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ABSTRACT. In this paper, we introduce the notion of the radical of a
PMYV-algebra A and we charactrize radical A via elements of A. Also,
we introduce the notion of the radical of a --ideal in PMV-algebras. Sev-
eral characterizations of this radical is given. We define the notion of a
semimaximal --ideal in a PMV-algebra. Finally we show that A/I has
no nilpotent elements if and only if I is a semi-maximal --ideal of A.
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1. Introduction

C. Chang introduced the notion of MV-algebras to provide a proof for the
completeness of the Lukasiewicz axioms for infinite valued propositional logic
[2]. In fact MV-algebras are now algebraic counterparts of Lukasiewicz many
valued logics.

A. Dvurecenskij and A. Di Nola in [4] introduced the notion of product
MV -algebras, i.e., MV-algebras with product which is defined on the whole
MV-algebra and is associative and left/right distributive with respect to a
partial addition. They concluded that the category of product MV -algebras
is categorically equivalent to the category of assocative unital [-rings. Some
examples are presented and compared with MV -algebras. In addition, they
introduced and studied MV f-algebras [4].

In [9], we introduced the notion of the radical of an ideal in a MV -algebra
and gave several characterizations of this radical. We defined the notion of a
semi-maximal ideal in an M V-algebra and proved some theorems which give
relations between this semi-maximal ideal and other types of ideals in MV-
algebras [9].

In this paper, we introduce the notion of the radical of a PMV-algebra A
and give several characterizations of radical A. We introduce the notion of the
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radical of --ideal of PMV-algebras. We have also presented several different
characterizations and many important properties of the radical of a --ideal in a
PMYV-algebra. This leads us to introduce the notion of semi-maximal --ideal.
Finally, we show that I is a semi-maximal --ideal of A if and only if A/I has
no nilpotent elements of A.

2. Preliminaries

In this section, we recall some basic notions in M V-algebras and summarize
some of their basic properties. For more details about these concepts, we refer
the reader to [2—4].

Definition 2.1. [2] An MV-algebra is a structure (4, @, *, 0), where & is
a binary operation, * is a unary operation, and 0 is a constant satisfying the
following conditions, for any a,b € A :
(MV1) (A, 0) is an abelian monoid,

(MV2) (a*)" =
(MV3) o*em_o*
(MV4) (a*@b)*®b=(b*®a) Da.

We say that the element z € A has order n, and we write ord(z) = n,
if n is the smallest natural number such that nz = 1, where 1 = 0* and
nr:=xc@®xd---Hx. Inthis case we say that the element = has a finite order,

n  time
and write ord(x) < oo. An MV-algebra A is locally finite if every non-zero
element of A is of finite order. Also we have a” = a"~'®a and na = (n—1)a®a,
where a ©® b = (a* © b*)* [3].
If we define the auxiliary operations ®,V and A on A as:

a®b=(a"®b)", aVb=a®(0Oa")=bd (0 ©a),

aNb=a0b®a")=b0 (b"®a),
then (A, ®,1) is an abelian monoid and the structure L(A) := (A, V,A,0,1) is
a bounded distributive lattice [3].
An element a € A is called complemented if there is an element b € A such

that a Vb =1 and a A b = 0. We denote the set of complemented elements of
A by B(A).

Lemma 2.2. [3] In each MV -algebra A, the following relations hold for all
z,y, 2 € A:

(1) z <y if and only if y* < z*,

(2) Ifr <y, thenzdz<ydzandrOz<yoz,

B)xz<yifand onlyif x* @y =1 if and only if t ©y* =0,

(4 z,y<z®yandz Oy < z,y,

B)zdz*=1andxOa* =0,
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(6) If r € B(A), thenx@x =z andx®x =z,
(MzoWAz)=(@oOy) A(zo2).

An ideal in an MV -algebra is defined as:

Definition 2.3. [2] An ideal of an MV-algebra A is a nonempty subset I of
A, satisfying the following conditions:
(I)Ifzxel,yec Aand y <z, theny € I,

(I2) Ifz,y €I, then x Py € I

We denote the set of all ideals of an MV-algebra A by Id(A).

Definition 2.4. [3] Let I be an ideal of an MV-algebra A. Then [ is proper
if I #£ A. A proper ideal P is prime if for z,y € A, x Ay € P implies x € P or
y € P. Equivalently, P is prime if and only if for all z,y € A, x © y* € P or
yoz* e P[]

Theorem 2.5. [9,1/] Let I be a proper ideal of A. Then the following state-
ments hold:

(1) Any prime ideal of A is contained in a unique mazimal ideal of A,

(2) Ifa € A—1, then there is a prime ideal P of A such that I C P and a ¢ P.
In particular for every element a € A, a # 0, there exists a prime ideal P such

that a ¢ P.

Definition 2.6. [9] Let I be a proper ideal of A. The intersection of all
maximal ideals of A which contain I is called the radical of I and it is denoted
by Rad(I).

Theorem 2.7. [9] Let I be a proper ideal of A. Then
Rad(I)={a€ A:na©acl, foral neN}

We will denote by MV the category whose objects are MV -algebras and
whose morphisms are M V-algebra homomorphisms. A crucial result in the
theory of MV-algebras is the categorical equivalence between the category of
MYV -algebras and the category of Abelian [-groups with strong unit [13]. We
recall that an lu-group is an algebra (G, +, -, 0, V, A, u), where the following
properties hold:

(a) (G, +, -, 0) is a group,

(b) (G, Vv, A) is a lattice,

(c) For any z,y,a,b € G, z <y impliesa+x +b < a+y+b,

(d) w > 0 is strong unit for G (that is, for all z € G there is some natural
number n > 1 such that —nu < z < nu) [1].

We refer to [1] for a detailed study of [-groups theory. Given an Abelian
l-group (G, +,0,<) and a positive element v > 0 in G, the interval [0, ] can
be endowed with an MV-algebra structure as follows:

r@y:=(x+y)Au and z":=u-—uz,
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for any z,y € [0,u]. Moreover, the lattice operations on [0, u] are the restric-
tion of the lattice operations on G. The MV-algebra ([0, u], ®, *,0,u) will be
denoted by [0,u]g. If G is an I-group then a strong unit is a positive element
u > 0 from G with the property that for any g € G there is integer number
n > 0 such that ¢ < nu. In the sequel, the Abelian [-groups with strong unit
will be simply called lu-groups. We shall denote by UG the category of lu-
groups. The elements of this category are pairs (G, u) where G is an Abelian
l[-group and u is a strong unit of G. The morphisms will be l-group homo-
morphisms which preserve the strong unit. The functor that establishes the
categorical equivalence between MV and UG is

I: UG — M.

such that I'(G,u) := [0,u]g for any lu-group (G,u), T'(h):=h [ for any
lu-groups homomorphism h.

The categorical equivalence between MV -algebras and lu-groups leads also
to the problem of defining a product operation on MV -algebras, in order to
obtain structures corresponding to l-rings. We recall that an l-ring [5] is a
structure (R, +, -, 0, <), where (R, +, 0, <) is an l-group such that, for any x,y €
R

x >0 and y > 0 implies x -y > 0.

Definition 2.8. [1] A product MV-algebra (or PMV-algebra, for short) is a
structure (A, @, *, -, 0), where (A, @, *, 0) is an MV-algebra and - is a binary
associative operation on A such that the following property is satisfied:

if x +y is defined, then - 2 +y - z and z - x + z - y are defined and

@ty) z=z-ztyz 2 (@ty)=zatzy,
where + is a partial addition on A, as follows:
for any z,y € A, x+y is defined if and only if z < y*

and in this case, t +y =z D y.

If A is a PMV-algebra, then a unity for the product is an element e € A
such that e-x =z -e =z for any z € A. A PMV-algebra that has unity for
the product is called unital.

A -ideal of a PMV-algebra A is an ideal I of MV-algebra A such that a € T
and b€ Aentail a-b e I and b-a € I. We denote by Id,(A) the set of --ideals
of a PMV-algebra A.

We will refer to [4,12] for the basic properties of PMV-algebras. Obviously,
a PMYV -algebra homomorphism will be an MV -algebra homomorphism which
also commutes with the product operation. We shall denote by PMYV the
category of product MV-algebras with the corresponding homomorphisms.

In the sequel, an lu-ring will be a pair (R, u) where (R, ®,-, <) is an [-ring
and u is a strong unit of R such that u - u < u. We imply that the interval
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[0,u] of an lu-ring (R, u) is closed under the product of R. Thus, if we consider
the restriction of - to [0,u] x [0,u], then the interval [0,u] has a canonical
PMYV-algebra structure:

z@y:=(x+y Au, z":=u—z, z-y:=zx-y,
for any 0 < 2,y < u. We shall denote this structure by [0, u]g.

If UR is the category of lu-rings, whose objects are pairs (R, u) as above and
whose morphisms are [-rings homomorphisms which preserve the strong unit,
then we get a functor

I':UR — PMV,

I'(R,u) := [0,u]g, for any lu-ring (R, u),
I'(h) := h|jo, for any lu-rings homomorphism h.

In [4] it is proved that I' establishes a categorical equivalence between UR and

PMYV.

Definition 2.9. [8] Let P be a -ideal of A. P is called a --prime if (i) P # A,
(i) for every a,be€ A,ifa-be P, thena € Porbe P.

Definition 2.10. [3] An element a in MV-algebra A is said to be infinitesimal
if and only if @ # 0 and na < a* for each integer n > 0. The set of all
infinitesimals in A will be denoted by Inf(A).

Lemma 2.11. [/] If A is PMV -algebra, then for any a,b € A,
(1)a-0=0=0-a,
(i) if a < b, then for anyc € A, a-c<b-candc-a<c-b.

We recall that in an MV-algebra A, the Chang distance the function is
defined by d: A x A — A, d(a,b) == (a@b*)® (boa*) [2].
In the following lemma, we state and prove some properties of PM V -algebras.

Lemma 2.12. [/0] If A is a PMV -algebra, then the following properties hold
for any x,y,a € A,
(a) (nx)-y=ax-(ny), for anyn € N,
)z -yt < (z-y)",
o) (z-y)=a-y+(1-y)",
) (a-0) @ (a )" <a-(@oy"),
Ja @Oy <a-zda-y,

Moreover, if A is a unital PMV -algebra, then
(z-y)"=a" y+y"
Lemma 2.13. [/] If A is a unital PMV -algebra, then:

(a) The unity for the product is e = 1,
(b) z-y<zAy for any z,y € A.
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Theorem 2.14. [/] A finite MV -algebra A admits a product - such that
a-1=a=1-a for any a € A if and only if A is a Boolean algebra, i.e.,
a®a=a for any a € A. If it is the case, thena-b=aNb € A.

Definition 2.15. [10] A nonempty subset of a PMV-algebra S C A is called
--closed system in A if 1 € S and z,y € S implies -y € S.
We denote by S(A) the set of all -closed systems of A.

Remark 2.16. [10] Let A be a PMV-algebra. Then
Ia)={ze€eA:z <ydmadn(a-a), for some y € I, integers n,m > 0, €
A}

Proposition 2.17. [10] Let A be a PMV -algebra.
(i) If N C A is a nonempty set, then we have (N]={z € A:x < 11P-- Bz, B
a1 Y DD an *Ym fOT some T, ,Tn,Y1, " Ym € Naala"'anL S A}:
where by (N], we mean the ideal generated by N.

In particular, for a € A,

(a] ={z€eA:x<na®m(a-a) for some integer n,m >0, € A},

(i) If I, I € Id,(A), then
Lvb=(LUL|={ac€A:a<z1®xy forsome x1 €1, and x5 € I}

3. Radical of --ideals in PMV-algebras

From now on (A, ®, *,0) (or simply A) is a PMV-algebra.

Definition 3.1. The intersection of all maximal -- ideals of A is called the
radical of A and it is denoted by Rad(A).

Lemma 3.2. If I is a proper --ideal of A, then the following are equivalent:
(1) I is a mazimal --ideal of A,

(#0) for any a € A, a ¢ I if and only if (na ® m(a-a))* € I, for some integers
n,m>0 and a € A.

Proof. (i) = (ii) Suppose that I is a maximal --ideal of A. Since a ¢ I,
IV (a] = A. So by Proposition 2.17, there exist z € I and n,m >0 and a € A
such that [na @ (m(«-a))] @z = 1. We deduce that (na ® m(a-a))* <z €.
This results (na ® m(a - a))* € I, for some n,m € N and a € A.

Conversely, if a € I, then na € I. Also, by --ideal property and Lemma
2.12(a), we have a(ma) € I and m(a -a) = (ma)-a = a-(ma) € I. So
(na®m(a-a)) € I. Since I is a proper --ideal, we conclude that (na®m(a-a))* ¢
1.

(#) = (i) Suppose there exists a --ideal J such that I & J. So there exists an
a € J—I. Hence a ¢ I and by hypothesis, we conclude that (na®m(a-a))* € I,
for some n,m € N and o € A. Hence (na ® m(a-a))* € J. Since a € J, we
obtain (na ® m(a-a)) € J. Thus 1 = (na @ m(a-a))* @ (na @m(a-a)) € J,
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Now, if x € A, then = € J because x < 1 € J. It follows that A C J. Thus
A=J. O

By the following theorem, we characterize Rad(A) via elements of A.

Theorem 3.3. Let A be a PMV -algebra A. Then
Rad(A) ={z € A:nx dm(a-z) <za*, for any n,m € N and o € A}
Ulnf(A)uU{0}.

Proof. Suppose that kx @ t(a - z) < z*, for any k,t € N and o € A and
0<az¢Inf(A). Let ¢ Rad(A). Then there exists a maximal --ideal I of A
such that x ¢ I. We see that [nz@m(a-z)|©z =0 € I. Since x ¢ I, it follows
from Lemma 3.2, that (ne@m(a-z))* € I, for some n,m € Nand o € A. Hence
(nxdm(a-z))*@[(ncdm(a-a)))*@z]€l. Sox < (nedm(a-z))*Va € I.
Then x € I, which is a contradiction. Thus = € Rad(A).

Conversely, let © € Rad(A) and suppose that there exist k,t € Nand § € A
such that kz @ ¢(8 - z) £ * and there exists m € N such that ma £ z* and
x > 0. Hence z € I, for any maximal ~ideal I and 0 # [kx ® t(S - 2)] @ =z,
x>0 and 0 # mz © z, for some m € N, this results nz © x < x € I, for all
n € N. It follows from Theorem 2.7 that x € Rad(I) in MV-algebra A. Also
by Theorem 2.5 (2), since ma ® x # 0, there exists a prime ideal P of A such
that ma © (z*)* = ma ©@ v ¢ P. Since P is a prime ideal of MV-algebra A,
x* @ (ma)* € P. Hence by Theorem 2.5 (1), there exists a unique maximal
ideal J of A such that P C J. Therefore (mz)* @ z* € J. If x € J, then
mz € J, also we have (mz)* < zV (mz)* = 2 ® (z* © (mz)*) € J. Thus
mz @ (mx)* =1 € J, which is a contradiction. Therefore = ¢ J. We conclude
that I € P C J and « ¢ J. Hence x ¢ Rad(I), which is a contradiction.
Therefore nx®m(a-z) < z*, foralln,m e Nanda € Aor 0 <z € Inf(4). O

Lemma 3.4. If S is --closed system in A and I is a --ideal of A such that
SNI=0, then there exists a --prime P of A such that I C P and PN S = 0.

Proof. Let T = {J € Id(A) : I C J,JNS = (}. A routine application of Zorn’s
lemma shows that T has a maximal element P. Suppose by contrary that P is
not a --prime of A. That is, there exist a,b € A such that a-b€ P but a ¢ P
and b ¢ P.

By the maximality of P, we deduce that P(a), P(b) ¢ T, hence P(a)NS #
and P(b) NS # ), that is, there exist p; € P(a) NS and po € P(b) N S. By
Remark 2.16, py <y Pmadn(a-a) and ps <z P kb®t(S-b), where x,y € P
and m,n, k,t € N.

Then by Lemma 2.12 (e), we have p; -p2 < z-y@z-ma®z-n(a-a) Dkb-
y®kb-madkb-n(a-a)@t(B-b)-ydt(B-b) - madt(f-b) n(a-a).

Since z,y € P and a-b € P, we imply that p; - p2 € P but p1 - ps € 5, hence
PN S # 0, which is a contradiction. Hence P is a --prime of A. O
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Definition 3.5. Let I be a proper --ideal of A. The intersection of all --prime
ideals of A which contain I is called the radical of I and it is denoted by Rad(I).
If there are not --prime ideals of A containing I, then Rad(l) = A.

Example 3.6. Let Q@ = {1,2} and A = P(2), which is a PMV-algebra with
® =Uand ® = - =nN. Obviously, P, = {0,{1}} and P> = {0,{2}} are -
prime ideals of A. Hence Rad(P;) = P; and Rad{0,{2}} = P> and Rad{0} =
{0,{1}} n{0,{2}} = {0}

Example 3.7. Let M3(R) be the ring of square matrices of order 2 with real
elements and 0 be the matrix with all of its entries 0. If we define the order
relation on components A = (a;;); j=1,2 > 0 iff a;; > 0 for all 4,5 = 1,2 such
}g 1?3 >, then A = I'(M3(R),v) = [0,v] is a PMV-algebra.
Obviously, Id(A) = {{0}, A}. In [3], it is showed that P = {0} is not a --prime
ideal of A. Hence Rad{0} = A.

that v =

Example 3.8. Let X be a compact topological space and C(X) be the Riesz
space of the real continuous functions defined on X, then the constant function
1(z) =1, for any « € X is a strong unit in C(X). Then A =TI'(C(X),1) with
the usual product of functions is a PMV-algebra. Consider P = {0} (0 is the
zero function). It is clear that P is a --prime ideal of A. Hence Rad({0}) = {0}.

Example 3.9. Let G = ¢{Z;};en be the lexicographic product of denumerable
infinite copies of the abelian {-group Z of the relative integers and e’ € G such
that et =0if k # i and e}, = 1 if k = i, then G with the usual product is an lu-
ring. It follows from [1] that A = T'(G, u) = [0,u] is a PMV-algebra, where I is
a functor from the category of abelian lu-ring to the category PMV -algebras
and v = (1,0,0,0,...) is the strong unit of A, where < is the lexicographic
order on G.

If we set P; =< (0,€’) >, then P, C P}, for i > j. We have (0,e') - (0,e?) =
0 € P;, while (0,e!) ¢ P;, (0,e?) ¢ P;, i # 1,2, hence P; is not a -prime ideal
of A. Thus Rad(P;) = A.

By the following lemma, we characterize Rad(I) via elements of A, where T
is an arbitrary --ideal of A.

Lemma 3.10. Let I be --ideal of A. Then
Rad(I)={acA:a"=a-a----- a €1, for somen € N}.

Proof. Set T = {a € A :a" € I, for some n > 0}. Let r € T. Then there
exists an integer number n > 0 such that " € I.

Now for any --prime ideal P containing I, we have r™ € P. Since P is a
--prime ideal of A, r € P. Hence T' C Rad(I).

Conversely, let 7 € Rad(I). We show that » € T'. By contrary, suppose that
r¢ T, sor™ ¢l foralln>0. Consider S ={r"@®xz:n e NU{0},z € I}.
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Firstly, S is --closed system in A. By Theorem 2.12(e),for z,y € I and n,m € N,
we have

(o) (May) < MM erm yor- "oy,

z

rTm g 2,

for some z € I. Hence S is a --closed system.

Now, we claim that SNT = . If a € SN, then there exist n € NU{0} and
x € I such that a = r™ @ z. Hence r™ < a € I, we conclude that ™ € I, which
is a contradiction. Thus SN I = . It follows from Theorem 3.4 that there
exists a --prime ideal P of A such that I C P and PN S = (. Hence r € P
and r =7 @®0 € S. Therefore r € PN S, which is a contradiction. This results
r € T. Thus Rad(I) C T and the proof is complete. |

We recall that € I — J if and only if (] NI C J, for ideals I and J of A,
where I — J = {x € A|IN(z] C J} [14].

Theorem 3.11. Let I and J be proper --ideals of A and a,b € A. Then the
following condition hold:

(1) If z € B(A), for anyx € A, thena®be I,

2) If I C J, then Rad(I) C Rad(J),

) If A is a unital PMV -algebra, then Rad(I) = A iff I = A,

) Rad(Rad(I)) = Rad(I),

) Rad(I)U Rad(J) C Rad(I U J],

) Rad(I) — Rad(J) C I — Rad(J),

) Rad(I — J) C Rad(I — Rad(J)),

) If for every a € I there exists k € N such that ka € J, then Rad(I) C
Rad(J).

(
(3
(4
(5
(6
(7
(8

Proof. (1) Let a,b € Rad(I). Then a ®b € Rad(I) and (a & b)"™ € I, for some
n € N. Tt follows from Lemma 2.14 that (a ® )" = (a ©b). We deduce that
adbel

(2) Tt is clear.

(3) Let Rad(I) = A. Then 1 € Rad(I), so 1 = 1" € I, for some n € N.
Therefore I = A. The converse is clear.

(4) By (2), we have Rad(I) C Rad(Rad(I)). It is enough to show that
Rad(Rad(I)) C Rad(I). Let x € Rad(Rad(I)). Then there exists n € N such
that ™ € Rad(I). We imply that ()™ € I, for some m € N. Hence 2™ € I.
Therefore © € Rad(I), that is Rad(Rad(I)) C Rad(I). Thus Rad(Rad(I)) =
Rad(I).

(5) The proof is clear by (2).

(6) Let © € Rad(I) — Rad(J). Then (z] N Rad(I) C Rad(J). Hence
IN(z] C Rad(J), that is € I — Rad(J).



Forouzesh 242

(7) Let € Rad(I — J). Then 2™ € I — J, for some n € N. Hence
IN(z") € J C Rad(J), for some n € N. Hence 2" € I — Rad(J), for some
n €N, so z € Rad(I — Rad(J)).

(8) Let a € I. Assume that there is k € N such that ka € J. We have
a < ka, thus a € J. Hence I C J and by (2), we have Rad(I) C Rad(J). O

In the following example, we show that the inclusions in parts (2) and (5)
of Theorem 3.11 could be proper.

Example 3.12. Consider PMV-algebra A = P(f2) as in Example 3.6, we
have Rad(Py) U Rad(P,) = Py U P, = {0,{1},{2}}, but {1,2} € (P, UP,] C
Rad(Py U Py, since {1,2} = {1} ® {2}, then {1,2} € Rad(P; U P,] but {1,2} ¢
Rad(Py) U Rad(P,). Hence Rad(Py) U Rad(Py) # Rad(Py U Ps], therefore the
equality of Theorem 3.11 (5), is not true in general.

Also, in Example 3.9, we have Rad(P;) = Rad({(0,0)}) = A, while A ¢
{(0,0)}, hence the converse of Theorem 3.11, (2) is not true in general.

Theorem 3.13. Let {I;};cr be a family of proper --ideals of A. Then
Rad(ﬂigli) = ﬁiEIRad([i)-

Proof. We have N;erl; C I; C Rad(l;), for all i € I. Then by Theorem 3.11

(2), we get that Rad(N;erl;) C Rad(I;) for all i € I. Therefore Rad(N;erl;) C

mieIRad(Ii).

Conversely, let € N;erRad(l;). Then x € Rad(l;), for all i € I and so
" € I;, for all i € I and for some n € N. Hence 2™ € N;e;I;, for some n € N,
that is « € Rad(N;erl;). Therefore Rad(N;erl;) = NierRad(l;).

O

Proposition 3.14. Let f : A — B be a PMV -homomorphism. Then Rad(Ker(f)) =
f~H(Rad({0})).
Proof. By Theorem 3.11, we have

a € Rad(ker(f)) a™ € ker(f),for some mn €N,

f(a™) =0, for some n €N,
f(a)® =0, for some n €N,
(a) € Rad({0}),

a € f~(Rad({0})).

S

Theorem 3.15. Let I be a proper --ideal of A. Then Rad(I) N B(A) C I.

Proof. Let x € Rad(I) N B(A). Then z € Rad(I) and = € B(A). So 2™ € I,
for some n € N and by Lemma 2.14, 2" =z -2 ----x =axAx---ANx=x € I.
Hence x € I. Therefore Rad(I) N B(A) C I. O
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Corollary 3.16. Rad({0}) N B(A) = {0}.

By the following example we show that the inclusion in Theorem 3.15 could
be proper.

Example 3.17. In Example 3.9, it is clear that B(A) = {(0,0),u}, hence
Rad(P;) N B(A) = P,N{(0,0),u} = {(0,0)} # P,.

Theorem 3.18. Let I be a proper --ideal of A. Then the following statements
hold:

(1) Rad({0}/1) = Rad(I)/1I,

(2) If Rad(I) C B(A), then Rad(I) =1 and B(A/Rad(I)) = B(A)/Rad(I),
(3) If a is of finite order, then a/Rad(I) is of finite order, for any a € A.
Proof. (1) In the following by I C N, we means N is a --ideal of A containing
I, then we have

Rad({0}/I)= (| N/ I)=( () N)/I=Rad(I)/I.
Netae Nedeo

(2) Let Rad(I) C B(A). By Theorem 3.15, we have Rad(I) = I and
B(A)/Rad(I) {e/Rad(I) : e € B(A)},
{e/Rad(I) :eVe* =1},

= {e/Rad(I):e/Rad(I)V (e/Rad(I))* =1/Rad(I)},

B(A/Rad(1)).

(3) Suppose that 0 # a € A is of finite order. Then there exists n € N such
that na = 1, for all 0 # a € A. Hence

1/Rad(I) = na/Rad(I) = n(a/Rad(I)).

O

Note. It follows from Theorem 3.18(3) that, if A is locally finite MV -algebra,
then A/Rad(I) is locally finite.

In the following example, we show that converse of Theorem 3.18(3), is not
true in general.

Example 3.19. In Example 3.6, P, = {0,{1}} is a ~ideal of A. We get
Rad(Py) = Py and {2}/Rad(P,) = {1,2}/Rad(Py). Since d({2},{1,2}) =
{2} o{L,2}r e {1,2} 0 {2} = 0 & {1} = {1} € P1. Hence {2}/Rad(P,) €
A/Rad(Py) is of finite order, while {2} is not of finite order.

Definition 3.20. The set of nilpotent elements of a PMV -algebra A is
Nil(A)={x € A: 2" =x--...- 2 =0, for some n > 1}.

Corollary 3.21. Let I be a --ideal of a PMV -algebra A. Then Nil(A) C
Rad(I).
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Remark 3.22. If T is a --ideal of A, then from Lemma 3.10 a € Rad(I) if and
only if a/I € Nil(A/I).

4. Semi-maximal --ideals in PMV-algebras

Definition 4.1. Let I be a proper ideal of A. If Rad(I) = I, then I is called
a semi-maximal --ideal of A.

By Lemma 3.10, a --ideal I of A is a semi-maximal if and only if
I={a€A:a" €I forsome neN}.

Example 4.2. In Example 3.6, we have Rad(P;) = Pi, hence P; is a semi-
maximal --ideal.

Example 4.3. In Example 3.9, {(0,0)} is not a semi-maximal --ideal of A.

Proposition 4.4. Let A, B be PMYV -algebras and f : A — B be a PMV -
homomorphism. Then the following statements hold:

(a) If I is a semi-maximal --ideal of B, then f~1(I) is a semi-mazimal --ideal
of A,

(b) If f is onto and I is a semi-mazimal --ideal of A with Ker(f) C I, then
f(I) is a semi-mazximal --ideal of B.

Proof. (a) It is enough to show that f~!(Rad(I)) = Rad(f~*(I)), since then
) = f~Y(Rad(I)) = Rad(f~'(I)). Now, for z € A, we have
€ f Y (Rad(I)) < f(z)* €1, forsome n €N,
& f(z™) e, for some n €N,
& " e fH(I), for some n €N,
& € Rad(f (D).
(b) Let I be a semi-maximal --ideal of A. We can easily check that f(I) is a
~-ideal of B. It is sufficient to show that Rad(f(I)) = f(Rad(I)) = f(I).
Let € f(Rad(I)). Then there exists t € Rad(I) such that z = f(¢). Hence
t" € I, for some n € N. This results z™ = f(t)" € f(I), for some n € N, we
obtain x € Rad(f(I)). Then f(Rad(I)) C Rad(f(I)).
Conversely, let © € Rad(f(I)). Then 2™ € f(I), for some n € N. Since f is
onto, there exists t € I such that x = f(t). Thus for some n € N, we have
fO e f) = f@®)"=f(c), forsome cel,
t"oc* e Kerf C1,
("ocdcel,,
t" <ecvithel,

G4
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t" eI,

t € Rad(I),

v € f(Rad(I)),

—  Rad(f(I)) C f(Rad(I)).

Therefore f(I) is a semi-maximal --ideal of B. O

P

Theorem 4.5. Let I be a --ideal of A. Then the following statements hold:
(1) Rad(I) is the smallest semi-mazimal --ideal of A such that I C Rad(I),
(2) Rad(I)/I is a semi-mazximal --ideal of A/I.

Proof. (1) By Theorem 3.11(4), Rad(I) is a semi-maximal --ideal of A. Let .J
be a semi-maximal --ideal such that I C J. Then Rad(I) C Rad(J) = J.

(2) We have Rad(I)/I C Rad(Rad(I)/I). We show that Rad(Rad(I)/I) C
Rad(I)/I. Take a/I € Rad(Rad(I)/I), then (a/I)"™ € Rad(I)/I, for some
n € N. Hence (a™)/I =b/I, for some b € Rad(I) and n € N, so d(a™,b) € I C
Rad(I). Therefore ((a™) ©b*) @& [b® (a™)*] € Rad(I) and b € Rad(I). It follows
that [(a™)©b*|®b € Rad(I) and (a™)Vb € Rad(I). Hence a™ € Rad(I), for some
n € N, that is a € Rad(Rad(I)). Thus a/I € Rad(Rad(I))/I = Rad(I)/I. O

Corollary 4.6. Let {I;};,cr be finite family of semi-maximal --ideals of A.
Then ﬂ I; is a semi-maximal --ideal of A.

iel
Proof. Let {I;} be finite family of semi-maximal ideals of A. Hence Rad(I;) =
I;, for every i € I, so by Theorem 3.11, we have

Rad((\ L)) = (| Rad(L;) = () L.

i€l i€l i€l
g

By the following theorem we prove that I is a semi-maximal --ideal of A if
and only if A/ has no nilpotent elements of A.

Theorem 4.7. If A is a PMV -algebra and I is a --ideal of A, then A/I has
no nilpotent elements if and only if I is a semi-mazimal --ideal of A.

Proof. Suppose that A/I has no nilpotent elements and a € Rad(I). Then
from Lemma 3.10, we deduce that a™ € I, for some integer n > 0. So (a/I)" =
(a™)/I = 0/I. Since A/I has no nilpotent elements, a/I = 0/I. This implies
a € I. Therefore Rad(I) C I and I is a semi-maximal --ideal of A.

Conversely, let I be a semi-maximal ideal of A and 0 # a/I be a nilpotent
element of A/I. Then (a/I)™ = a™/I = 0/1, for some integer n > 0. Hence
a™ € I, for some integer n > 0 and so a € Rad(I). Since I is a semi-maximal
-ideal of A, a € Rad(I) =1, a € I. So a/I = 0/I, which is a contradiction.
Therefore A/I has no nilpotent elements. |
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5. Conclusion

MYV -algebras were originally introduced by C. Chang in [2] in order to give
an algebraic counterpart of the Lukasiewics many valued logic.

A. Dvurecenskij and A. Di Nola in [4] introduced the notion of PMV-
algebras, that is MV-algebras whose product operation () is defined on the
whole M V-algebra.

In this paper, we introduced the notion of the radical of a PMV -algebra and
charactrized radical A via elements of A. We also presented several different
characterizations and many important properties of the radical of a --ideal in a
PMYV-algebra. We introduced the notion of a semi-maximal --ideal. We proved
that if I is a --ideal of a PMV-algebra A, I is a semi-maximal --ideal of A if
and only if A/Rad(I) has no nilpotent elements.
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