Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 1, pp. 223-232

Title:
Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor

Author(s):

R. Rahmati-Asghar

Published by Iranian Mathematical Society

COHEN-MACAULAY-NESS IN CODIMENSION FOR SIMPLICIAL COMPLEXES AND EXPANSION FUNCTOR

R. RAHMATI-ASGHAR

(Communicated by Siamak Yassemi)

Abstract

In this paper we show that expansion of a Buchsbaum simplicial complex is CM_{t}, for an optimal integer $t \geq 1$. Also, by imposing extra assumptions on a CM_{t} simplicial complex, we prove that it can be obtained from a Buchsbaum complex. Keywords: CM_{t} simplicial complex, expansion functor, simple graph MSC(2010): Primary: 13H10; Secondary: 05C75.

1. Introduction

Set $[n]:=\left\{x_{1}, \ldots, x_{n}\right\}$. Let K be a field and $S=K\left[x_{1}, \ldots, x_{n}\right]$, a polynomial ring over K. Let Δ be a simplicial complex over $[n]$. For an integer $t \geq 0$, Haghighi, Yassemi and Zaare-Nahandi introduced the concept of CM_{t}-ness which is the pure version of simplicial complexes Cohen-Macaulay in codimension t studied in [7]. A reason for the importance of CM_{t} simplicial complexes is that they generalize two notions for simplicial complexes: being Cohen-Macaulay and Buchsbaum. In particular, by the results from [9,11], CM_{0} is the same as Cohen-Macaulayness and CM_{1} is identical with Buchsbaum property.

In [3], the authors described some combinatorial properties of CM_{t} simplicial complexes and gave some characterizations of them and generalized some results of $[6,8]$. Then, in [4], they generalized a characterization of CohenMacaulay bipartite graphs from [5] and [2] on unmixed Buchsbaum graphs.

Bayati and Herzog defined the expansion functor in the category of finitely generated multigraded S-modules and studied some homological behaviors of this functor (see [1]). The expansion functor helps us to present other multigraded S-modules from a given finitely generated multigraded S-module which may have some of algebraic properties of the primary module. This allows to introduce new structures of a given multigraded S-module with the same

[^0]properties and especially to extend some homological or algebraic results for larger classes (see for example [1, Theorem 4.2]. There are some combinatorial versions of expansion functor which we will recall in this paper.

The purpose of this paper is the study of behaviors of expansion functor on CM_{t} complexes. We first recall some notations and definitions of CM_{t} simplicial complexes in Section 1. In the next section we describe the expansion functor in three contexts, the expansion of a simplicial complex, the expansion of a simple graph and the expansion of a monomial ideal. We show that there is a close relationship between these three contexts. In Section 3 we prove that the expansion of a CM_{t} complex Δ with respect to α is $\mathrm{CM}_{t+e-k+1}$ but it is not CM_{t+e-k} where $e=\operatorname{dim}\left(\Delta^{\alpha}\right)+1$ and k is the minimum of the components of α (see Theorem 4.3). In Section 4, we introduce a new functor, called contraction, which acts in contrast to expansion functor. As a main result of this section we show that if the contraction of a CM_{t} complex is pure and all components of the vector obtained from contraction are greater than or equal to t then it is Buchsbaum (see Theorem 5.6). The section is finished with a view towards the contraction of simple graphs.

2. Preliminaries

Let t be a non-negative integer. We recall from [3] that a simplicial complex Δ is called CM_{t} or Cohen-Macaulay in codimension t if it is pure and for every face $F \in \Delta$ with $\#(F) \geq t, \operatorname{link}_{\Delta}(F)$ is Cohen-Macaulay. Every CM_{t} complex is also CM_{r} for all $r \geq t$. For $t<0, \mathrm{CM}_{t}$ means CM_{0}. The properties CM_{0} and CM_{1} are the same as Cohen-Macaulay-ness and Buchsbaum-ness, respectively.

The link of a face F in a simplicial complex Δ is denoted by $\operatorname{link}_{\Delta}(F)$ and is

$$
\operatorname{link}_{\Delta}(F)=\{G \in \Delta: G \cap F=\emptyset, G \cup F \in \Delta\}
$$

The following lemma is useful for checking the CM_{t} property of simplicial complexes:

Lemma 2.1. ([3, Lemma 2.3]) Let $t \geq 1$ and let Δ be a nonempty complex. Then Δ is CM_{t} if and only if Δ is pure and $\operatorname{link}_{\Delta}(v)$ is CM_{t-1} for every vertex $v \in \Delta$.

Let $\mathcal{G}=(V(\mathcal{G}), E(\mathcal{G}))$ be a simple graph with vertex set V and edge set E. The independence complex of \mathcal{G} is the complex $\Delta_{\mathcal{G}}$ with vertex set V and with faces consisting of independent sets of vertices of \mathcal{G}. Thus F is a face of $\Delta_{\mathcal{G}}$ if and only if there is no edge of \mathcal{G} joining any two vertices of F.

The edge ideal of a simple graph \mathcal{G}, denoted by $I(\mathcal{G})$, is an ideal of S generated by all squarefree monomials $x_{i} x_{j}$ with $x_{i} x_{j} \in E(\mathcal{G})$.

A simple graph \mathcal{G} is called CM_{t} if $\Delta_{\mathcal{G}}$ is CM_{t} and it is called unmixed if $\Delta_{\mathcal{G}}$ is pure.

For a monomial ideal $I \subset S$, We denote by $G(I)$ the unique minimal set of monomial generators of I.

3. The expansion functor in combinatorial and algebraic concepts

In this section we define the expansion of a simplicial complex and recall the expansion of a simple graph from [10] and the expansion of a monomial ideal from [1]. We show that these concepts are intimately related to each other.
(1) Let $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$. For $F=\left\{x_{i_{1}}, \ldots, x_{i_{r}}\right\} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}$ define

$$
F^{\alpha}=\left\{x_{i_{1} 1}, \ldots, x_{i_{1} k_{i_{1}}}, \ldots, x_{i_{r} 1}, \ldots, x_{i_{r} k_{i_{r}}}\right\}
$$

as a subset of $[n]^{\alpha}:=\left\{x_{11}, \ldots, x_{1 k_{1}}, \ldots, x_{n 1}, \ldots, x_{n k_{n}}\right\} . F^{\alpha}$ is called the expansion of F with respect to α.

For a simplicial complex $\Delta=\left\langle F_{1}, \ldots, F_{r}\right\rangle$ on [n], we define the expansion of Δ with respect to α as the simplicial complex

$$
\Delta^{\alpha}=\left\langle F_{1}^{\alpha}, \ldots, F_{r}^{\alpha}\right\rangle
$$

(2) The duplication of a vertex x_{i} of a simple graph \mathcal{G} was first introduced by Schrijver [10] and it means extending its vertex set $V(\mathcal{G})$ by a new vertex x_{i}^{\prime} and replacing $E(\mathcal{G})$ by

$$
E(\mathcal{G}) \cup\left\{\left(e \backslash\left\{x_{i}\right\}\right) \cup\left\{x_{i}^{\prime}\right\}: x_{i} \in e \in E(\mathcal{G})\right\}
$$

For the n-tuple $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$, with positive integer entries, the expansion of the simple graph \mathcal{G} is denoted by \mathcal{G}^{α} and it is obtained from \mathcal{G} by successively duplicating $k_{i}-1$ times every vertex x_{i}.
(3) In [1] Bayati and Herzog defined the expansion functor in the category of finitely generated multigraded S-modules and studied some homological behaviors of this functor. We recall the expansion functor defined by them only in the category of monomial ideals and refer the reader to [1] for more general case in the category of finitely generated multigraded S-modules.

Let S^{α} be a polynomial ring over K in the variables

$$
x_{11}, \ldots, x_{1 k_{1}}, \ldots, x_{n 1}, \ldots, x_{n k_{n}}
$$

Whenever $I \subset S$ is a monomial ideal minimally generated by u_{1}, \ldots, u_{r}, the expansion of I with respect to α is defined by

$$
I^{\alpha}=\sum_{i=1}^{r} P_{1}^{\nu_{1}\left(u_{i}\right)} \ldots P_{n}^{\nu_{n}\left(u_{i}\right)} \subset S^{\alpha}
$$

where $P_{j}=\left(x_{j 1}, \ldots, x_{j k_{j}}\right)$ is a prime ideal of S^{α} and $\nu_{j}\left(u_{i}\right)$ is the exponent of x_{j} in u_{i}.

It was shown in [1] that the expansion functor is exact and so $(S / I)^{\alpha}=$ S^{α} / I^{α}. In the following lemmas we describe the relations between the above three concepts of expansion functor.

Lemma 3.1. For a simplicial complex Δ we have $I_{\Delta}^{\alpha}=I_{\Delta^{\alpha}}$. In particular, $K[\Delta]^{\alpha}=K\left[\Delta^{\alpha}\right]$.

Proof. Let $\Delta=\left\langle F_{1}, \ldots, F_{r}\right\rangle$. Since $I_{\Delta}=\bigcap_{i=1}^{r} P_{F_{i}^{c}}$, it follows from Lemma 1.1 in [1] that $I_{\Delta}^{\alpha}=\bigcap_{i=1}^{r} P_{F_{i}^{c}}^{\alpha}$. The result is obtained by the fact that $P_{F_{i}^{c}}^{\alpha}=$ $P_{\left(F_{i}^{\alpha}\right)^{c} .}$

Let $u=x_{i_{1}} \ldots x_{i_{t}} \in S$ be a monomial and $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$. We set $u^{\alpha}=G\left((u)^{\alpha}\right)$ and for a set A of monomials in S, A^{α} is defined by

$$
A^{\alpha}=\bigcup_{u \in A} u^{\alpha}
$$

One can easily obtain the following lemma.
Lemma 3.2. Let $I \subset S$ be a monomial ideal and $\alpha \in \mathbb{N}^{n}$. Then $G\left(I^{\alpha}\right)=$ $G(I)^{\alpha}$.

Lemma 3.3. For a simple graph \mathcal{G} on the vertex set $[n]$ and $\alpha \in \mathbb{N}^{n}$ we have $I\left(\mathcal{G}^{\alpha}\right)=I(\mathcal{G})^{\alpha}$.

Proof. Let $\alpha=\left(k_{1}, \ldots, k_{n}\right)$ and $P_{j}=\left(x_{j 1}, \ldots, x_{j k_{j}}\right)$. Then it follows from Lemma 11(ii,iii) of [1] that

$$
\begin{aligned}
I\left(\mathcal{G}^{\alpha}\right)= & \left(x_{i r} x_{j s}: x_{i} x_{j} \in E(\mathcal{G}), 1 \leq r \leq k_{i}, 1 \leq s \leq k_{j}\right)=\sum_{x_{i} x_{j} \in E(\mathcal{G})} P_{i} P_{j} \\
& =\sum_{x_{i} x_{j} \in E(\mathcal{G})}\left(x_{i}\right)^{\alpha}\left(x_{j}\right)^{\alpha}=\left(\sum_{x_{i} x_{j} \in E(\mathcal{G})}\left(x_{i}\right)\left(x_{j}\right)\right)^{\alpha}=I(\mathcal{G})^{\alpha} .
\end{aligned}
$$

4. The expansion of a CM_{t} complex

The following proposition gives us some information about the expansion of a simplicial complex which are useful in the proof of the next results.

Proposition 4.1. Let Δ be a simplicial complex and let $\alpha \in \mathbb{N}^{n}$.
(i) For all $i \leq \operatorname{dim}(\Delta)$, there exists an epimorphism $\theta: \tilde{H}_{i}\left(\Delta^{\alpha} ; K\right) \rightarrow$ $\tilde{H}_{i}(\Delta ; K)$.

In particular in this case

$$
\tilde{H}_{i}\left(\Delta^{\alpha} ; K\right) / \operatorname{ker}(\theta) \cong \tilde{H}_{i}(\Delta ; K)
$$

(ii) For $F \in \Delta^{\alpha}$ such that $F=G^{\alpha}$ for some $G \in \Delta$, we have

$$
\operatorname{link}_{\Delta^{\alpha}}(F)=\left(\operatorname{link}_{\Delta}(G)\right)^{\alpha}
$$

(iii) For $F \in \Delta^{\alpha}$ such that $F \neq G^{\alpha}$ for every $G \in \Delta$, we have

$$
\operatorname{link}_{\Delta^{\alpha}} F=\left\langle U^{\alpha} \backslash F\right\rangle * \operatorname{link}_{\Delta^{\alpha}} U^{\alpha}
$$

for some $U \in \Delta$ with $F \subseteq U^{\alpha}$. Here * means the join of two simplicial complexes.

In the third case, $\operatorname{link}_{\Delta^{\alpha}} F$ is a cone and so acyclic, i.e., $\tilde{H}_{i}\left(\operatorname{link}_{\Delta^{\alpha}} F ; K\right)=0$ for all $i>0$.

Proof. (i) Consider the map $\pi:[n]^{\alpha} \rightarrow[n]$ by $\pi\left(x_{i j}\right)=x_{i}$ for all i, j. Let the simplicial map $\varphi: \Delta^{\alpha} \rightarrow \Delta$ be defined by $\varphi\left(\left\{x_{i_{1} j_{1}}, \ldots, x_{i_{q} j_{q}}\right\}\right)=\left\{\pi\left(x_{i_{1} j_{1}}\right), \ldots\right.$, $\left.\pi\left(x_{i_{q} j_{q}}\right)\right\}=\left\{x_{i_{1}}, \ldots, x_{i_{q}}\right\}$. Actually, φ is an extension of π to Δ^{α} by linearity. Define $\varphi_{\#}: \tilde{\mathcal{C}}_{q}\left(\Delta^{\alpha} ; K\right) \rightarrow \tilde{\mathcal{C}}_{q}(\Delta ; K)$, for each q, by
$\varphi_{\#}\left(\left[x_{i_{0} j_{0}}, \ldots, x_{i_{q} j_{q}}\right]\right)= \begin{cases}0 & \text { if for some indices } i_{r}=i_{t} \\ {\left[\varphi\left(\left\{x_{i_{0} j_{0}}\right\}\right), \ldots, \varphi\left(\left\{x_{i_{q} j_{q}}\right\}\right)\right] \text { otherwise } .}\end{cases}$
It is clear from the definitions of $\tilde{\mathcal{C}}_{q}\left(\Delta^{\alpha} ; K\right)$ and $\tilde{\mathcal{C}}_{q}(\Delta ; K)$ that $\varphi_{\#}$ is welldefined. Also, define $\varphi_{\alpha}: \tilde{H}_{i}\left(\Delta^{\alpha} ; K\right) \rightarrow \tilde{H}_{i}(\Delta ; K)$ by

$$
\varphi_{\alpha}: z+B_{i}\left(\Delta^{\alpha}\right) \rightarrow \varphi_{\#}(z)+B_{i}(\Delta)
$$

It is trivial that φ_{α} is onto.
(ii) The inclusion $\operatorname{link}_{\Delta^{\alpha}}(F) \supseteq\left(\operatorname{link}_{\Delta}(G)\right)^{\alpha}$ is trivial. So we show the reverse inclusion. Let $\sigma \in \operatorname{link}_{\Delta^{\alpha}}\left(G^{\alpha}\right)$. Then $\sigma \cap G^{\alpha}=\emptyset$ and $\sigma \cup G^{\alpha} \in \Delta^{\alpha}$. We want to show $\pi(\sigma) \in \operatorname{link}_{\Delta}(G)$. Because in this case, $\pi(\sigma)^{\alpha} \in\left(\operatorname{link}_{\Delta}(G)\right)^{\alpha}$ and since $\sigma \subseteq \pi(\sigma)^{\alpha}$, we conclude that $\sigma \in\left(\operatorname{link}_{\Delta}(G)\right)^{\alpha}$.

Clearly, $\pi(\sigma) \cup G \in \Delta$. To show that $\pi(\sigma) \cap G=\emptyset$, suppose, on the contrary, that $x_{i} \in \pi(\sigma) \cap G$. Then $x_{i j} \in \sigma$ for some j. Especially, $x_{i j} \in G^{\alpha}$. Therefore $\sigma \cap G^{\alpha} \neq \emptyset$, a contradiction.
(iii) Let $\tau \in \operatorname{link}_{\Delta^{\alpha}} F$. Let $\tau \cap \pi(F)^{\alpha}=\emptyset$. It follows from $\tau \cup F \in \Delta^{\alpha}$ that $\pi(\tau)^{\alpha} \cup \pi(F)^{\alpha} \in \Delta^{\alpha}$. Now by $\tau \subset \pi(\tau)^{\alpha}$ it follows that $\tau \cup \pi(F)^{\alpha} \in \Delta^{\alpha}$. Hence $\tau \in \operatorname{link}_{\Delta^{\alpha}}\left(\pi(F)^{\alpha}\right)$. So we suppose that $\tau \cap \pi(F)^{\alpha} \neq \emptyset$. We write $\tau=\left(\tau \cap \pi(F)^{\alpha}\right) \cup\left(\tau \backslash \pi(F)^{\alpha}\right)$. It is clear that $\tau \cap \pi(F)^{\alpha} \subset \pi(F)^{\alpha} \backslash F$ and $\tau \backslash \pi(F)^{\alpha} \in \operatorname{link}_{\Delta^{\alpha}} \pi(F)^{\alpha}$. The reverse inclusion is trivial.

Remark 4.2. Let $\Delta=\left\langle x_{1} x_{2}, x_{2} x_{3}\right\rangle$ be a complex on $[3]$ and $\alpha=(2,1,1) \in \mathbb{N}^{3}$. Then $\Delta^{\alpha}=\left\langle x_{11} x_{12} x_{21}, x_{21} x_{31}\right\rangle$ is a complex on $\left\{x_{11}, x_{12}, x_{21}, x_{31}\right\}$. Notice that Δ is pure but Δ^{α} is not. Therefore, the expansion of a pure simplicial complex is not necessarily pure.

Theorem 4.3. Let Δ be a simplicial complex on $[n]$ of dimension $d-1$ and let $t \geq 0$ be the least integer that Δ is CM_{t}. Suppose that $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ such that $k_{i}>1$ for some i and Δ^{α} is pure. Then Δ^{α} is $\mathrm{CM}_{t+e-k+1}$ but it is not CM_{t+e-k}, where $e=\operatorname{dim}\left(\Delta^{\alpha}\right)+1$ and $k=\min \left\{k_{i}: k_{i}>1\right\}$.

Proof. We use induction on $e \geq 2$. If $e=2$, then $\operatorname{dim}\left(\Delta^{\alpha}\right)=1$ and Δ should be only in the form $\Delta=\left\langle x_{1}, \ldots, x_{n}\right\rangle$. In particular, Δ^{α} is of the form

$$
\Delta^{\alpha}=\left\langle\left\{x_{i_{1} 1}, x_{i_{1} 2}\right\},\left\{x_{i_{2} 1}, x_{i_{2} 2}\right\}, \ldots,\left\{x_{i_{r} 1}, x_{i_{r} 2}\right\}\right\rangle
$$

It is clear that Δ^{α} is CM_{1} but it is not Cohen-Macaulay.
Assume that $e>2$. Let $\left\{x_{i j}\right\} \in \Delta^{\alpha}$. We want to show that $\operatorname{link}_{\Delta^{\alpha}}\left(x_{i j}\right)$ is CM_{e-k}. Consider the following cases:

Case 1: $k_{i}>1$. Then

$$
\operatorname{link}_{\Delta^{\alpha}}\left(x_{i j}\right)=\left\langle\left\{x_{i}\right\}^{\alpha} \backslash x_{i j}\right\rangle *\left(\operatorname{link}_{\Delta}\left(x_{i}\right)\right)^{\alpha}
$$

$\left(\operatorname{link}_{\Delta}\left(x_{i}\right)\right)^{\alpha}$ is of dimension $e-k_{i}-1$ and, by induction hypothesis, it is $\mathrm{CM}_{t+e-k_{i}-k+1}$. On the other hand, $\left\langle\left\{x_{i}\right\}^{\alpha} \backslash x_{i j}\right\rangle$ is Cohen-Macaulay of dimension $k_{i}-2$. Therefore, it follows from Theorem 1.1(i) of [4] that $\operatorname{link}_{\Delta^{\alpha}}\left(x_{i j}\right)$ is CM_{t+e-k}.

Case 2: $k_{i}=1$. Then

$$
\operatorname{link}_{\Delta^{\alpha}}\left(x_{i j}\right)=\left(\operatorname{link}_{\Delta}\left(x_{i}\right)\right)^{\alpha}
$$

which is of dimension $e-2$ and, by induction, it is CM_{t+e-k}.
Now suppose that $e>2$ and $k_{s}=k$ for some $s \in[n]$. Let F be a facet of Δ such that x_{s} belongs to F.

If $\operatorname{dim}(\Delta)=0$, then $k_{l}=k$ for all $l \in[n]$. In particular, $e=k$. It is clear that Δ^{α} is not CM_{t+e-k} (or Cohen-Macaulay). So suppose that $\operatorname{dim}(\Delta)>0$. Choose $x_{i} \in F \backslash x_{s}$. Then

$$
\operatorname{link}_{\Delta^{\alpha}}\left(x_{i j}\right)=\left\langle\left\{x_{i}\right\}^{\alpha} \backslash x_{i j}\right\rangle *\left(\operatorname{link}_{\Delta}\left(x_{i}\right)\right)^{\alpha}
$$

By induction hypothesis, $\left(\operatorname{link}_{\Delta}\left(x_{i}\right)\right)^{\alpha}$ is not $\mathrm{CM}_{t+e-k_{i}-k}$. It follows from Theorem 3.1(ii) of [4] that $\operatorname{link}_{\Delta^{\alpha}}\left(x_{i j}\right)$ is not $\mathrm{CM}_{t+e-k-1}$. Therefore Δ^{α} is not CM_{t+e-k}.

Corollary 4.4. Let Δ be a non-empty Cohen-Macaulay simplicial complex on $[n]$. Then for any $\alpha \in \mathbb{N}^{n}$, with $\alpha \neq \mathbf{1}, \Delta^{\alpha}$ can never be Cohen-Macaulay.

5. The contraction functor

Let $\Delta=\left\langle F_{1}, \ldots, F_{r}\right\rangle$ be a simplicial complex on $[n]$. Consider the equivalence relation ' \sim ' on the vertices of Δ given by

$$
x_{i} \sim x_{j} \Leftrightarrow\left\langle x_{i}\right\rangle * \operatorname{link}_{\Delta}\left(x_{i}\right)=\left\langle x_{j}\right\rangle * \operatorname{link}_{\Delta}\left(x_{j}\right)
$$

In fact $\left\langle x_{i}\right\rangle * \operatorname{link}_{\Delta}\left(x_{i}\right)$ is the cone over $\operatorname{link}_{\Delta}\left(x_{i}\right)$, and the elements of $\left\langle x_{i}\right\rangle *$ $\operatorname{link}_{\Delta}\left(x_{i}\right)$ are those faces of Δ, which contain x_{i}. Hence $\left\langle x_{i}\right\rangle * \operatorname{link}_{\Delta}\left(x_{i}\right)=$ $\left\langle x_{j}\right\rangle * \operatorname{link}_{\Delta}\left(x_{j}\right)$, means the cone with vertex x_{i} is equal to the cone with vertex x_{j}. In other words, $x_{i} \sim x_{j}$ is equivalent to saying that for a facet $F \in \Delta, F$ contains x_{i} if and only if it contains x_{j}.

Let $[\bar{m}]=\left\{\bar{y}_{1}, \ldots, \bar{y}_{m}\right\}$ be the set of equivalence classes under \sim. Let $\bar{y}_{i}=$ $\left\{x_{i 1}, \ldots, x_{i a_{i}}\right\}$. Set $\alpha=\left(a_{1}, \ldots, a_{m}\right)$. For $F_{t} \in \Delta$, define $G_{t}=\left\{\bar{y}_{i}: \bar{y}_{i} \subset F_{t}\right\}$
and let Γ be a simplicial complex on the vertex set $\left[m\right.$] with facets G_{1}, \ldots, G_{r}. We call Γ the contraction of Δ by α and α is called the vector obtained from contraction.

For example, consider the simplicial complex $\Delta=\left\langle x_{1} x_{2} x_{3}, x_{2} x_{3} x_{4}, x_{1} x_{4} x_{5}\right.$, $\left.x_{2} x_{3} x_{5}\right\rangle$ on the vertex set $[5]=\left\{x_{1}, \ldots, x_{5}\right\}$. Then $\bar{y}_{1}=\left\{x_{1}\right\}, \bar{y}_{2}=\left\{x_{2}, x_{3}\right\}$, $\bar{y}_{3}=\left\{x_{4}\right\}, \bar{y}_{4}=\left\{x_{5}\right\}$ and $\alpha=(1,2,1,1)$. Therefore, the contraction of Δ by α is $\Gamma=\left\langle\bar{y}_{1} \bar{y}_{2}, \bar{y}_{2} \bar{y}_{3}, \bar{y}_{1} \bar{y}_{3} \bar{y}_{4}, \bar{y}_{2} \bar{y}_{4}\right\rangle$ a complex on the vertex set $[\overline{4}]=\left\{\bar{y}_{1}, \ldots, \bar{y}_{4}\right\}$.

Remark 5.1. Note that if Δ is a pure simplicial complex then the contraction of Δ is not necessarily pure (see the above example). In the special case where the vector $\alpha=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ and $k_{i}=k_{j}$ for all i, j, it is easy to check that in this case Δ is pure if and only if Δ^{α} is pure. Another case is introduced in the following proposition.

Proposition 5.2. Let Δ be a simplicial complex on $[n]$ and assume that $\alpha=$ $\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ satisfies the following condition:
(\dagger) for all facets $F, G \in \Delta$, if $x_{i} \in F \backslash G$ and $x_{j} \in G \backslash F$ then $k_{i}=k_{j}$.
Then Δ is pure if and only if Δ^{α} is pure.
Proof. Let Δ be a pure simplicial complex and let $F, G \in \Delta$ be two facets of Δ. Then

$$
\left|F^{\alpha}\right|-\left|G^{\alpha}\right|=\sum_{x_{i} \in F} k_{i}-\sum_{x_{i} \in G} k_{i}=\sum_{x_{i} \in F \backslash G} k_{i}-\sum_{x_{i} \in G \backslash F} k_{i} .
$$

Now the condition (\dagger) implies that $\left|F^{\alpha}\right|=\left|G^{\alpha}\right|$. This means that all facets of Δ^{α} have the same cardinality.

Let Δ^{α} be pure. Suppose that F, G are two facets in Δ. If $|F|>|G|$ then $|F \backslash G|>|G \backslash F|$. Therefore $\sum_{x_{i} \in F \backslash G} k_{i}>\sum_{x_{i} \in G \backslash F} k_{i}$. This implies that $\left|F^{\alpha}\right|=\sum_{x_{i} \in F} k_{i}>\sum_{x_{i} \in G} k_{i}=\left|G^{\alpha}\right|$, a contradiction.

There is a close relationship between a simplicial complex and its contraction. In fact, the expansion of the contraction of a simplicial complex is the same complex. The precise statement is the following.

Lemma 5.3. Let Γ be the contraction of Δ by α. Then $\Gamma^{\alpha} \cong \Delta$.
Proof. Suppose that Δ and Γ are on the vertex sets $[n]=\left\{x_{1}, \ldots, x_{n}\right\}$ and $[\bar{m}]=\left\{\bar{y}_{1}, \ldots, \bar{y}_{m}\right\}$, respectively. Let $\alpha=\left(a_{1}, \ldots, a_{m}\right)$. For $\bar{y}_{i} \in \Gamma$, suppose that $\left\{\bar{y}_{i}\right\}^{\alpha}=\left\{\bar{y}_{i 1}, \ldots, \bar{y}_{i a_{i}}\right\}$. So Γ^{α} is a simplicial complex on the vertex set $[\bar{m}]^{\alpha}=\left\{\bar{y}_{i j}: i=1, \ldots, m, j=1, \ldots, a_{i}\right\}$. Now define $\varphi:[\bar{m}]^{\alpha} \rightarrow[n]$ by $\varphi\left(\bar{y}_{i j}\right)=x_{i j}$. Extending φ, we obtain the isomorphism $\varphi: \Gamma^{\alpha} \rightarrow \Delta$.

Proposition 5.4. Let Δ be a simplicial complex and assume that Δ^{α} is CohenMacaulay for some $\alpha \in \mathbb{N}^{n}$. Then Δ is Cohen-Macaulay.
 an epimorphism $\theta: \operatorname{link}_{\Delta^{\alpha}} F^{\alpha} \rightarrow \operatorname{link}_{\Delta} F$ such that

$$
\tilde{H}_{i}\left(\operatorname{link}_{\Delta^{\alpha}} F^{\alpha} ; K\right) / \operatorname{ker}(\theta) \cong \tilde{H}_{i}\left(\operatorname{link}_{\Delta} F ; K\right)
$$

Now suppose that $i<\operatorname{dim}\left(\operatorname{link}_{\Delta} F\right)$. Then $i<\operatorname{dim}\left(\operatorname{link}_{\Delta^{\alpha}} G^{\alpha}\right)$ and by CohenMacaulayness of $\Delta^{\alpha}, \tilde{H}_{i}\left(\operatorname{link}_{\Delta^{\alpha}} F^{\alpha} ; K\right)=0$. Therefor $\tilde{H}_{i}\left(\operatorname{link}_{\Delta} F ; K\right)=0$. This means that Δ is Cohen-Macaulay.

It follows from Proposition 5.4 that:
Corollary 5.5. The contraction of a Cohen-Macaulay simplicial complex Δ is Cohen-Macaulay.

This can be generalized in the following theorem.
Theorem 5.6. Let Γ be the contraction of a CM_{t} simplicial complex Δ, for some $t \geq 0$, by $\alpha=\left(k_{1}, \ldots, k_{n}\right)$. If $k_{i} \geq t$ for all i and Γ is pure, then Γ is Buchsbaum.

Proof. If $t=0$, then we saw in Corollary 5.5 that Γ is Cohen-Macaulay and so it is CM_{t}. Hence assume that $t>0$. Let $\Delta=\left\langle F_{1}, \ldots, F_{r}\right\rangle$. We have to show that $\tilde{H}_{i}\left(\operatorname{link}_{\Gamma} G ; K\right)=0$, for all faces $G \in \Gamma$ with $|G| \geq 1$ and all $i<\operatorname{dim}\left(\operatorname{link}_{\Gamma} G\right)$.

Let $G \in \Gamma$ with $|G| \geq 1$. Then $\left|G^{\alpha}\right| \geq t$. It follows from Lemma 2.1 and CM_{t}-ness of Δ that

$$
\tilde{H}_{i}\left(\operatorname{link}_{\Gamma} G ; K\right) \cong \tilde{H}_{i}\left(\operatorname{link}_{\Delta} G^{\alpha} ; K\right)=0
$$

for $i<\operatorname{dim}\left(\operatorname{link}_{\Delta} G^{\alpha}\right)$ and, particularly, for $i<\operatorname{dim}^{\left(\operatorname{link}_{\Gamma} G\right) \text {. Therefore } \Gamma \text { is }}$ Buchsbaum.

Corollary 5.7. Let Γ be the contraction of a Buchsbaum simplicial complex Δ. If Γ is pure, then Γ is also Buchsbaum.

Let \mathcal{G} be a simple graph on the vertex set $[n]$ and let $\Delta_{\mathcal{G}}$ be its independence complex on $[n]$, i.e., a simplicial complex whose faces are the independent vertex sets of G. Let Γ be the contraction of $\Delta_{\mathcal{G}}$. In the following we show that Γ is the independence complex of a simple graph \mathcal{H}. We call \mathcal{H} the contraction of \mathcal{G}.

Lemma 5.8. Let \mathcal{G} be a simple graph. The contraction of $\Delta_{\mathcal{G}}$ is the independence complex of a simple graph \mathcal{H}.

Proof. It suffices to show that I_{Γ} is a squarefree monomial ideal generated in degree 2. Let Γ be the contraction of $\Delta_{\mathcal{G}}$ and let $\alpha=\left(k_{1}, \ldots, k_{n}\right)$ be the vector obtained from the contraction. Let $[n]=\left\{x_{1}, \ldots, x_{n}\right\}$ be the vertex set of Γ. Suppose that $u=x_{i_{1}} \ldots x_{i_{t}} \in G\left(I_{\Gamma}\right)$. Then $u^{\alpha} \subset G\left(I_{\Gamma}\right)^{\alpha}=G\left(I_{\Delta_{\mathcal{G}}}\right)=G(I(\mathcal{G})$. Since $u^{\alpha}=\left\{x_{i_{1} j_{1}} \ldots x_{i_{t} j_{t}}: 1 \leq j_{l} \leq k_{i_{l}}, 1 \leq l \leq t\right\}$ we have $t=2$ and the proof is completed.

Example 5.9. Let \mathcal{G}_{1} and \mathcal{G}_{2} be, respectively, from left to right the following graphs:

The contraction of \mathcal{G}_{1} and \mathcal{G}_{2} are

The contraction of \mathcal{G}_{1} is equal to itself but \mathcal{G}_{2} is contracted to an edge and the vector obtained from contraction is $\alpha=(2,3)$.

We recall that a simple graph is CM_{t} for some $t \geq 0$, if the associated independence complex is CM_{t}.
Remark 5.10. The simple graph \mathcal{G}^{\prime} obtained from \mathcal{G} in Lemma 4.3 and Theorem 4.4 of [4] is the expansion of \mathcal{G}. Actually, suppose that \mathcal{G} is a bipartite graph on the vertex set $V(\mathcal{G})=V \cup W$ where $V=\left\{x_{1}, \ldots, x_{d}\right\}$ and $W=\left\{x_{d+1}, \ldots, x_{2 d}\right\}$. Then for $\alpha=\left(n_{1}, \ldots, n_{d}, n_{1}, \ldots, n_{d}\right)$ we have $\mathcal{G}^{\prime}=\mathcal{G}^{\alpha}$. It follows from Theorem 4.3 that if \mathcal{G} is CM_{t} for some $t \geq 0$ then \mathcal{G}^{\prime} is $\mathrm{CM}_{t+n-n_{i_{0}}+1}$ where $n=\sum_{i=1}^{d} n_{i}$ and $n_{i_{0}}=\min \left\{n_{i}>1: i=1, \ldots, d\right\}$. This implies that the first part of Theorem 4.4 of [4] is an immediate consequence of Theorem 4.3 for $t=0$.

Acknowledgment

The author would like to thank Hassan Haghighi from K. N. Toosi University of Technology and Rahim Zaare-Nahandi from University of Tehran for careful reading an earlier version of this article and for their helpful comments. The research was in part supported by a grant from IPM (No. 93130029).

References

[1] S. Bayati and J. Herzog, Expansions of monomial ideals and multigraded modules, Rocky Mountain J. Math. 44 (2014), no. 6, 1781-1804.
[2] D. Cook and U. Nagel, Cohen-Macaulay graphs and face vectors of flag complexes, SIAM J. Discrete Math. 26 (2012), no. 1, 89-101.
[3] H. Haghighi, S. Yassemi and R. Zaare-Nahandi, A generalization of k-Cohen-Macaulay simplicial complexes, Ark. Mat. 50 (2012), no. 2, 279-290.
[4] H. Haghighi, S. Yassemi, R. Zaare-Nahandi, Cohen-Macaulay-ness in codimension for bipartite graphs, Proc. Amer. Math. Soc., Accepted.
[5] J. Herzog and T. Hibi, Distributive lattices, bipartite graphs and Alexander duality, J. Algebraic Combin. 22 (2005), no. 3, 289-302.
[6] T. Hibi, Level rings and algebras with straightening laws, I, 117 (1988), no. 2, 343-362.
[7] E. Miller, I. Novik and E. Swartz, Face rings of simplicial complexes with singularities, Math. Ann. 351 (2011), no. 4, 857-875.
[8] M. Miyazaki, Characterizations of Buchsbaum complexes, Manuscripta Math. 63 (1989), no. 2, 245-254.
[9] G. A. Reisner, Cohen-Macaulay quotients of polynomial rings, Adv. Math. 21 (1976) 30-49.
[10] A. Schrijver, Combinatorial Optimization, Algorithms and Combinatorics, 24, SpringerVerlag, Berlin, 2003.
[11] P. Schenzel, On the number of faces of simplicial complexes and the purity of Frobenius, Math. Z. 178 (1981), no. 1, 125-142.
[12] R. P. Stanley, Combinatorics and Commutative Algebra, Second Edition, Birkhäuser, 1995.
(Rahim Rahmati-Asghar) Department of Mathematics, Faculty of Basic Sciences, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
AND
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: rahmatiasghar.r@gmail.com

[^0]: Article electronically published on February 22, 2016.
 Received: 30 September 2014, Accepted: 7 December 2014.

