Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 2, pp. 233-246

Title:
Radical of --ideals in $P M V$-algebras
Author(s):

F. Forouzesh

RADICAL OF --IDEALS IN $P M V$-ALGEBRAS

F. FOROUZESH
(Communicated by Ali Enayat)

Abstract

In this paper, we introduce the notion of the radical of a $P M V$-algebra A and we charactrize radical A via elements of A. Also, we introduce the notion of the radical of a -ideal in $P M V$-algebras. Several characterizations of this radical is given. We define the notion of a semimaximal --ideal in a $P M V$-algebra. Finally we show that A / I has no nilpotent elements if and only if I is a semi-maximal --ideal of A. Keywords: $P M V$-algebra, --ideal, --prime ideal, radical. MSC(2010): Primary: 06D35; Secondary: 06B10.

1. Introduction

C. Chang introduced the notion of $M V$-algebras to provide a proof for the completeness of the Łukasiewicz axioms for infinite valued propositional logic [2]. In fact $M V$-algebras are now algebraic counterparts of Łukasiewicz many valued logics.
A. Dvurecenskij and A. Di Nola in [4] introduced the notion of product $M V$-algebras, i.e., $M V$-algebras with product which is defined on the whole $M V$-algebra and is associative and left/right distributive with respect to a partial addition. They concluded that the category of product $M V$-algebras is categorically equivalent to the category of assocative unital l-rings. Some examples are presented and compared with $M V$-algebras. In addition, they introduced and studied $M V f$-algebras [4].

In [9], we introduced the notion of the radical of an ideal in a $M V$-algebra and gave several characterizations of this radical. We defined the notion of a semi-maximal ideal in an $M V$-algebra and proved some theorems which give relations between this semi-maximal ideal and other types of ideals in $M V$ algebras [9].

In this paper, we introduce the notion of the radical of a $P M V$-algebra A and give several characterizations of radical A. We introduce the notion of the

[^0]radical of --ideal of $P M V$-algebras. We have also presented several different characterizations and many important properties of the radical of a --ideal in a $P M V$-algebra. This leads us to introduce the notion of semi-maximal --ideal. Finally, we show that I is a semi-maximal --ideal of A if and only if A / I has no nilpotent elements of A.

2. Preliminaries

In this section, we recall some basic notions in $M V$-algebras and summarize some of their basic properties. For more details about these concepts, we refer the reader to [2-4].

Definition 2.1. [2] An $M V$-algebra is a structure $(A, \oplus, *, 0)$, where \oplus is a binary operation, ${ }^{*}$ is a unary operation, and 0 is a constant satisfying the following conditions, for any $a, b \in A$:
$(M V 1)(\mathrm{A}, \oplus, 0)$ is an abelian monoid,
(MV2) $\left(a^{*}\right)^{*}=a$,
(MV3) $0^{*} \oplus a=0^{*}$,
$(M V 4)\left(a^{*} \oplus b\right)^{*} \oplus b=\left(b^{*} \oplus a\right)^{*} \oplus a$.
We say that the element $x \in A$ has order n, and we write $\operatorname{ord}(x)=n$, if n is the smallest natural number such that $n x=1$, where $1=0^{*}$ and $n x:=\underbrace{x \oplus x \oplus \cdots \oplus x}_{n}$ time . In this case we say that the element x has a finite order, and write $\operatorname{ord}(x)<\infty$. An $M V$-algebra A is locally finite if every non-zero element of A is of finite order. Also we have $a^{n}=a^{n-1} \odot a$ and $n a=(n-1) a \oplus a$, where $a \odot b=\left(a^{*} \oplus b^{*}\right)^{*}[3]$.

If we define the auxiliary operations \odot, \vee and \wedge on A as:

$$
\begin{gathered}
a \odot b=\left(a^{*} \oplus b^{*}\right)^{*}, \quad a \vee b=a \oplus\left(b \odot a^{*}\right)=b \oplus\left(b^{*} \odot a\right), \\
a \wedge b=a \odot\left(b \oplus a^{*}\right)=b \odot\left(b^{*} \oplus a\right),
\end{gathered}
$$

then $(A, \odot, 1)$ is an abelian monoid and the structure $L(A):=(A, \vee, \wedge, 0,1)$ is a bounded distributive lattice [3].

An element $a \in A$ is called complemented if there is an element $b \in A$ such that $a \vee b=1$ and $a \wedge b=0$. We denote the set of complemented elements of A by $B(A)$.

Lemma 2.2. [3] In each MV-algebra A, the following relations hold for all $x, y, z \in A$:
(1) $x \leq y$ if and only if $y^{*} \leq x^{*}$,
(2) If $x \leq y$, then $x \oplus z \leq y \oplus z$ and $x \odot z \leq y \odot z$,
(3) $x \leq y$ if and only if $x^{*} \oplus y=1$ if and only if $x \odot y^{*}=0$,
(4) $x, y \leq x \oplus y$ and $x \odot y \leq x, y$,
(5) $x \oplus x^{*}=1$ and $x \odot x^{*}=0$,
(6) If $x \in B(A)$, then $x \odot x=x$ and $x \oplus x=x$,
(7) $x \odot(y \wedge z)=(x \odot y) \wedge(x \odot z)$.

An ideal in an $M V$-algebra is defined as:
Definition 2.3. [2] An ideal of an $M V$-algebra A is a nonempty subset I of A, satisfying the following conditions:
(I1) If $x \in I, y \in A$ and $y \leq x$, then $y \in I$,
(I2) If $x, y \in I$, then $x \oplus y \in I$.
We denote the set of all ideals of an $M V$-algebra A by $\operatorname{Id}(A)$.
Definition 2.4. [3] Let I be an ideal of an $M V$-algebra A. Then I is proper if $I \neq A$. A proper ideal P is prime if for $x, y \in A, x \wedge y \in P$ implies $x \in P$ or $y \in P$. Equivalently, P is prime if and only if for all $x, y \in A, x \odot y^{*} \in P$ or $y \odot x^{*} \in P$ [3].

Theorem 2.5. [3, 14] Let I be a proper ideal of A. Then the following statements hold:
(1) Any prime ideal of A is contained in a unique maximal ideal of A,
(2) If $a \in A-I$, then there is a prime ideal P of A such that $I \subseteq P$ and $a \notin P$. In particular for every element $a \in A, a \neq 0$, there exists a prime ideal P such that $a \notin P$.

Definition 2.6. [9] Let I be a proper ideal of A. The intersection of all maximal ideals of A which contain I is called the radical of I and it is denoted by $\operatorname{Rad}(I)$.
Theorem 2.7. [9] Let I be a proper ideal of A. Then

$$
\operatorname{Rad}(I)=\{a \in A: n a \odot a \in I, \quad \text { for all } \quad n \in \mathbb{N}\}
$$

We will denote by $\mathcal{M} \mathcal{V}$ the category whose objects are $M V$-algebras and whose morphisms are $M V$-algebra homomorphisms. A crucial result in the theory of $M V$-algebras is the categorical equivalence between the category of $M V$-algebras and the category of Abelian l-groups with strong unit [13]. We recall that an lu-group is an algebra $(G,+,-, 0, \vee, \wedge, u)$, where the following properties hold:
(a) $(G,+,-, 0)$ is a group,
(b) (G, \vee, \wedge) is a lattice,
(c) For any $x, y, a, b \in G, x \leq y$ implies $a+x+b \leq a+y+b$,
(d) $u>0$ is strong unit for G (that is, for all $x \in G$ there is some natural number $n \geq 1$ such that $-n u \leq x \leq n u$) [1].

We refer to [1] for a detailed study of l-groups theory. Given an Abelian l-group ($\mathrm{G},+, 0, \leqslant$) and a positive element $u>0$ in G, the interval [$0, u$] can be endowed with an $M V$-algebra structure as follows:

$$
x \oplus y:=(x+y) \wedge u \quad \text { and } \quad x^{*}:=u-x
$$

for any $x, y \in[0, u]$. Moreover, the lattice operations on $[0, u]$ are the restriction of the lattice operations on G. The $M V$-algebra $([0, u], \oplus, *, 0, u)$ will be denoted by $[0, u]_{G}$. If G is an l-group then a strong unit is a positive element $u>0$ from G with the property that for any $g \in G$ there is integer number $n \geq 0$ such that $g \leq n u$. In the sequel, the Abelian l-groups with strong unit will be simply called $l u$-groups. We shall denote by $\mathcal{U G}$ the category of $l u$ groups. The elements of this category are pairs (G, u) where G is an Abelian l-group and u is a strong unit of G. The morphisms will be l-group homomorphisms which preserve the strong unit. The functor that establishes the categorical equivalence between $\mathcal{M V}$ and $\mathcal{U G}$ is

$$
\Gamma: \mathcal{U G} \longrightarrow \mathcal{M V}
$$

such that $\Gamma(G, u):=[0, u]_{G}$ for any $l u$-group $(G, u), \quad \Gamma(h):=\left.h\right|_{[0, u]}$ for any $l u$-groups homomorphism h .

The categorical equivalence between $M V$-algebras and $l u$-groups leads also to the problem of defining a product operation on $M V$-algebras, in order to obtain structures corresponding to l-rings. We recall that an l-ring [5] is a structure $(R,+, \cdot, 0, \leq)$, where $(R,+, 0, \leq)$ is an l-group such that, for any $x, y \in$ R

$$
x \geq 0 \text { and } y \geq 0 \text { implies } x \cdot y \geq 0
$$

Definition 2.8. [4] A product $M V$-algebra (or $P M V$-algebra, for short) is a structure $\left(A, \oplus,^{*}, \cdot, 0\right)$, where $\left(A, \oplus,^{*}, 0\right)$ is an $M V$-algebra and \cdot is a binary associative operation on A such that the following property is satisfied: if $x+y$ is defined, then $x \cdot z+y \cdot z$ and $z \cdot x+z \cdot y$ are defined and

$$
(x+y) \cdot z=x \cdot z+y \cdot z, \quad z \cdot(x+y)=z \cdot x+z \cdot y
$$

where + is a partial addition on A, as follows:

$$
\text { for any } x, y \in A, \quad x+y \text { is defined if and only if } x \leq y^{*}
$$

and in this case, $x+y:=x \oplus y$.
If A is a $P M V$-algebra, then a unity for the product is an element $e \in A$ such that $e \cdot x=x \cdot e=x$ for any $x \in A$. A $P M V$-algebra that has unity for the product is called unital.

A -ideal of a $P M V$-algebra A is an ideal I of $M V$-algebra A such that $a \in I$ and $b \in A$ entail $a \cdot b \in I$ and $b \cdot a \in I$. We denote by $I d_{p}(A)$ the set of -ideals of a $P M V$-algebra A.

We will refer to $[4,12]$ for the basic properties of $P M V$-algebras. Obviously, a $P M V$-algebra homomorphism will be an $M V$-algebra homomorphism which also commutes with the product operation. We shall denote by $\mathcal{P M} \mathcal{V}$ the category of product $M V$-algebras with the corresponding homomorphisms.

In the sequel, an $l u$-ring will be a pair (R, u) where (R, \oplus, \cdot, \leq) is an l-ring and u is a strong unit of R such that $u \cdot u \leq u$. We imply that the interval
$[0, u]$ of an $l u$-ring (R, u) is closed under the product of R. Thus, if we consider the restriction of \cdot to $[0, u] \times[0, u]$, then the interval $[0, u]$ has a canonical $P M V$-algebra structure:

$$
x \oplus y:=(x+y) \wedge u, \quad x^{*}:=u-x, \quad x \cdot y:=x \cdot y
$$

for any $0 \leq x, y \leq u$. We shall denote this structure by $[0, u]_{R}$.
If $\mathcal{U R}$ is the category of lu-rings, whose objects are pairs (R, u) as above and whose morphisms are l-rings homomorphisms which preserve the strong unit, then we get a functor

$$
\begin{gathered}
\Gamma: \mathcal{U} \mathcal{R} \rightarrow \mathcal{P \mathcal { M } \mathcal { V }} \\
\Gamma(R, u):=[0, u]_{R}, \text { for any lu-ring }(R, u), \\
\Gamma(h):=\left.h\right|_{[0, u]} \text { for any lu-rings homomorphism h. }
\end{gathered}
$$

In [4] it is proved that Γ establishes a categorical equivalence between $\mathcal{U} \mathcal{R}$ and $\mathcal{P M V}$.
Definition 2.9. [8] Let P be a --ideal of A. P is called a --prime if (i) $P \neq A$, (ii) for every $a, b \in A$, if $a \cdot b \in P$, then $a \in P$ or $b \in P$.

Definition 2.10. [3] An element a in $M V$-algebra A is said to be infinitesimal if and only if $a \neq 0$ and $n a \leq a^{*}$ for each integer $n \geq 0$. The set of all infinitesimals in A will be denoted by $\operatorname{Inf}(A)$.
Lemma 2.11. [4] If A is $P M V$-algebra, then for any $a, b \in A$,
(i) $a \cdot 0=0=0 \cdot a$,
(ii) if $a \leq b$, then for any $c \in A, a \cdot c \leq b \cdot c$ and $c \cdot a \leq c \cdot b$.

We recall that in an $M V$-algebra A, the Chang distance the function is defined by $d: A \times A \longrightarrow A, \quad d(a, b):=\left(a \odot b^{*}\right) \oplus\left(b \odot a^{*}\right)$ [2].
In the following lemma, we state and prove some properties of $P M V$-algebras.
Lemma 2.12. [10] If A is a $P M V$-algebra, then the following properties hold for any $x, y, \alpha \in A$,
(a) $(n x) \cdot y=x \cdot(n y)$, for any $n \in \mathbb{N}$,
(b) $x \cdot y^{*} \leq(x \cdot y)^{*}$,
(c) $(x \cdot y)^{*}=x^{*} \cdot y+(1 \cdot y)^{*}$,
(d) $(\alpha \cdot x) \odot(\alpha \cdot y)^{*} \leq \alpha \cdot\left(x \odot y^{*}\right)$,
(e) $\alpha \cdot(x \oplus y) \leq \alpha \cdot x \oplus \alpha \cdot y$,
(f) $d(\alpha \cdot x, \alpha \cdot y) \leq \alpha \cdot d(x, y)$,

Moreover, if A is a unital PMV-algebra, then
$(x \cdot y)^{*}=x^{*} \cdot y+y^{*}$.
Lemma 2.13. [4] If A is a unital PMV-algebra, then:
(a) The unity for the product is $e=1$,
(b) $x \cdot y \leq x \wedge y$ for any $x, y \in A$.

Theorem 2.14. [4] A finite MV-algebra A admits a product • such that $a \cdot 1=a=1 \cdot a$ for any $a \in A$ if and only if A is a Boolean algebra, i.e., $a \oplus a=a$ for any $a \in A$. If it is the case, then $a \cdot b=a \wedge b \in A$.
Definition 2.15. [10] A nonempty subset of a $P M V$-algebra $S \subseteq A$ is called --closed system in A if $1 \in S$ and $x, y \in S$ implies $x \cdot y \in S$.

We denote by $S(A)$ the set of all --closed systems of A.
Remark 2.16. [10] Let A be a $P M V$-algebra. Then
$I(a)=\{x \in A: x \leq y \oplus m a \oplus n(\alpha \cdot a)$, for some $y \in I$, integers $n, m \geq 0, \alpha \in$ A\}.

Proposition 2.17. [10] Let A be a PMV-algebra.
(i) If $N \subseteq A$ is a nonempty set, then we have $(N]=\left\{x \in A: x \leq x_{1} \oplus \cdots \oplus x_{n} \oplus\right.$
$\alpha_{1} \cdot y_{1} \oplus \cdots \oplus \alpha_{m} \cdot y_{m} \quad$ for some $\left.\quad x_{1}, \cdots, x_{n}, y_{1}, \cdots y_{m} \in N, \alpha_{1}, \cdots \alpha_{m} \in A\right\}$, where by (N], we mean the ideal generated by N.

In particular, for $a \in A$,

$$
(a]=\{x \in A: x \leq n a \oplus m(\alpha \cdot a) \quad \text { for some integer } n, m \geq 0, \alpha \in A\}
$$

(ii) If $I_{1}, I_{2} \in I d_{p}(A)$, then
$I_{1} \vee I_{2}=\left(I_{1} \cup I_{2}\right]=\left\{a \in A: a \leq x_{1} \oplus x_{2} \quad\right.$ for some $\quad x_{1} \in I_{1} \quad$ and $\left.\quad x_{2} \in I_{2}\right\}$.

3. Radical of --ideals in $P M V$-algebras

From now on $(A, \oplus, *, 0)$ (or simply A) is a $P M V$-algebra.
Definition 3.1. The intersection of all maximal -- ideals of A is called the radical of A and it is denoted by $\operatorname{Rad}(A)$.

Lemma 3.2. If I is a proper --ideal of A, then the following are equivalent:
(i) I is a maximal --ideal of A,
(ii) for any $a \in A, a \notin I$ if and only if $(n a \oplus m(\alpha \cdot a))^{*} \in I$, for some integers $n, m>0$ and $\alpha \in A$.

Proof. $(i) \Rightarrow$ (ii) Suppose that I is a maximal --ideal of A. Since $a \notin I$, $I \vee(a]=A$. So by Proposition 2.17, there exist $x \in I$ and $n, m>0$ and $\alpha \in A$ such that $[n a \oplus(m(\alpha \cdot a))] \oplus x=1$. We deduce that $(n a \oplus m(\alpha \cdot a))^{*} \leq x \in I$. This results $(n a \oplus m(\alpha \cdot a))^{*} \in I$, for some $n, m \in \mathbb{N}$ and $\alpha \in A$.

Conversely, if $a \in I$, then $n a \in I$. Also, by --ideal property and Lemma $2.12(a)$, we have $\alpha(m a) \in I$ and $m(\alpha \cdot a)=(m \alpha) \cdot a=\alpha \cdot(m a) \in I$. So $(n a \oplus m(\alpha \cdot a)) \in I$. Since I is a proper --ideal, we conclude that $(n a \oplus m(\alpha \cdot a))^{*} \notin$ I.
$(i i) \Rightarrow(i)$ Suppose there exists a --ideal J such that $I \varsubsetneqq J$. So there exists an $a \in J-I$. Hence $a \notin I$ and by hypothesis, we conclude that $(n a \oplus m(\alpha \cdot a))^{*} \in I$, for some $n, m \in \mathbb{N}$ and $\alpha \in A$. Hence $(n a \oplus m(\alpha \cdot a))^{*} \in J$. Since $a \in J$, we obtain $(n a \oplus m(\alpha \cdot a)) \in J$. Thus $1=(n a \oplus m(\alpha \cdot a))^{*} \oplus(n a \oplus m(\alpha \cdot a)) \in J$,

Now, if $x \in A$, then $x \in J$ because $x \leq 1 \in J$. It follows that $A \subseteq J$. Thus $A=J$.

By the following theorem, we characterize $\operatorname{Rad}(A)$ via elements of A.
Theorem 3.3. Let A be a PMV-algebra A. Then
$\operatorname{Rad}(A)=\left\{x \in A: n x \oplus m(\alpha \cdot x) \leq x^{*}\right.$, for any $n, m \in \mathbb{N}$ and $\left.\alpha \in A\right\}$
$\cup \operatorname{Inf}(A) \cup\{0\}$.
Proof. Suppose that $k x \oplus t(\alpha \cdot x) \leq x^{*}$, for any $k, t \in \mathbb{N}$ and $\alpha \in A$ and $0<x \notin \operatorname{Inf}(A)$. Let $x \notin \operatorname{Rad}(A)$. Then there exists a maximal --ideal I of A such that $x \notin I$. We see that $[n x \oplus m(\alpha \cdot x)] \odot x=0 \in I$. Since $x \notin I$, it follows from Lemma 3.2, that $(n x \oplus m(\alpha \cdot x))^{*} \in I$, for some $n, m \in \mathbb{N}$ and $\alpha \in A$. Hence $(n x \oplus m(\alpha \cdot x))^{*} \oplus\left[\left((n x \oplus m(\alpha \cdot a))^{*}\right)^{*} \odot x\right] \in I$. So $x \leq(n x \oplus m(\alpha \cdot x))^{*} \vee x \in I$. Then $x \in I$, which is a contradiction. Thus $x \in \operatorname{Rad}(A)$.

Conversely, let $x \in \operatorname{Rad}(A)$ and suppose that there exist $k, t \in \mathbb{N}$ and $\beta \in A$ such that $k x \oplus t(\beta \cdot x) \not \leq x^{*}$ and there exists $m \in \mathbb{N}$ such that $m x \not \leq x^{*}$ and $x>0$. Hence $x \in I$, for any maximal --ideal I and $0 \neq[k x \oplus t(\beta \cdot x)] \odot x$, $x>0$ and $0 \neq m x \odot x$, for some $m \in \mathbb{N}$, this results $n x \odot x \leq x \in I$, for all $n \in \mathbb{N}$. It follows from Theorem 2.7 that $x \in \operatorname{Rad}(I)$ in $M V$-algebra A. Also by Theorem $2.5(2)$, since $m x \odot x \neq 0$, there exists a prime ideal P of A such that $m x \odot\left(x^{*}\right)^{*}=m x \odot x \notin P$. Since P is a prime ideal of $M V$-algebra A, $x^{*} \odot(m x)^{*} \in P$. Hence by Theorem $2.5(1)$, there exists a unique maximal ideal J of A such that $P \subseteq J$. Therefore $(m x)^{*} \odot x^{*} \in J$. If $x \in J$, then $m x \in J$, also we have $(m x)^{*} \leq x \vee(m x)^{*}=x \oplus\left(x^{*} \odot(m x)^{*}\right) \in J$. Thus $m x \oplus(m x)^{*}=1 \in J$, which is a contradiction. Therefore $x \notin J$. We conclude that $I \subseteq P \subseteq J$ and $x \notin J$. Hence $x \notin \operatorname{Rad}(I)$, which is a contradiction. Therefore $n x \oplus m(\alpha \cdot x) \leq x^{*}$, for all $n, m \in \mathbb{N}$ and $\alpha \in A$ or $0<x \in \operatorname{Inf}(A)$.

Lemma 3.4. If S is-closed system in A and I is a-ideal of A such that $S \cap I=\emptyset$, then there exists a--prime P of A such that $I \subseteq P$ and $P \cap S=\emptyset$.

Proof. Let $T=\{J \in I d(A): I \subseteq J, J \cap S=\emptyset\}$. A routine application of Zorn's lemma shows that T has a maximal element P. Suppose by contrary that P is not a --prime of A. That is, there exist $a, b \in A$ such that $a \cdot b \in P$ but $a \notin P$ and $b \notin P$.

By the maximality of P, we deduce that $P(a), P(b) \notin T$, hence $P(a) \cap S \neq \emptyset$ and $P(b) \cap S \neq \emptyset$, that is, there exist $p_{1} \in P(a) \cap S$ and $p_{2} \in P(b) \cap S$. By Remark 2.16, $p_{1} \leq y \oplus m a \oplus n(\alpha \cdot a)$ and $p_{2} \leq x \oplus k b \oplus t(\beta \cdot b)$, where $x, y \in P$ and $m, n, k, t \in \mathbb{N}$.

Then by Lemma $2.12(e)$, we have $p_{1} \cdot p_{2} \leq x \cdot y \oplus x \cdot m a \oplus x \cdot n(\alpha \cdot a) \oplus k b$. $y \oplus k b \cdot m a \oplus k b \cdot n(\alpha \cdot a) \oplus t(\beta \cdot b) \cdot y \oplus t(\beta \cdot b) \cdot m a \oplus t(\beta \cdot b) \cdot n(\alpha \cdot a)$.

Since $x, y \in P$ and $a \cdot b \in P$, we imply that $p_{1} \cdot p_{2} \in P$ but $p_{1} \cdot p_{2} \in S$, hence $P \cap S \neq \emptyset$, which is a contradiction. Hence P is a --prime of A.

Definition 3.5. Let I be a proper --ideal of A. The intersection of all --prime ideals of A which contain I is called the radical of I and it is denoted by $\operatorname{Rad}(I)$. If there are not --prime ideals of A containing I, then $\operatorname{Rad}(I)=A$.
Example 3.6. Let $\Omega=\{1,2\}$ and $\mathcal{A}=\mathcal{P}(\Omega)$, which is a $P M V$-algebra with $\oplus=\cup$ and $\odot=\cdot=\cap$. Obviously, $P_{1}=\{\emptyset,\{1\}\}$ and $P_{2}=\{\emptyset,\{2\}\}$ are $\cdot-$ prime ideals of A. Hence $\operatorname{Rad}\left(P_{1}\right)=P_{1}$ and $\operatorname{Rad}\{\emptyset,\{2\}\}=P_{2}$ and $\operatorname{Rad}\{\emptyset\}=$ $\{\emptyset,\{1\}\} \cap\{\emptyset,\{2\}\}=\{\emptyset\}$.

Example 3.7. Let $M_{2}(\mathbb{R})$ be the ring of square matrices of order 2 with real elements and 0 be the matrix with all of its entries 0 . If we define the order relation on components $A=\left(a_{i j}\right)_{i, j=1,2} \geq 0$ iff $a_{i j} \geq 0$ for all $i, j=1,2$ such that $v=\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$, then $A=\Gamma\left(M_{2}(\mathbb{R}), v\right)=[0, v]$ is a $P M V$-algebra. Obviously, $\operatorname{Id}(A)=\{\{0\}, A\}$. In [8], it is showed that $P=\{0\}$ is not a --prime ideal of A. Hence $\operatorname{Rad}\{0\}=A$.
Example 3.8. Let X be a compact topological space and $C(X)$ be the Riesz space of the real continuous functions defined on X, then the constant function $1(x)=1$, for any $x \in X$ is a strong unit in $C(X)$. Then $A=\Gamma(C(X), 1)$ with the usual product of functions is a $P M V$-algebra. Consider $P=\{\mathbf{0}\}$ (0) is the zero function). It is clear that P is a --prime ideal of A. Hence $\operatorname{Rad}(\{0\})=\{0\}$.

Example 3.9. Let $G=\oplus\left\{Z_{i}\right\}_{i \in \mathbb{N}}$ be the lexicographic product of denumerable infinite copies of the abelian l-group \mathbb{Z} of the relative integers and $e^{i} \in G$ such that $e_{k}^{i}=0$ if $k \neq i$ and $e_{k}^{i}=1$ if $k=i$, then G with the usual product is an luring. It follows from [4] that $A=\Gamma(G, u)=[0, u]$ is a $P M V$-algebra, where Γ is a functor from the category of abelian $l u$-ring to the category $P M V$-algebras and $u=(1,0,0,0, \ldots)$ is the strong unit of A, where \leq is the lexicographic order on G.

If we set $P_{i}=<\left(0, e^{i}\right)>$, then $P_{i} \subseteq P_{j}$, for $i>j$. We have $\left(0, e^{1}\right) \cdot\left(0, e^{2}\right)=$ $\mathbf{0} \in P_{i}$, while $\left(0, e^{1}\right) \notin P_{i},\left(0, e^{2}\right) \notin P_{i}, i \neq 1,2$, hence P_{i} is not a --prime ideal of A. Thus $\operatorname{Rad}\left(P_{i}\right)=A$.

By the following lemma, we characterize $\operatorname{Rad}(I)$ via elements of A, where I is an arbitrary --ideal of A.

Lemma 3.10. Let I be --ideal of A. Then

$$
\operatorname{Rad}(I)=\left\{a \in A: a^{n}=a \cdot a \cdots \cdots a \in I, \text { for some } n \in \mathbb{N}\right\}
$$

Proof. Set $T=\left\{a \in A: a^{n} \in I\right.$, for some $\left.n>0\right\}$. Let $r \in T$. Then there exists an integer number $n>0$ such that $r^{n} \in I$.

Now for any --prime ideal P containing I, we have $r^{n} \in P$. Since P is a --prime ideal of $A, r \in P$. Hence $T \subseteq \operatorname{Rad}(I)$.

Conversely, let $r \in \operatorname{Rad}(I)$. We show that $r \in T$. By contrary, suppose that $r \notin T$, so $r^{n} \notin I$, for all $n>0$. Consider $S=\left\{r^{n} \oplus x: n \in \mathbb{N} \cup\{0\}, x \in I\right\}$.

Firstly, S is --closed system in A. By Theorem 2.12(e),for $x, y \in I$ and $n, m \in \mathbb{N}$, we have

$$
\begin{aligned}
\left(r^{n} \oplus x\right) \cdot\left(r^{m} \oplus y\right) & \leq r^{n+m} \oplus \underbrace{r^{n} \cdot y \oplus x \cdot r^{m} \oplus x \cdot y}_{z} \\
& =r^{n+m} \oplus z
\end{aligned}
$$

for some $z \in I$. Hence S is a --closed system.
Now, we claim that $S \cap I=\emptyset$. If $a \in S \cap I$, then there exist $n \in \mathbb{N} \cup\{0\}$ and $x \in I$ such that $a=r^{n} \oplus x$. Hence $r^{n} \leq a \in I$, we conclude that $r^{n} \in I$, which is a contradiction. Thus $S \cap I=\emptyset$. It follows from Theorem 3.4 that there exists a --prime ideal P of A such that $I \subseteq P$ and $P \cap S=\emptyset$. Hence $r \in P$ and $r=r \oplus 0 \in S$. Therefore $r \in P \cap S$, which is a contradiction. This results $r \in T$. Thus $\operatorname{Rad}(I) \subseteq T$ and the proof is complete.

We recall that $x \in I \rightarrow J$ if and only if $(x] \cap I \subseteq J$, for ideals I and J of A, where $I \rightarrow J=\{x \in A \mid I \cap(x] \subseteq J\}[14]$.

Theorem 3.11. Let I and J be proper --ideals of A and $a, b \in A$. Then the following condition hold:
(1) If $x \in B(A)$, for any $x \in A$, then $a \oplus b \in I$,
(2) If $I \subseteq J$, then $\operatorname{Rad}(I) \subseteq \operatorname{Rad}(J)$,
(3) If A is a unital PMV-algebra, then $\operatorname{Rad}(I)=A$ iff $I=A$,
(4) $\operatorname{Rad}(\operatorname{Rad}(I))=\operatorname{Rad}(I)$,
(5) $\operatorname{Rad}(I) \cup \operatorname{Rad}(J) \subseteq \operatorname{Rad}(I \cup J]$,
(6) $\operatorname{Rad}(I) \rightarrow \operatorname{Rad}(J) \subseteq I \rightarrow \operatorname{Rad}(J)$,
(7) $\operatorname{Rad}(I \rightarrow J) \subseteq \operatorname{Rad}(I \rightarrow \operatorname{Rad}(J))$,
(8) If for every $a \in I$ there exists $k \in \mathbb{N}$ such that $k a \in J$, then $\operatorname{Rad}(I) \subseteq$ $\operatorname{Rad}(J)$.

Proof. (1) Let $a, b \in \operatorname{Rad}(I)$. Then $a \oplus b \in \operatorname{Rad}(I)$ and $(a \oplus b)^{n} \in I$, for some $n \in \mathbb{N}$. It follows from Lemma 2.14 that $(a \oplus b)^{n}=(a \oplus b)$. We deduce that $a \oplus b \in I$.
(2) It is clear.
(3) Let $\operatorname{Rad}(I)=A$. Then $1 \in \operatorname{Rad}(I)$, so $1=1^{n} \in I$, for some $n \in \mathbb{N}$. Therefore $I=A$. The converse is clear.
(4) By (2), we have $\operatorname{Rad}(I) \subseteq \operatorname{Rad}(\operatorname{Rad}(I))$. It is enough to show that $\operatorname{Rad}(\operatorname{Rad}(I)) \subseteq \operatorname{Rad}(I)$. Let $x \in \operatorname{Rad}(\operatorname{Rad}(I))$. Then there exists $n \in \mathbb{N}$ such that $x^{n} \in \operatorname{Rad}(I)$. We imply that $\left(x^{n}\right)^{m} \in I$, for some $m \in \mathbb{N}$. Hence $x^{n m} \in I$. Therefore $x \in \operatorname{Rad}(I)$, that is $\operatorname{Rad}(\operatorname{Rad}(I)) \subseteq \operatorname{Rad}(I)$. Thus $\operatorname{Rad}(\operatorname{Rad}(I))=$ $\operatorname{Rad}(I)$.
(5) The proof is clear by (2).
(6) Let $x \in \operatorname{Rad}(I) \rightarrow \operatorname{Rad}(J)$. Then $(x] \cap \operatorname{Rad}(I) \subseteq \operatorname{Rad}(J)$. Hence $I \cap(x] \subseteq \operatorname{Rad}(J)$, that is $x \in I \rightarrow \operatorname{Rad}(J)$.
(7) Let $x \in \operatorname{Rad}(I \rightarrow J)$. Then $x^{n} \in I \rightarrow J$, for some $n \in \mathbb{N}$. Hence $I \cap\left(x^{n}\right] \subseteq J \subseteq \operatorname{Rad}(J)$, for some $n \in \mathbb{N}$. Hence $x^{n} \in I \rightarrow \operatorname{Rad}(J)$, for some $n \in \mathbb{N}$, so $x \in \operatorname{Rad}(I \rightarrow \operatorname{Rad}(J))$.
(8) Let $a \in I$. Assume that there is $k \in \mathbb{N}$ such that $k a \in J$. We have $a \leq k a$, thus $a \in J$. Hence $I \subseteq J$ and by (2), we have $\operatorname{Rad}(I) \subseteq \operatorname{Rad}(J)$.

In the following example, we show that the inclusions in parts (2) and (5) of Theorem 3.11 could be proper.

Example 3.12. Consider $P M V$-algebra $A=P(\Omega)$ as in Example 3.6, we have $\operatorname{Rad}\left(P_{1}\right) \cup \operatorname{Rad}\left(P_{2}\right)=P_{1} \cup P_{2}=\{\emptyset,\{1\},\{2\}\}$, but $\{1,2\} \in\left(P_{1} \cup P_{2}\right] \subseteq$ $\operatorname{Rad}\left(P_{2} \cup P_{2}\right]$, since $\{1,2\}=\{1\} \oplus\{2\}$, then $\{1,2\} \in \operatorname{Rad}\left(P_{1} \cup P_{2}\right]$ but $\{1,2\} \notin$ $\operatorname{Rad}\left(P_{1}\right) \cup \operatorname{Rad}\left(P_{2}\right)$. Hence $\operatorname{Rad}\left(P_{1}\right) \cup \operatorname{Rad}\left(P_{2}\right) \neq \operatorname{Rad}\left(P_{1} \cup P_{2}\right]$, therefore the equality of Theorem 3.11 (5), is not true in general.

Also, in Example 3.9, we have $\operatorname{Rad}\left(P_{i}\right)=\operatorname{Rad}(\{(0, \mathbf{0})\})=A$, while $A \nsubseteq$ $\{(0, \mathbf{0})\}$, hence the converse of Theorem 3.11, (2) is not true in general.

Theorem 3.13. Let $\left\{I_{i}\right\}_{i \in I}$ be a family of proper -ideals of A. Then

$$
\operatorname{Rad}\left(\cap_{i \in I} I_{i}\right)=\cap_{i \in I} \operatorname{Rad}\left(I_{i}\right)
$$

Proof. We have $\cap_{i \in I} I_{i} \subseteq I_{i} \subseteq \operatorname{Rad}\left(I_{i}\right)$, for all $i \in I$. Then by Theorem 3.11 (2), we get that $\operatorname{Rad}\left(\cap_{i \in I} I_{i}\right) \subseteq \operatorname{Rad}\left(I_{i}\right)$ for all $i \in I$. Therefore $\operatorname{Rad}\left(\cap_{i \in I} I_{i}\right) \subseteq$ $\cap_{i \in I} \operatorname{Rad}\left(I_{i}\right)$.

Conversely, let $x \in \cap_{i \in I} \operatorname{Rad}\left(I_{i}\right)$. Then $x \in \operatorname{Rad}\left(I_{i}\right)$, for all $i \in I$ and so $x^{n} \in I_{i}$, for all $i \in I$ and for some $n \in \mathbb{N}$. Hence $x^{n} \in \cap_{i \in I} I_{i}$, for some $n \in \mathbb{N}$, that is $x \in \operatorname{Rad}\left(\cap_{i \in I} I_{i}\right)$. Therefore $\operatorname{Rad}\left(\cap_{i \in I} I_{i}\right)=\cap_{i \in I} \operatorname{Rad}\left(I_{i}\right)$.

Proposition 3.14. Let $f: A \rightarrow B$ be a PMV-homomorphism. Then $\operatorname{Rad}(\operatorname{Ker}(f))=$ $f^{-1}(\operatorname{Rad}(\{0\}))$.
Proof. By Theorem 3.11, we have

$$
\begin{aligned}
a \in \operatorname{Rad}(\operatorname{ker}(f)) & \Leftrightarrow a^{n} \in \operatorname{ker}(f), \text { for some } \quad n \in \mathbb{N}, \\
& \Leftrightarrow f\left(a^{n}\right)=0, \text { for some } \quad n \in \mathbb{N}, \\
& \Leftrightarrow f(a)^{n}=0, \text { for some } \quad n \in \mathbb{N}, \\
& \Leftrightarrow f(a) \in \operatorname{Rad}(\{0\}), \\
& \Leftrightarrow a \in f^{-1}(\operatorname{Rad}(\{0\})) .
\end{aligned}
$$

Theorem 3.15. Let I be a proper --ideal of A. Then $\operatorname{Rad}(I) \cap B(A) \subseteq I$.
Proof. Let $x \in \operatorname{Rad}(I) \cap B(A)$. Then $x \in \operatorname{Rad}(I)$ and $x \in B(A)$. So $x^{n} \in I$, for some $n \in \mathbb{N}$ and by Lemma $2.14, x^{n}=x \cdot x \cdots x=x \wedge x \cdots \wedge x=x \in I$. Hence $x \in I$. Therefore $\operatorname{Rad}(I) \cap B(A) \subseteq I$.

Corollary 3.16. $\operatorname{Rad}(\{0\}) \cap B(A)=\{0\}$.
By the following example we show that the inclusion in Theorem 3.15 could be proper.
Example 3.17. In Example 3.9, it is clear that $B(A)=\{(0, \mathbf{0}), u\}$, hence $\operatorname{Rad}\left(P_{i}\right) \cap B(A)=P_{i} \cap\{(0, \mathbf{0}), u\}=\{(0, \mathbf{0})\} \neq P_{i}$.

Theorem 3.18. Let I be a proper--ideal of A. Then the following statements hold:
(1) $\operatorname{Rad}(\{0\} / I)=\operatorname{Rad}(I) / I$,
(2) If $\operatorname{Rad}(I) \subseteq B(A)$, then $\operatorname{Rad}(I)=I$ and $B(A / \operatorname{Rad}(I))=B(A) / \operatorname{Rad}(I)$,
(3) If a is of finite order, then $a / \operatorname{Rad}(I)$ is of finite order, for any $a \in A$.

Proof. (1) In the following by $I \subseteq N$, we means N is a --ideal of A containing I, then we have

$$
\operatorname{Rad}(\{0\} / I)=\bigcap_{\substack{N \in S p e c(A) \\ I \subseteq N}}(N / I)=\left(\bigcap_{\substack{N \in S p e c(A) \\ I \subseteq N}} N\right) / I=\operatorname{Rad}(I) / I
$$

(2) Let $\operatorname{Rad}(I) \subseteq B(A)$. By Theorem 3.15, we have $\operatorname{Rad}(I)=I$ and

$$
\begin{aligned}
B(A) / \operatorname{Rad}(I) & =\{e / \operatorname{Rad}(I): e \in B(A)\} \\
& =\left\{e / \operatorname{Rad}(I): e \vee e^{*}=1\right\} \\
& =\left\{e / \operatorname{Rad}(I): e / \operatorname{Rad}(I) \vee(e / \operatorname{Rad}(I))^{*}=1 / \operatorname{Rad}(I)\right\} \\
& =B(A / \operatorname{Rad}(I))
\end{aligned}
$$

(3) Suppose that $0 \neq a \in A$ is of finite order. Then there exists $n \in \mathbb{N}$ such that $n a=1$, for all $0 \neq a \in A$. Hence

$$
1 / \operatorname{Rad}(I)=n a / \operatorname{Rad}(I)=n(a / \operatorname{Rad}(I)) .
$$

Note. It follows from Theorem 3.18(3) that, if A is locally finite $M V$-algebra, then $A / \operatorname{Rad}(I)$ is locally finite.

In the following example, we show that converse of Theorem 3.18(3), is not true in general.

Example 3.19. In Example 3.6, $P_{1}=\{\emptyset,\{1\}\}$ is a -ideal of A. We get $\operatorname{Rad}\left(P_{1}\right)=P_{1}$ and $\{2\} / \operatorname{Rad}\left(P_{1}\right)=\{1,2\} / \operatorname{Rad}\left(P_{1}\right)$. Since $d(\{2\},\{1,2\})=$ $\{2\} \odot\{1,2\}^{*} \oplus\{1,2\} \odot\{2\}^{*}=\emptyset \oplus\{1\}=\{1\} \in P_{1}$. Hence $\{2\} / \operatorname{Rad}\left(P_{1}\right) \in$ $A / \operatorname{Rad}\left(P_{1}\right)$ is of finite order, while $\{2\}$ is not of finite order.
Definition 3.20. The set of nilpotent elements of a $P M V$-algebra A is

$$
\operatorname{Nil}(A)=\left\{x \in A: x^{n}=x \cdot \ldots \cdot x=0, \text { for some } n \geq 1\right\}
$$

Corollary 3.21. Let I be a -ideal of a $P M V$-algebra A. Then $\operatorname{Nil}(A) \subseteq$ $\operatorname{Rad}(I)$.

Remark 3.22. If I is a --ideal of A, then from Lemma $3.10 a \in \operatorname{Rad}(I)$ if and only if $a / I \in \operatorname{Nil}(A / I)$.

4. Semi-maximal --ideals in $P M V$-algebras

Definition 4.1. Let I be a proper ideal of A. If $\operatorname{Rad}(I)=I$, then I is called a semi-maximal --ideal of A.

By Lemma 3.10, a --ideal I of A is a semi-maximal if and only if

$$
I=\left\{a \in A: a^{n} \in I \quad \text { for some } \quad n \in \mathbb{N}\right\} .
$$

Example 4.2. In Example 3.6, we have $\operatorname{Rad}\left(P_{1}\right)=P_{1}$, hence P_{1} is a semimaximal --ideal.

Example 4.3. In Example 3.9, $\{(0, \mathbf{0})\}$ is not a semi-maximal --ideal of A.
Proposition 4.4. Let A, B be $P M V$-algebras and $f: A \rightarrow B$ be a PMVhomomorphism. Then the following statements hold:
(a) If I is a semi-maximal --ideal of B, then $f^{-1}(I)$ is a semi-maximal -ideal of A,
(b) If f is onto and I is a semi-maximal --ideal of A with $\operatorname{Ker}(f) \subseteq I$, then $f(I)$ is a semi-maximal --ideal of B.

Proof. (a) It is enough to show that $f^{-1}(\operatorname{Rad}(I))=\operatorname{Rad}\left(f^{-1}(I)\right)$, since then $f^{-1}(I)=f^{-1}(\operatorname{Rad}(I))=\operatorname{Rad}\left(f^{-1}(I)\right)$. Now, for $x \in A$, we have

$$
\begin{aligned}
x \in f^{-1}(\operatorname{Rad}(I)) & \Leftrightarrow f(x)^{n} \in I, \text { for some } n \in \mathbb{N}, \\
& \Leftrightarrow f\left(x^{n}\right) \in I, \text { for some } n \in \mathbb{N}, \\
& \Leftrightarrow x^{n} \in f^{-1}(I), \text { for some } n \in \mathbb{N}, \\
& \Leftrightarrow x \in \operatorname{Rad}\left(f^{-1}(I)\right) .
\end{aligned}
$$

(b) Let I be a semi-maximal --ideal of A. We can easily check that $f(I)$ is a --ideal of B. It is sufficient to show that $\operatorname{Rad}(f(I))=f(\operatorname{Rad}(I))=f(I)$.

Let $x \in f(\operatorname{Rad}(I))$. Then there exists $t \in \operatorname{Rad}(I)$ such that $x=f(t)$. Hence $t^{n} \in I$, for some $n \in \mathbb{N}$. This results $x^{n}=f(t)^{n} \in f(I)$, for some $n \in \mathbb{N}$, we obtain $x \in \operatorname{Rad}(f(I))$. Then $f(\operatorname{Rad}(I)) \subseteq \operatorname{Rad}(f(I))$.

Conversely, let $x \in \operatorname{Rad}(f(I))$. Then $x^{n} \in f(I)$, for some $n \in \mathbb{N}$. Since f is onto, there exists $t \in I$ such that $x=f(t)$. Thus for some $n \in \mathbb{N}$, we have

$$
\begin{aligned}
f(t)^{n} \in f(I) & \Rightarrow f(t)^{n}=f(c), \text { for some } \quad c \in I \\
& \Rightarrow t^{n} \odot c^{*} \in \operatorname{Ker} f \subseteq I \\
& \Rightarrow\left[t^{n} \odot c^{*}\right] \oplus c \in I, \\
& \Rightarrow t^{n} \leq c \vee t^{n} \in I
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad t^{n} \in I \\
& \Rightarrow \quad t \in \operatorname{Rad}(I) \\
& \Rightarrow \quad x \in f(\operatorname{Rad}(I)) \\
& \Rightarrow \quad \operatorname{Rad}(f(I)) \subseteq f(\operatorname{Rad}(I))
\end{aligned}
$$

Therefore $f(I)$ is a semi-maximal --ideal of B.
Theorem 4.5. Let I be a-ideal of A. Then the following statements hold: (1) $\operatorname{Rad}(I)$ is the smallest semi-maximal --ideal of A such that $I \subseteq \operatorname{Rad}(I)$,
(2) $\operatorname{Rad}(I) / I$ is a semi-maximal --ideal of A / I.

Proof. (1) By Theorem 3.11(4), $\operatorname{Rad}(I)$ is a semi-maximal --ideal of A. Let J be a semi-maximal --ideal such that $I \subseteq J$. Then $\operatorname{Rad}(I) \subseteq \operatorname{Rad}(J)=J$.
(2) We have $\operatorname{Rad}(I) / I \subseteq \operatorname{Rad}(\operatorname{Rad}(I) / I)$. We show that $\operatorname{Rad}(\operatorname{Rad}(I) / I) \subseteq$ $\operatorname{Rad}(I) / I$. Take $a / I \in \operatorname{Rad}(\operatorname{Rad}(I) / I)$, then $(a / I)^{n} \in \operatorname{Rad}(I) / I$, for some $n \in \mathbb{N}$. Hence $\left(a^{n}\right) / I=b / I$, for some $b \in \operatorname{Rad}(I)$ and $n \in \mathbb{N}$, so $d\left(a^{n}, b\right) \in I \subseteq$ $\operatorname{Rad}(I)$. Therefore $\left(\left(a^{n}\right) \odot b^{*}\right) \oplus\left[b \odot\left(a^{n}\right)^{*}\right] \in \operatorname{Rad}(I)$ and $b \in \operatorname{Rad}(I)$. It follows that $\left[\left(a^{n}\right) \odot b^{*}\right] \oplus b \in \operatorname{Rad}(I)$ and $\left(a^{n}\right) \vee b \in \operatorname{Rad}(I)$. Hence $a^{n} \in \operatorname{Rad}(I)$, for some $n \in \mathbb{N}$, that is $a \in \operatorname{Rad}(\operatorname{Rad}(I))$. Thus $a / I \in \operatorname{Rad}(\operatorname{Rad}(I)) / I=\operatorname{Rad}(I) / I$.

Corollary 4.6. Let $\left\{I_{i}\right\}_{i \in I}$ be finite family of semi-maximal --ideals of A. Then $\bigcap_{i \in I} I_{i}$ is a semi-maximal --ideal of A.

Proof. Let $\left\{I_{i}\right\}$ be finite family of semi-maximal ideals of A. Hence $\operatorname{Rad}\left(I_{i}\right)=$ I_{i}, for every $i \in I$, so by Theorem 3.11, we have

$$
\operatorname{Rad}\left(\bigcap_{i \in I} I_{i}\right)=\bigcap_{i \in I} \operatorname{Rad}\left(I_{i}\right)=\bigcap_{i \in I} I_{i} .
$$

By the following theorem we prove that I is a semi-maximal --ideal of A if and only if A / I has no nilpotent elements of A.

Theorem 4.7. If A is a PMV-algebra and I is a--ideal of A, then A / I has no nilpotent elements if and only if I is a semi-maximal --ideal of A.

Proof. Suppose that A / I has no nilpotent elements and $a \in \operatorname{Rad}(I)$. Then from Lemma 3.10, we deduce that $a^{n} \in I$, for some integer $n>0$. So $(a / I)^{n}=$ $\left(a^{n}\right) / I=0 / I$. Since A / I has no nilpotent elements, $a / I=0 / I$. This implies $a \in I$. Therefore $\operatorname{Rad}(I) \subseteq I$ and I is a semi-maximal --ideal of A.

Conversely, let I be a semi-maximal ideal of A and $0 \neq a / I$ be a nilpotent element of A / I. Then $(a / I)^{n}=a^{n} / I=0 / I$, for some integer $n>0$. Hence $a^{n} \in I$, for some integer $n>0$ and so $a \in \operatorname{Rad}(I)$. Since I is a semi-maximal --ideal of $A, a \in \operatorname{Rad}(I)=I, a \in I$. So $a / I=0 / I$, which is a contradiction. Therefore A / I has no nilpotent elements.

5. Conclusion

$M V$-algebras were originally introduced by C. Chang in [2] in order to give an algebraic counterpart of the Łukasiewics many valued logic.
A. Dvurecenskij and A. Di Nola in [4] introduced the notion of PMValgebras, that is $M V$-algebras whose product operation (\cdot) is defined on the whole $M V$-algebra.

In this paper, we introduced the notion of the radical of a $P M V$-algebra and charactrized radical A via elements of A. We also presented several different characterizations and many important properties of the radical of a --ideal in a $P M V$-algebra. We introduced the notion of a semi-maximal --ideal. We proved that if I is a --ideal of a $P M V$-algebra A, I is a semi-maximal --ideal of A if and only if $A / \operatorname{Rad}(I)$ has no nilpotent elements.

Acknowledgement

The author thanks the referees for their valuable comments and suggestions.

References

[1] A. Bigard, K. Keimel and S. Wolfenstein, Groupes et Anneaux Reticules, Lecture Notes in Math., 608, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[2] C. C. Chang, Algebraic analysis of many valued logic, Trans. Amer. Math. Soc. 88 (1958) 467-490.
[3] R. Cignoli, I. M. L. D'Ottaviano and D. Mundici, Algebraic Foundations of Many-Valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000.
[4] A. Di Nola and A. Dvurečenskij, Product MV-algebras, Mult.-Valued Log. 6 (2001), no. 1-2, 193-215.
[5] A. Di Nola, P. Flondor and I. Leustean, MV-modules, J. Algebra, 267 (2003), no. 1, 21-40.
[6] A. Dvurečenskij, On partial addition in pseudo $M V$-algebras, Information technology (Bucharest, 1999), 952-960, Inforec, Bucharest, 1999.
[7] A. Filipoiu, G. Georgescu and , A. Lettieri, Maximal MV-algebras, Mathware Soft Comput. 4 (1997), no. 1, 53-62.
[8] F. Forouzesh, E. Eslami and A. Borumand Saeid, On prime A-ideals in $M V$-modules, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 76 (2014), no. 3, 181-198.
[9] F. Forouzesh, E. Eslami and A. Borumand Saeid, Radical of A-ideals in $M V$-modules, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Inform., Accepted.
[10] F. Forouzesh, Some results in PMV-algebras, U.P.B. Sci. Bull., Series A, Submitted.
[11] A. Iorgulescu, Algebras of logic as BCK algebras, Academy of economic studies Bucharest, Romania, 2008.
[12] F. Montagna, An algebraic approach to propositional fuzzy logic, J. Logic Lang. Inform. 9 (2000), no. 1, 91-124.
[13] D. Mundici, Interpretation of $A F C^{*}$-algebras in Lukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), no. 1, 15-63.
[14] D. Piciu, Algebras of fuzzy logic, Ed. Universitaria, Craiova, 2007.
(Fereshteh Forouzesh) Faculty of Mathematics and computing, Higher Education complex of Bam, Bam, Iran.

E-mail address: frouzesh@bam.ac.ir

[^0]: Article electronically published on April 30, 2016.
 Received: 22 August 2014, Accepted: 16 December 2014.

