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Abstract. In this paper, we introduce the notion of the radical of a
PMV -algebra A and we charactrize radical A via elements of A. Also,

we introduce the notion of the radical of a ·-ideal in PMV -algebras. Sev-
eral characterizations of this radical is given. We define the notion of a
semimaximal ·-ideal in a PMV -algebra. Finally we show that A/I has
no nilpotent elements if and only if I is a semi-maximal ·-ideal of A.
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1. Introduction

C. Chang introduced the notion of MV -algebras to provide a proof for the
completeness of the  Lukasiewicz axioms for infinite valued propositional logic
[2]. In fact MV -algebras are now algebraic counterparts of  Lukasiewicz many
valued logics.

A. Dvurecenskij and A. Di Nola in [4] introduced the notion of product
MV -algebras, i.e., MV -algebras with product which is defined on the whole
MV -algebra and is associative and left/right distributive with respect to a
partial addition. They concluded that the category of product MV -algebras
is categorically equivalent to the category of assocative unital l-rings. Some
examples are presented and compared with MV -algebras. In addition, they
introduced and studied MV f -algebras [4].

In [9], we introduced the notion of the radical of an ideal in a MV -algebra
and gave several characterizations of this radical. We defined the notion of a
semi-maximal ideal in an MV -algebra and proved some theorems which give
relations between this semi-maximal ideal and other types of ideals in MV -
algebras [9].

In this paper, we introduce the notion of the radical of a PMV -algebra A
and give several characterizations of radical A. We introduce the notion of the
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radical of ·-ideal of PMV -algebras. We have also presented several different
characterizations and many important properties of the radical of a ·-ideal in a
PMV -algebra. This leads us to introduce the notion of semi-maximal ·-ideal.
Finally, we show that I is a semi-maximal ·-ideal of A if and only if A/I has
no nilpotent elements of A.

2. Preliminaries

In this section, we recall some basic notions in MV -algebras and summarize
some of their basic properties. For more details about these concepts, we refer
the reader to [2–4].

Definition 2.1. [2] An MV -algebra is a structure (A, ⊕, *, 0), where ⊕ is
a binary operation, * is a unary operation, and 0 is a constant satisfying the
following conditions, for any a, b ∈ A :
(MV 1) (A,⊕,0) is an abelian monoid,
(MV 2) (a∗)∗ = a,
(MV 3) 0∗ ⊕ a = 0∗,
(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

We say that the element x ∈ A has order n, and we write ord(x) = n,
if n is the smallest natural number such that nx = 1, where 1 = 0∗ and
nx := x⊕ x⊕ · · · ⊕ x︸ ︷︷ ︸

n time

. In this case we say that the element x has a finite order,

and write ord(x) < ∞. An MV -algebra A is locally finite if every non-zero
element of A is of finite order. Also we have an = an−1⊙a and na = (n−1)a⊕a,
where a⊙ b = (a∗ ⊕ b∗)∗ [3].

If we define the auxiliary operations ⊙,∨ and ∧ on A as:

a⊙ b = (a∗ ⊕ b∗)∗, a ∨ b = a⊕ (b⊙ a∗) = b⊕ (b∗ ⊙ a),

a ∧ b = a⊙ (b⊕ a∗) = b⊙ (b∗ ⊕ a),

then (A,⊙, 1) is an abelian monoid and the structure L(A) := (A,∨,∧, 0, 1) is
a bounded distributive lattice [3].

An element a ∈ A is called complemented if there is an element b ∈ A such
that a ∨ b = 1 and a ∧ b = 0. We denote the set of complemented elements of
A by B(A).

Lemma 2.2. [3] In each MV -algebra A, the following relations hold for all
x, y, z ∈ A:
(1) x ≤ y if and only if y∗ ≤ x∗,
(2) If x ≤ y, then x⊕ z ≤ y ⊕ z and x⊙ z ≤ y ⊙ z,
(3) x ≤ y if and only if x∗ ⊕ y = 1 if and only if x⊙ y∗ = 0,
(4) x, y ≤ x⊕ y and x⊙ y ≤ x, y,
(5) x⊕ x∗ = 1 and x⊙ x∗ = 0,
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(6) If x ∈ B(A), then x⊙ x = x and x⊕ x = x,
(7) x⊙ (y ∧ z) = (x⊙ y) ∧ (x⊙ z).

An ideal in an MV -algebra is defined as:

Definition 2.3. [2] An ideal of an MV -algebra A is a nonempty subset I of
A, satisfying the following conditions:
(I1) If x ∈ I, y ∈ A and y ≤ x, then y ∈ I,
(I2) If x, y ∈ I, then x⊕ y ∈ I.
We denote the set of all ideals of an MV -algebra A by Id(A).

Definition 2.4. [3] Let I be an ideal of an MV -algebra A. Then I is proper
if I ̸= A. A proper ideal P is prime if for x, y ∈ A, x ∧ y ∈ P implies x ∈ P or
y ∈ P . Equivalently, P is prime if and only if for all x, y ∈ A, x ⊙ y∗ ∈ P or
y ⊙ x∗ ∈ P [3].

Theorem 2.5. [3,14] Let I be a proper ideal of A. Then the following state-
ments hold:
(1) Any prime ideal of A is contained in a unique maximal ideal of A,
(2) If a ∈ A−I, then there is a prime ideal P of A such that I ⊆ P and a /∈ P .
In particular for every element a ∈ A, a ̸= 0, there exists a prime ideal P such
that a /∈ P .

Definition 2.6. [9] Let I be a proper ideal of A. The intersection of all
maximal ideals of A which contain I is called the radical of I and it is denoted
by Rad(I).

Theorem 2.7. [9] Let I be a proper ideal of A. Then

Rad(I) = {a ∈ A : na⊙ a ∈ I, for all n ∈ N}.

We will denote by MV the category whose objects are MV -algebras and
whose morphisms are MV -algebra homomorphisms. A crucial result in the
theory of MV -algebras is the categorical equivalence between the category of
MV -algebras and the category of Abelian l-groups with strong unit [13]. We
recall that an lu-group is an algebra (G, +, -, 0, ∨, ∧, u), where the following
properties hold:
(a) (G, +, -, 0) is a group,
(b) (G, ∨, ∧) is a lattice,
(c) For any x, y, a, b ∈ G, x ≤ y implies a + x + b ≤ a + y + b,
(d) u > 0 is strong unit for G (that is, for all x ∈ G there is some natural
number n ≥ 1 such that −nu ≤ x ≤ nu) [1].

We refer to [1] for a detailed study of l-groups theory. Given an Abelian
l-group (G,+,0,⩽) and a positive element u > 0 in G, the interval [0, u] can
be endowed with an MV -algebra structure as follows:

x⊕ y := (x + y) ∧ u and x∗ := u− x,
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for any x, y ∈ [0, u]. Moreover, the lattice operations on [0, u] are the restric-
tion of the lattice operations on G. The MV -algebra ([0, u],⊕, ∗, 0, u) will be
denoted by [0, u]G. If G is an l-group then a strong unit is a positive element
u > 0 from G with the property that for any g ∈ G there is integer number
n ≥ 0 such that g ≤ nu. In the sequel, the Abelian l-groups with strong unit
will be simply called lu-groups. We shall denote by UG the category of lu-
groups. The elements of this category are pairs (G, u) where G is an Abelian
l-group and u is a strong unit of G. The morphisms will be l-group homo-
morphisms which preserve the strong unit. The functor that establishes the
categorical equivalence between MV and UG is

Γ : UG −→ MV.

such that Γ(G, u) := [0, u]G for any lu-group (G, u), Γ(h) := h |[0,u] for any
lu-groups homomorphism h.

The categorical equivalence between MV -algebras and lu-groups leads also
to the problem of defining a product operation on MV -algebras, in order to
obtain structures corresponding to l-rings. We recall that an l-ring [5] is a
structure (R,+, ·, 0,≤), where (R,+, 0,≤) is an l-group such that, for any x, y ∈
R

x ≥ 0 and y ≥ 0 implies x · y ≥ 0.

Definition 2.8. [4] A product MV -algebra (or PMV -algebra, for short) is a
structure (A, ⊕, *, ·, 0), where (A, ⊕, *, 0) is an MV -algebra and · is a binary
associative operation on A such that the following property is satisfied:
if x + y is defined, then x · z + y · z and z · x + z · y are defined and

(x + y) · z = x · z + y · z, z · (x + y) = z · x + z · y,

where + is a partial addition on A, as follows:

for any x, y ∈ A, x + y is defined if and only if x ≤ y∗

and in this case, x + y := x⊕ y.
If A is a PMV -algebra, then a unity for the product is an element e ∈ A

such that e · x = x · e = x for any x ∈ A. A PMV -algebra that has unity for
the product is called unital.

A ·-ideal of a PMV -algebra A is an ideal I of MV -algebra A such that a ∈ I
and b ∈ A entail a · b ∈ I and b · a ∈ I. We denote by Idp(A) the set of ·-ideals
of a PMV -algebra A.

We will refer to [4,12] for the basic properties of PMV -algebras. Obviously,
a PMV -algebra homomorphism will be an MV -algebra homomorphism which
also commutes with the product operation. We shall denote by PMV the
category of product MV -algebras with the corresponding homomorphisms.

In the sequel, an lu-ring will be a pair (R, u) where (R,⊕, ·,≤) is an l-ring
and u is a strong unit of R such that u · u ≤ u. We imply that the interval
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[0, u] of an lu-ring (R, u) is closed under the product of R. Thus, if we consider
the restriction of · to [0, u] × [0, u], then the interval [0, u] has a canonical
PMV -algebra structure:

x⊕ y := (x + y) ∧ u, x∗ := u− x, x · y := x · y,
for any 0 ≤ x, y ≤ u. We shall denote this structure by [0, u]R.

If UR is the category of lu-rings, whose objects are pairs (R, u) as above and
whose morphisms are l-rings homomorphisms which preserve the strong unit,
then we get a functor

Γ : UR → PMV,
Γ(R, u) := [0, u]R, for any lu-ring (R, u),

Γ(h) := h |[0,u] for any lu-rings homomorphism h.

In [4] it is proved that Γ establishes a categorical equivalence between UR and
PMV.

Definition 2.9. [8] Let P be a ·-ideal of A. P is called a ·-prime if (i) P ̸= A,
(ii) for every a, b ∈ A, if a · b ∈ P , then a ∈ P or b ∈ P .

Definition 2.10. [3] An element a in MV -algebra A is said to be infinitesimal
if and only if a ̸= 0 and na ≤ a∗ for each integer n ≥ 0. The set of all
infinitesimals in A will be denoted by Inf(A).

Lemma 2.11. [4] If A is PMV -algebra, then for any a, b ∈ A,
(i) a · 0 = 0 = 0 · a,
(ii) if a ≤ b, then for any c ∈ A, a · c ≤ b · c and c · a ≤ c · b.

We recall that in an MV -algebra A, the Chang distance the function is
defined by d : A×A −→ A, d(a, b) := (a⊙ b∗) ⊕ (b⊙ a∗) [2].
In the following lemma, we state and prove some properties of PMV -algebras.

Lemma 2.12. [10] If A is a PMV -algebra, then the following properties hold
for any x, y, α ∈ A,
(a) (nx) · y = x · (ny), for any n ∈ N,
(b) x · y∗ ≤ (x · y)∗,
(c) (x · y)∗ = x∗ · y + (1 · y)∗,
(d) (α · x) ⊙ (α · y)∗ ≤ α · (x⊙ y∗),
(e) α · (x⊕ y) ≤ α · x⊕ α · y,
(f) d(α · x, α · y) ≤ α · d(x, y),
Moreover, if A is a unital PMV -algebra, then
(x · y)∗ = x∗ · y + y∗.

Lemma 2.13. [4] If A is a unital PMV -algebra, then:
(a) The unity for the product is e = 1,
(b) x · y ≤ x ∧ y for any x, y ∈ A.
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Theorem 2.14. [4] A finite MV -algebra A admits a product · such that
a · 1 = a = 1 · a for any a ∈ A if and only if A is a Boolean algebra, i.e.,
a⊕ a = a for any a ∈ A. If it is the case, then a · b = a ∧ b ∈ A.

Definition 2.15. [10] A nonempty subset of a PMV -algebra S ⊆ A is called
·-closed system in A if 1 ∈ S and x, y ∈ S implies x · y ∈ S.

We denote by S(A) the set of all ·-closed systems of A.

Remark 2.16. [10] Let A be a PMV -algebra. Then
I(a) = {x ∈ A : x ≤ y ⊕ma⊕ n(α · a), for some y ∈ I, integers n,m ≥ 0, α ∈
A}.

Proposition 2.17. [10] Let A be a PMV -algebra.
(i) If N ⊆ A is a nonempty set, then we have (N ] = {x ∈ A : x ≤ x1⊕· · ·⊕xn⊕
α1 · y1 ⊕ · · · ⊕ αm · ym for some x1, · · · , xn, y1, · · · ym ∈ N,α1, · · ·αm ∈ A},
where by (N ], we mean the ideal generated by N .

In particular, for a ∈ A,

(a] = {x ∈ A : x ≤ na⊕m(α · a) for some integer n,m ≥ 0, α ∈ A},
(ii) If I1, I2 ∈ Idp(A), then
I1∨ I2 = (I1∪ I2] = {a ∈ A : a ≤ x1⊕x2 for some x1 ∈ I1 and x2 ∈ I2}.

3. Radical of ·-ideals in PMV -algebras

From now on (A,⊕, ∗, 0) (or simply A) is a PMV -algebra.

Definition 3.1. The intersection of all maximal ·- ideals of A is called the
radical of A and it is denoted by Rad(A).

Lemma 3.2. If I is a proper ·-ideal of A, then the following are equivalent:
(i) I is a maximal ·-ideal of A,
(ii) for any a ∈ A, a /∈ I if and only if (na⊕m(α · a))∗ ∈ I, for some integers
n,m > 0 and α ∈ A.

Proof. (i) ⇒ (ii) Suppose that I is a maximal ·-ideal of A. Since a /∈ I,
I ∨ (a] = A. So by Proposition 2.17, there exist x ∈ I and n,m > 0 and α ∈ A
such that [na⊕ (m(α · a))] ⊕ x = 1. We deduce that (na⊕m(α · a))∗ ≤ x ∈ I.
This results (na⊕m(α · a))∗ ∈ I, for some n,m ∈ N and α ∈ A.

Conversely, if a ∈ I, then na ∈ I. Also, by ·-ideal property and Lemma
2.12(a), we have α(ma) ∈ I and m(α · a) = (mα) · a = α · (ma) ∈ I. So
(na⊕m(α·a)) ∈ I. Since I is a proper ·-ideal, we conclude that (na⊕m(α·a))∗ /∈
I.

(ii) ⇒ (i) Suppose there exists a ·-ideal J such that I & J . So there exists an
a ∈ J−I. Hence a /∈ I and by hypothesis, we conclude that (na⊕m(α·a))∗ ∈ I,
for some n,m ∈ N and α ∈ A. Hence (na ⊕m(α · a))∗ ∈ J . Since a ∈ J , we
obtain (na⊕m(α · a)) ∈ J . Thus 1 = (na⊕m(α · a))∗ ⊕ (na⊕m(α · a)) ∈ J ,
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Now, if x ∈ A, then x ∈ J because x ≤ 1 ∈ J . It follows that A ⊆ J . Thus
A = J . □

By the following theorem, we characterize Rad(A) via elements of A.

Theorem 3.3. Let A be a PMV -algebra A. Then
Rad(A) = {x ∈ A : nx⊕m(α · x) ≤ x∗, for any n,m ∈ N and α ∈ A}
∪Inf(A) ∪ {0}.

Proof. Suppose that kx ⊕ t(α · x) ≤ x∗, for any k, t ∈ N and α ∈ A and
0 < x /∈ Inf(A). Let x /∈ Rad(A). Then there exists a maximal ·-ideal I of A
such that x /∈ I. We see that [nx⊕m(α ·x)]⊙x = 0 ∈ I. Since x /∈ I, it follows
from Lemma 3.2, that (nx⊕m(α·x))∗ ∈ I, for some n,m ∈ N and α ∈ A. Hence
(nx⊕m(α ·x))∗⊕ [((nx⊕m(α ·a))∗)∗⊙x] ∈ I . So x ≤ (nx⊕m(α ·x))∗∨x ∈ I.
Then x ∈ I, which is a contradiction. Thus x ∈ Rad(A).

Conversely, let x ∈ Rad(A) and suppose that there exist k, t ∈ N and β ∈ A
such that kx ⊕ t(β · x) ≰ x∗ and there exists m ∈ N such that mx ≰ x∗ and
x > 0. Hence x ∈ I, for any maximal ·-ideal I and 0 ̸= [kx ⊕ t(β · x)] ⊙ x,
x > 0 and 0 ̸= mx ⊙ x, for some m ∈ N, this results nx ⊙ x ≤ x ∈ I, for all
n ∈ N. It follows from Theorem 2.7 that x ∈ Rad(I) in MV -algebra A. Also
by Theorem 2.5 (2), since mx⊙ x ̸= 0, there exists a prime ideal P of A such
that mx ⊙ (x∗)∗ = mx ⊙ x /∈ P . Since P is a prime ideal of MV -algebra A,
x∗ ⊙ (mx)∗ ∈ P . Hence by Theorem 2.5 (1), there exists a unique maximal
ideal J of A such that P ⊆ J . Therefore (mx)∗ ⊙ x∗ ∈ J . If x ∈ J , then
mx ∈ J , also we have (mx)∗ ≤ x ∨ (mx)∗ = x ⊕ (x∗ ⊙ (mx)∗) ∈ J . Thus
mx⊕ (mx)∗ = 1 ∈ J , which is a contradiction. Therefore x /∈ J . We conclude
that I ⊆ P ⊆ J and x /∈ J . Hence x /∈ Rad(I), which is a contradiction.
Therefore nx⊕m(α·x) ≤ x∗, for all n,m ∈ N and α ∈ A or 0 < x ∈ Inf(A). □

Lemma 3.4. If S is ·-closed system in A and I is a ·-ideal of A such that
S ∩ I = ∅, then there exists a ·-prime P of A such that I ⊆ P and P ∩ S = ∅.

Proof. Let T = {J ∈ Id(A) : I ⊆ J, J ∩S = ∅}. A routine application of Zorn’s
lemma shows that T has a maximal element P . Suppose by contrary that P is
not a ·-prime of A. That is, there exist a, b ∈ A such that a · b ∈ P but a /∈ P
and b /∈ P .

By the maximality of P , we deduce that P (a), P (b) /∈ T , hence P (a)∩S ̸= ∅
and P (b) ∩ S ̸= ∅, that is, there exist p1 ∈ P (a) ∩ S and p2 ∈ P (b) ∩ S. By
Remark 2.16, p1 ≤ y⊕ma⊕ n(α · a) and p2 ≤ x⊕ kb⊕ t(β · b), where x, y ∈ P
and m,n, k, t ∈ N.

Then by Lemma 2.12 (e), we have p1 · p2 ≤ x · y⊕ x ·ma⊕ x · n(α · a) ⊕ kb ·
y ⊕ kb ·ma⊕ kb · n(α · a) ⊕ t(β · b) · y ⊕ t(β · b) ·ma⊕ t(β · b) · n(α · a).

Since x, y ∈ P and a · b ∈ P , we imply that p1 · p2 ∈ P but p1 · p2 ∈ S, hence
P ∩ S ̸= ∅, which is a contradiction. Hence P is a ·-prime of A. □
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Definition 3.5. Let I be a proper ·-ideal of A. The intersection of all ·-prime
ideals of A which contain I is called the radical of I and it is denoted by Rad(I).
If there are not ·-prime ideals of A containing I, then Rad(I) = A.

Example 3.6. Let Ω = {1, 2} and A = P(Ω), which is a PMV -algebra with
⊕ = ∪ and ⊙ = · = ∩. Obviously, P1 = {∅, {1}} and P2 = {∅, {2}} are ·-
prime ideals of A. Hence Rad(P1) = P1 and Rad{∅, {2}} = P2 and Rad{∅} =
{∅, {1}} ∩ {∅, {2}} = {∅}.

Example 3.7. Let M2(R) be the ring of square matrices of order 2 with real
elements and 0 be the matrix with all of its entries 0. If we define the order
relation on components A = (aij)i,j=1,2 ≥ 0 iff aij ≥ 0 for all i, j = 1, 2 such

that v =

(
1/2 1/2
1/2 1/2

)
, then A = Γ(M2(R), v) = [0, v] is a PMV -algebra.

Obviously, Id(A) = {{0}, A}. In [8], it is showed that P = {0} is not a ·-prime
ideal of A. Hence Rad{0} = A.

Example 3.8. Let X be a compact topological space and C(X) be the Riesz
space of the real continuous functions defined on X, then the constant function
1(x) = 1, for any x ∈ X is a strong unit in C(X). Then A = Γ(C(X), 1) with
the usual product of functions is a PMV -algebra. Consider P = {0} (0 is the
zero function). It is clear that P is a ·-prime ideal of A. Hence Rad({0}) = {0}.

Example 3.9. Let G = ⊕{Zi}i∈N be the lexicographic product of denumerable
infinite copies of the abelian l-group Z of the relative integers and ei ∈ G such
that eik = 0 if k ̸= i and eik = 1 if k = i, then G with the usual product is an lu-
ring. It follows from [4] that A = Γ(G, u) = [0, u] is a PMV -algebra, where Γ is
a functor from the category of abelian lu-ring to the category PMV -algebras
and u = (1, 0, 0, 0, . . .) is the strong unit of A, where ≤ is the lexicographic
order on G.

If we set Pi =< (0, ei) >, then Pi ⊆ Pj , for i > j. We have (0, e1) · (0, e2) =
0 ∈ Pi, while (0, e1) /∈ Pi, (0, e2) /∈ Pi, i ̸= 1, 2, hence Pi is not a ·-prime ideal
of A. Thus Rad(Pi) = A.

By the following lemma, we characterize Rad(I) via elements of A, where I
is an arbitrary ·-ideal of A.

Lemma 3.10. Let I be ·-ideal of A. Then

Rad(I) = {a ∈ A : an = a · a · · · · · a ∈ I, for some n ∈ N}.

Proof. Set T = {a ∈ A : an ∈ I, for some n > 0}. Let r ∈ T . Then there
exists an integer number n > 0 such that rn ∈ I.

Now for any ·-prime ideal P containing I, we have rn ∈ P . Since P is a
·-prime ideal of A, r ∈ P . Hence T ⊆ Rad(I).

Conversely, let r ∈ Rad(I). We show that r ∈ T . By contrary, suppose that
r /∈ T , so rn /∈ I, for all n > 0. Consider S = {rn ⊕ x : n ∈ N ∪ {0}, x ∈ I}.
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Firstly, S is ·-closed system in A. By Theorem 2.12(e),for x, y ∈ I and n,m ∈ N,
we have

(rn ⊕ x) · (rm ⊕ y) ≤ rn+m ⊕ rn · y ⊕ x · rm ⊕ x · y︸ ︷︷ ︸
z

,

= rn+m ⊕ z,

for some z ∈ I. Hence S is a ·-closed system.
Now, we claim that S ∩ I = ∅. If a ∈ S ∩ I, then there exist n ∈ N∪{0} and

x ∈ I such that a = rn ⊕ x. Hence rn ≤ a ∈ I, we conclude that rn ∈ I, which
is a contradiction. Thus S ∩ I = ∅. It follows from Theorem 3.4 that there
exists a ·-prime ideal P of A such that I ⊆ P and P ∩ S = ∅. Hence r ∈ P
and r = r⊕ 0 ∈ S. Therefore r ∈ P ∩ S, which is a contradiction. This results
r ∈ T . Thus Rad(I) ⊆ T and the proof is complete. □

We recall that x ∈ I → J if and only if (x] ∩ I ⊆ J , for ideals I and J of A,
where I → J = {x ∈ A|I ∩ (x] ⊆ J} [14].

Theorem 3.11. Let I and J be proper ·-ideals of A and a, b ∈ A. Then the
following condition hold:
(1) If x ∈ B(A), for any x ∈ A, then a⊕ b ∈ I,
(2) If I ⊆ J , then Rad(I) ⊆ Rad(J),
(3) If A is a unital PMV -algebra, then Rad(I) = A iff I = A,
(4) Rad(Rad(I)) = Rad(I),
(5) Rad(I) ∪Rad(J) ⊆ Rad(I ∪ J ],
(6) Rad(I) → Rad(J) ⊆ I → Rad(J),
(7) Rad(I → J) ⊆ Rad(I → Rad(J)),
(8) If for every a ∈ I there exists k ∈ N such that ka ∈ J , then Rad(I) ⊆
Rad(J).

Proof. (1) Let a, b ∈ Rad(I). Then a⊕ b ∈ Rad(I) and (a⊕ b)n ∈ I, for some
n ∈ N. It follows from Lemma 2.14 that (a ⊕ b)n = (a ⊕ b). We deduce that
a⊕ b ∈ I.

(2) It is clear.
(3) Let Rad(I) = A. Then 1 ∈ Rad(I), so 1 = 1n ∈ I, for some n ∈ N.

Therefore I = A. The converse is clear.
(4) By (2), we have Rad(I) ⊆ Rad(Rad(I)). It is enough to show that

Rad(Rad(I)) ⊆ Rad(I). Let x ∈ Rad(Rad(I)). Then there exists n ∈ N such
that xn ∈ Rad(I). We imply that (xn)m ∈ I, for some m ∈ N. Hence xnm ∈ I.
Therefore x ∈ Rad(I), that is Rad(Rad(I)) ⊆ Rad(I). Thus Rad(Rad(I)) =
Rad(I).

(5) The proof is clear by (2).
(6) Let x ∈ Rad(I) → Rad(J). Then (x] ∩ Rad(I) ⊆ Rad(J). Hence

I ∩ (x] ⊆ Rad(J), that is x ∈ I → Rad(J).
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(7) Let x ∈ Rad(I → J). Then xn ∈ I → J , for some n ∈ N. Hence
I ∩ (xn] ⊆ J ⊆ Rad(J), for some n ∈ N. Hence xn ∈ I → Rad(J), for some
n ∈ N, so x ∈ Rad(I → Rad(J)).

(8) Let a ∈ I. Assume that there is k ∈ N such that ka ∈ J . We have
a ≤ ka, thus a ∈ J . Hence I ⊆ J and by (2), we have Rad(I) ⊆ Rad(J). □

In the following example, we show that the inclusions in parts (2) and (5)
of Theorem 3.11 could be proper.

Example 3.12. Consider PMV -algebra A = P (Ω) as in Example 3.6, we
have Rad(P1) ∪ Rad(P2) = P1 ∪ P2 = {∅, {1}, {2}}, but {1, 2} ∈ (P1 ∪ P2] ⊆
Rad(P2 ∪P2], since {1, 2} = {1}⊕{2}, then {1, 2} ∈ Rad(P1 ∪P2] but {1, 2} /∈
Rad(P1) ∪ Rad(P2). Hence Rad(P1) ∪ Rad(P2) ̸= Rad(P1 ∪ P2], therefore the
equality of Theorem 3.11 (5), is not true in general.

Also, in Example 3.9, we have Rad(Pi) = Rad({(0,0)}) = A, while A ⊈
{(0,0)}, hence the converse of Theorem 3.11, (2) is not true in general.

Theorem 3.13. Let {Ii}i∈I be a family of proper ·-ideals of A. Then

Rad(∩i∈IIi) = ∩i∈IRad(Ii).

Proof. We have ∩i∈IIi ⊆ Ii ⊆ Rad(Ii), for all i ∈ I. Then by Theorem 3.11
(2), we get that Rad(∩i∈IIi) ⊆ Rad(Ii) for all i ∈ I. Therefore Rad(∩i∈IIi) ⊆
∩i∈IRad(Ii).

Conversely, let x ∈ ∩i∈IRad(Ii). Then x ∈ Rad(Ii), for all i ∈ I and so
xn ∈ Ii, for all i ∈ I and for some n ∈ N. Hence xn ∈ ∩i∈IIi, for some n ∈ N,
that is x ∈ Rad(∩i∈IIi). Therefore Rad(∩i∈IIi) = ∩i∈IRad(Ii).

□
Proposition 3.14. Let f : A → B be a PMV -homomorphism. Then Rad(Ker(f)) =
f−1(Rad({0})).

Proof. By Theorem 3.11, we have

a ∈ Rad(ker(f)) ⇔ an ∈ ker(f), for some n ∈ N,
⇔ f(an) = 0, for some n ∈ N,
⇔ f(a)n = 0, for some n ∈ N,
⇔ f(a) ∈ Rad({0}),

⇔ a ∈ f−1(Rad({0})).

□
Theorem 3.15. Let I be a proper ·-ideal of A. Then Rad(I) ∩B(A) ⊆ I.

Proof. Let x ∈ Rad(I) ∩ B(A). Then x ∈ Rad(I) and x ∈ B(A). So xn ∈ I,
for some n ∈ N and by Lemma 2.14, xn = x · x · · · ·x = x ∧ x · · · ∧ x = x ∈ I.
Hence x ∈ I. Therefore Rad(I) ∩B(A) ⊆ I. □
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Corollary 3.16. Rad({0}) ∩B(A) = {0}.

By the following example we show that the inclusion in Theorem 3.15 could
be proper.

Example 3.17. In Example 3.9, it is clear that B(A) = {(0,0), u}, hence
Rad(Pi) ∩B(A) = Pi ∩ {(0,0), u} = {(0,0)} ≠ Pi.

Theorem 3.18. Let I be a proper ·-ideal of A. Then the following statements
hold:
(1) Rad({0}/I) = Rad(I)/I,
(2) If Rad(I) ⊆ B(A), then Rad(I) = I and B(A/Rad(I)) = B(A)/Rad(I),
(3) If a is of finite order, then a/Rad(I) is of finite order, for any a ∈ A.

Proof. (1) In the following by I ⊆ N , we means N is a ·-ideal of A containing
I, then we have

Rad({0}/I) =
∩

N∈Spec(A)
I⊆N

(N/I) = (
∩

N∈Spec(A)
I⊆N

N)/I = Rad(I)/I.

(2) Let Rad(I) ⊆ B(A). By Theorem 3.15, we have Rad(I) = I and

B(A)/Rad(I) = {e/Rad(I) : e ∈ B(A)},
= {e/Rad(I) : e ∨ e∗ = 1},
= {e/Rad(I) : e/Rad(I) ∨ (e/Rad(I))∗ = 1/Rad(I)},
= B(A/Rad(I)).

(3) Suppose that 0 ̸= a ∈ A is of finite order. Then there exists n ∈ N such
that na = 1, for all 0 ̸= a ∈ A. Hence

1/Rad(I) = na/Rad(I) = n(a/Rad(I)).

□
Note. It follows from Theorem 3.18(3) that, if A is locally finite MV -algebra,

then A/Rad(I) is locally finite.
In the following example, we show that converse of Theorem 3.18(3), is not

true in general.

Example 3.19. In Example 3.6, P1 = {∅, {1}} is a ·-ideal of A. We get
Rad(P1) = P1 and {2}/Rad(P1) = {1, 2}/Rad(P1). Since d({2}, {1, 2}) =
{2} ⊙ {1, 2}∗ ⊕ {1, 2} ⊙ {2}∗ = ∅ ⊕ {1} = {1} ∈ P1. Hence {2}/Rad(P1) ∈
A/Rad(P1) is of finite order, while {2} is not of finite order.

Definition 3.20. The set of nilpotent elements of a PMV -algebra A is

Nil(A) = {x ∈ A : xn = x · · . . . · x = 0, for some n ≥ 1}.

Corollary 3.21. Let I be a ·-ideal of a PMV -algebra A. Then Nil(A) ⊆
Rad(I).
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Remark 3.22. If I is a ·-ideal of A, then from Lemma 3.10 a ∈ Rad(I) if and
only if a/I ∈ Nil(A/I).

4. Semi-maximal ·-ideals in PMV -algebras

Definition 4.1. Let I be a proper ideal of A. If Rad(I) = I, then I is called
a semi-maximal ·-ideal of A.

By Lemma 3.10, a ·-ideal I of A is a semi-maximal if and only if

I = {a ∈ A : an ∈ I for some n ∈ N}.

Example 4.2. In Example 3.6, we have Rad(P1) = P1, hence P1 is a semi-
maximal ·-ideal.

Example 4.3. In Example 3.9, {(0,0)} is not a semi-maximal ·-ideal of A.

Proposition 4.4. Let A,B be PMV -algebras and f : A → B be a PMV -
homomorphism. Then the following statements hold:
(a) If I is a semi-maximal ·-ideal of B, then f−1(I) is a semi-maximal ·-ideal
of A,
(b) If f is onto and I is a semi-maximal ·-ideal of A with Ker(f) ⊆ I, then
f(I) is a semi-maximal ·-ideal of B.

Proof. (a) It is enough to show that f−1(Rad(I)) = Rad(f−1(I)), since then
f−1(I) = f−1(Rad(I)) = Rad(f−1(I)). Now, for x ∈ A, we have

x ∈ f−1(Rad(I)) ⇔ f(x)n ∈ I, for some n ∈ N,
⇔ f(xn) ∈ I, for some n ∈ N,
⇔ xn ∈ f−1(I), for some n ∈ N,
⇔ x ∈ Rad(f−1(I)).

(b) Let I be a semi-maximal ·-ideal of A. We can easily check that f(I) is a
·-ideal of B. It is sufficient to show that Rad(f(I)) = f(Rad(I)) = f(I).

Let x ∈ f(Rad(I)). Then there exists t ∈ Rad(I) such that x = f(t). Hence
tn ∈ I, for some n ∈ N. This results xn = f(t)n ∈ f(I), for some n ∈ N, we
obtain x ∈ Rad(f(I)). Then f(Rad(I)) ⊆ Rad(f(I)).

Conversely, let x ∈ Rad(f(I)). Then xn ∈ f(I), for some n ∈ N. Since f is
onto, there exists t ∈ I such that x = f(t). Thus for some n ∈ N, we have

f(t)n ∈ f(I) ⇒ f(t)n = f(c), for some c ∈ I,

⇒ tn ⊙ c∗ ∈ Kerf ⊆ I,

⇒ [tn ⊙ c∗] ⊕ c ∈ I, ,

⇒ tn ≤ c ∨ tn ∈ I,
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⇒ tn ∈ I,

⇒ t ∈ Rad(I),

⇒ x ∈ f(Rad(I)),

⇒ Rad(f(I)) ⊆ f(Rad(I)).

Therefore f(I) is a semi-maximal ·-ideal of B. □

Theorem 4.5. Let I be a ·-ideal of A. Then the following statements hold:
(1) Rad(I) is the smallest semi-maximal ·-ideal of A such that I ⊆ Rad(I),
(2) Rad(I)/I is a semi-maximal ·-ideal of A/I.

Proof. (1) By Theorem 3.11(4), Rad(I) is a semi-maximal ·-ideal of A. Let J
be a semi-maximal ·-ideal such that I ⊆ J . Then Rad(I) ⊆ Rad(J) = J .
(2) We have Rad(I)/I ⊆ Rad(Rad(I)/I). We show that Rad(Rad(I)/I) ⊆
Rad(I)/I. Take a/I ∈ Rad(Rad(I)/I), then (a/I)n ∈ Rad(I)/I, for some
n ∈ N. Hence (an)/I = b/I, for some b ∈ Rad(I) and n ∈ N, so d(an, b) ∈ I ⊆
Rad(I). Therefore ((an)⊙b∗)⊕ [b⊙ (an)∗] ∈ Rad(I) and b ∈ Rad(I). It follows
that [(an)⊙b∗]⊕b ∈ Rad(I) and (an)∨b ∈ Rad(I). Hence an ∈ Rad(I), for some
n ∈ N, that is a ∈ Rad(Rad(I)). Thus a/I ∈ Rad(Rad(I))/I = Rad(I)/I. □

Corollary 4.6. Let {Ii}i∈I be finite family of semi-maximal ·-ideals of A.

Then
∩
i∈I

Ii is a semi-maximal ·-ideal of A.

Proof. Let {Ii} be finite family of semi-maximal ideals of A. Hence Rad(Ii) =
Ii, for every i ∈ I, so by Theorem 3.11, we have

Rad(
∩
i∈I

Ii) =
∩
i∈I

Rad(Ii) =
∩
i∈I

Ii.

□

By the following theorem we prove that I is a semi-maximal ·-ideal of A if
and only if A/I has no nilpotent elements of A.

Theorem 4.7. If A is a PMV -algebra and I is a ·-ideal of A, then A/I has
no nilpotent elements if and only if I is a semi-maximal ·-ideal of A.

Proof. Suppose that A/I has no nilpotent elements and a ∈ Rad(I). Then
from Lemma 3.10, we deduce that an ∈ I, for some integer n > 0. So (a/I)n =
(an)/I = 0/I. Since A/I has no nilpotent elements, a/I = 0/I. This implies
a ∈ I. Therefore Rad(I) ⊆ I and I is a semi-maximal ·-ideal of A.

Conversely, let I be a semi-maximal ideal of A and 0 ̸= a/I be a nilpotent
element of A/I. Then (a/I)n = an/I = 0/I, for some integer n > 0. Hence
an ∈ I, for some integer n > 0 and so a ∈ Rad(I). Since I is a semi-maximal
·-ideal of A, a ∈ Rad(I) = I, a ∈ I. So a/I = 0/I, which is a contradiction.
Therefore A/I has no nilpotent elements. □
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5. Conclusion

MV -algebras were originally introduced by C. Chang in [2] in order to give
an algebraic counterpart of the  Lukasiewics many valued logic.

A. Dvurecenskij and A. Di Nola in [4] introduced the notion of PMV -
algebras, that is MV -algebras whose product operation (·) is defined on the
whole MV -algebra.

In this paper, we introduced the notion of the radical of a PMV -algebra and
charactrized radical A via elements of A. We also presented several different
characterizations and many important properties of the radical of a ·-ideal in a
PMV -algebra. We introduced the notion of a semi-maximal ·-ideal. We proved
that if I is a ·-ideal of a PMV -algebra A, I is a semi-maximal ·-ideal of A if
and only if A/Rad(I) has no nilpotent elements.
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