraction of ∆G is the indepen-
dence complex of a simple graph H.

Proof. It suffices to show that IΓ is a squarefree monomial ideal generated in
degree 2. Let Γ be the contraction of ∆G and let α = (k1, . . . , kn) be the vector
obtained from the contraction. Let [n] = {x1, . . . , xn} be the vertex set of Γ.
Suppose that u = xi1 . . . xit ∈ G(IΓ). Then uα ⊂ G(IΓ)

α = G(I∆G ) = G(I(G).
Since uα = {xi1j1 . . . xitjt : 1 ≤ jl ≤ kil , 1 ≤ l ≤ t} we have t = 2 and the proof
is completed. □
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Example 5.9. Let G1 and G2 be, respectively, from left to right the following
graphs:

. .

The contraction of G1 and G2 are

.

.

The contraction of G1 is equal to itself but G2 is contracted to an edge and the
vector obtained from contraction is α = (2, 3).

We recall that a simple graph is CMt for some t ≥ 0, if the associated
independence complex is CMt.

Remark 5.10. The simple graph G′ obtained from G in Lemma 4.3 and The-
orem 4.4 of [4] is the expansion of G. Actually, suppose that G is a bipar-
tite graph on the vertex set V (G) = V ∪ W where V = {x1, . . . , xd} and
W = {xd+1, . . . , x2d}. Then for α = (n1, . . . , nd, n1, . . . , nd) we have G′ = Gα.
It follows from Theorem 4.3 that if G is CMt for some t ≥ 0 then G′ is
CMt+n−ni0+1 where n =

∑d
i=1 ni and ni0 = min{ni > 1 : i = 1, . . . , d}. This

implies that the first part of Theorem 4.4 of [4] is an immediate consequence
of Theorem 4.3 for t = 0.
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