Bulletin of the
Iranian Mathematical Society

Vol. 42 (2016), No. 2, pp. 233–246

Title:
Radical of \(\mathbb{I} \)-ideals in \(PMV \)-algebras

Author(s):
F. Forouzesh

Published by Iranian Mathematical Society
http://bims.ims.ir
RADICAL OF \(-\)-IDEALS IN \(PMV\)-ALGEBRAS

F. FOROUZESH

(Communicated by Ali Enayat)

Abstract. In this paper, we introduce the notion of the radical of a \(PMV\)-algebra \(A\) and we characterize radical \(A\) via elements of \(A\). Also, we introduce the notion of the radical of a \(-\)-ideal in \(PMV\)-algebras. Several characterizations of this radical is given. We define the notion of a semimaximal \(-\)-ideal in a \(PMV\)-algebra. Finally we show that \(A/I\) has no nilpotent elements if and only if \(I\) is a semi-maximal \(-\)-ideal of \(A\).

Keywords: \(PMV\)-algebra, \(-\)-ideal, \(-\)-prime ideal, radical.

1. Introduction

C. Chang introduced the notion of \(MV\)-algebras to provide a proof for the completeness of the Lukasiewicz axioms for infinite valued propositional logic [2]. In fact \(MV\)-algebras are now algebraic counterparts of Lukasiewicz many valued logics.

A. Dvurecenskij and A. Di Nola in [4] introduced the notion of product \(MV\)-algebras, i.e., \(MV\)-algebras with product which is defined on the whole \(MV\)-algebra and is associative and left/right distributive with respect to a partial addition. They concluded that the category of product \(MV\)-algebras is categorically equivalent to the category of associative unital \(l\)-rings. Some examples are presented and compared with \(MV\)-algebras. In addition, they introduced and studied \(MVf\)-algebras [4].

In [9], we introduced the notion of the radical of an ideal in a \(MV\)-algebra and gave several characterizations of this radical. We defined the notion of a semi-maximal ideal in an \(MV\)-algebra and proved some theorems which give relations between this semi-maximal ideal and other types of ideals in \(MV\)-algebras [9].

In this paper, we introduce the notion of the radical of a \(PMV\)-algebra \(A\) and give several characterizations of radical \(A\). We introduce the notion of the
radical of \(-\)ideal of \(PMV\)-algebras. We have also presented several different characterizations and many important properties of the radical of a \(-\)ideal in a \(PMV\)-algebra. This leads us to introduce the notion of semi-maximal \(-\)ideal. Finally, we show that \(I \) is a semi-maximal \(-\)ideal of \(A \) if and only if \(A/I \) has no nilpotent elements of \(A \).

2. Preliminaries

In this section, we recall some basic notions in \(MV\)-algebras and summarize some of their basic properties. For more details about these concepts, we refer the reader to [2–4].

Definition 2.1. [2] An \(MV\)-algebra is a structure \((A, \oplus, *, 0)\), where \(\oplus \) is a binary operation, \(* \) is a unary operation, and \(0 \) is a constant satisfying the following conditions, for any \(a, b \in A \):

\begin{align*}
(MV1) & \ (A, \oplus, 0) \text{ is an abelian monoid,} \\
(MV2) & \ (a^*) = a, \\
(MV3) & \ 0^* \oplus a = 0^*, \\
(MV4) & \ (a^* \oplus b)^* \oplus b = (b^* \oplus a)^* \oplus a.
\end{align*}

We say that the element \(x \in A \) has order \(n \), and we write \(\text{ord}(x) = n \), if \(n \) is the smallest natural number such that \(nx = 1 \), where \(1 = 0^* \) and \(nx := x \oplus x \oplus \ldots \oplus x \). In this case we say that the element \(x \) has a finite order, and write \(\text{ord}(x) < \infty \). An \(MV\)-algebra \(A \) is locally finite if every non-zero element of \(A \) is of finite order. Also we have \(a^n = a^{n-1} \oplus a \) and \(na = (n-1)a \oplus a \), where \(a \oplus b = (a^* \oplus b^*)^* \) [3].

If we define the auxiliary operations \(\odot, \lor \) and \(\land \) on \(A \) as:

\[a \odot b = (a^* \oplus b^*)^*, \quad a \lor b = a \oplus (b \odot a^*) = b \oplus (b^* \odot a), \]

\[a \land b = a \odot (b \oplus a^*) = b \odot (b^* \oplus a), \]

then \((A, \odot, 1)\) is an abelian monoid and the structure \(L(A) := (A, \lor, \land, 0, 1) \) is a bounded distributive lattice [3].

An element \(a \in A \) is called complemented if there is an element \(b \in A \) such that \(a \lor b = 1 \) and \(a \land b = 0 \). We denote the set of complemented elements of \(A \) by \(B(A) \).

Lemma 2.2. [3] In each \(MV\)-algebra \(A \), the following relations hold for all \(x, y, z \in A \):

1. \(x \leq y \) if and only if \(y^* \leq x^* \),
2. If \(x \leq y \), then \(x \oplus z \leq y \oplus z \) and \(x \odot z \leq y \odot z \),
3. \(x \leq y \) if and only if \(x^* \oplus y = 1 \) if and only if \(x \odot y^* = 0 \),
4. \(x, y \leq x \oplus y \) and \(x \odot y \leq x, y \),
5. \(x \oplus x^* = 1 \) and \(x \odot x^* = 0 \).
Radical of \(-\)ideals in \(PMV\)-algebras

(6) If \(x \in B(A)\), then \(x \odot x = x\) and \(x \oplus x = x\).
(7) \(x \odot (y \land z) = (x \odot y) \land (x \odot z)\).

An ideal in an \(MV\)-algebra is defined as:

Definition 2.3. [2] An ideal of an \(MV\)-algebra \(A\) is a nonempty subset \(I\) of \(A\), satisfying the following conditions:

(I1) If \(x \in I\), \(y \in A\) and \(y \leq x\), then \(y \in I\),

(I2) If \(x, y \in I\), then \(x \oplus y \in I\).

We denote the set of all ideals of an \(MV\)-algebra \(A\) by \(Id(A)\).

Definition 2.4. [3] Let \(I\) be an ideal of an \(MV\)-algebra \(A\). Then \(I\) is proper if \(I \neq A\). A proper ideal \(P\) is prime if for \(x, y \in A\), \(x \land y \in P\) implies \(x \in P\) or \(y \in P\). Equivalently, \(P\) is prime if and only if for all \(x, y \in A\), \(x \odot y^* \in P\) or \(y \odot x^* \in P\).

Theorem 2.5. [3, 14] Let \(I\) be a proper ideal of \(A\). Then the following statements hold:

1. Any prime ideal of \(A\) is contained in a unique maximal ideal of \(A\),
2. If \(a \in A - I\), then there is a prime ideal \(P\) of \(A\) such that \(I \subseteq P\) and \(a \not\in P\). In particular for every element \(a \in A\), \(a \neq 0\), there exists a prime ideal \(P\) such that \(a \not\in P\).

Definition 2.6. [9] Let \(I\) be a proper ideal of \(A\). The intersection of all maximal ideals of \(A\) which contain \(I\) is called the radical of \(I\) and it is denoted by \(\text{Rad}(I)\).

Theorem 2.7. [9] Let \(I\) be a proper ideal of \(A\). Then

\[
\text{Rad}(I) = \{a \in A : na \odot a \in I, \text{ for all } n \in \mathbb{N}\}.
\]

We will denote by \(\mathcal{MV}\) the category whose objects are \(MV\)-algebras and whose morphisms are \(MV\)-algebra homomorphisms. A crucial result in the theory of \(MV\)-algebras is the categorical equivalence between the category of \(MV\)-algebras and the category of Abelian \(l\)-groups with strong unit [13]. We recall that an \(lu\)-group is an algebra \((G, +, -0, \lor, \land, u)\), where the following properties hold:

(a) \((G, +, -, 0)\) is a group,
(b) \((G, \lor, \land)\) is a lattice,
(c) For any \(x, y, a, b \in G\), \(x \leq y\) implies \(a + x + b \leq a + y + b\),
(d) \(u > 0\) is strong unit for \(G\) (that is, for all \(x \in G\) there is some natural number \(n \geq 1\) such that \(-nu \leq x \leq nu\) [1]).

We refer to [1] for a detailed study of \(l\)-groups theory. Given an Abelian \(l\)-group \((G, +, 0, \leq)\) and a positive element \(u > 0\) in \(G\), the interval \([0, u]\) can be endowed with an \(MV\)-algebra structure as follows:

\[
x \oplus y := (x + y) \land u \quad \text{and} \quad x^* := u - x,
\]
for any \(x, y \in [0, u] \). Moreover, the lattice operations on \([0, u]\) are the restriction of the lattice operations on \(G \). The \(MV \)-algebra \(([0, u], \oplus, *, 0, u)\) will be denoted by \([0, u]_G\). If \(G \) is an \(l \)-group then a strong unit is a positive element \(u > 0 \) from \(G \) with the property that for any \(g \in G \) there is integer number \(n \geq 0 \) such that \(g \leq nu \). In the sequel, the Abelian \(l \)-groups with strong unit will be simply called \(lu \)-groups. We shall denote by \(UG \) the category of \(lu \)-groups. The elements of this category are pairs \((G, u)\) where \(G \) is an Abelian \(l \)-group and \(u \) is a strong unit of \(G \). In the sequel, the Abelian \(l \)-groups with strong unit will be simply called \(lu \)-groups. We shall denote by \(UG \) the category of \(lu \)-groups. The elements of this category are pairs \((G, u)\) where \(G \) is an Abelian \(l \)-group and \(u \) is a strong unit of \(G \). The morphisms will be \(l \)-group homomorphisms which preserve the strong unit. The functor that establishes the categorical equivalence between \(MV \) and \(UG \) is

\[
\Gamma : UG \rightarrow MV.
\]

such that \(\Gamma(G, u) := [0, u]_G \) for any \(lu \)-group \((G, u)\), \(\Gamma(h) := h \mid_{[0,u]} \) for any \(lu \)-groups homomorphism \(h \).

The categorical equivalence between \(MV \)-algebras and \(lu \)-groups leads also to the problem of defining a product operation on \(MV \)-algebras, in order to obtain structures corresponding to \(l \)-rings. We recall that an \(l \)-ring \([5]\) is a structure \((R, +, \cdot, 0, \leq)\), where \((R, +, 0, \leq)\) is an \(l \)-group such that, for any \(x, y \in R \)

\[
x \geq 0 \text{ and } y \geq 0 \implies x \cdot y \geq 0.
\]

Definition 2.8. \([4]\) A product \(MV \)-algebra (or \(PMV \)-algebra, for short) is a structure \((A, \oplus, *, 0)\), where \((A, \oplus, *, 0)\) is an \(MV \)-algebra and \(* \) is a binary associative operation on \(A \) such that the following property is satisfied:

if \(x + y \) is defined, then \(x \cdot z + y \cdot z \) and \(z \cdot x + z \cdot y \) are defined and

\[
(x + y) \cdot z = x \cdot z + y \cdot z, \quad z \cdot (x + y) = z \cdot x + z \cdot y,
\]

where + is a partial addition on \(A \), as follows:

for any \(x, y \in A \), \(x + y \) is defined if and only if \(x \leq y^* \)

and in this case, \(x + y := x \oplus y \).

If \(A \) is a \(PMV \)-algebra, then a unity for the product is an element \(e \in A \) such that \(e \cdot x = x \cdot e = x \) for any \(x \in A \). A \(PMV \)-algebra that has unity for the product is called unital.

A \(- \)ideal of a \(PMV \)-algebra \(A \) is an ideal \(I \) of \(MV \)-algebra \(A \) such that \(a \in I \) and \(b \in A \) entail \(a \cdot b \in I \) and \(b \cdot a \in I \). We denote by \(Id_\cdot(A) \) the set of \(- \)ideals of a \(PMV \)-algebra \(A \).

We will refer to \([4,12]\) for the basic properties of \(PMV \)-algebras. Obviously, a \(PMV \)-algebra homomorphism will be an \(MV \)-algebra homomorphism which also commutes with the product operation. We shall denote by \(PPMV \) the category of product \(MV \)-algebras with the corresponding homomorphisms.

In the sequel, an \(lu \)-ring will be a pair \((R, u)\) where \((R, +, \cdot, \leq)\) is an \(l \)-ring and \(u \) is a strong unit of \(R \) such that \(u \cdot u \leq u \). We imply that the interval
[0, u] of an lu-ring \((R, u)\) is closed under the product of \(R\). Thus, if we consider the restriction of \(\cdot\) to \([0, u] \times [0, u]\), then the interval \([0, u]\) has a canonical PMV-algebra structure:
\[
x \oplus y := (x + y) \wedge u, \quad x^* := u - x, \quad x \cdot y := x \cdot y,
\]
for any \(0 \leq x, y \leq u\). We shall denote this structure by \([0, u]_R\).

If \(\mathcal{UR}\) is the category of lu-rings, whose objects are pairs \((R, u)\) as above and whose morphisms are l-rings homomorphisms which preserve the strong unit, then we get a functor
\[
\Gamma : \mathcal{UR} \to \mathcal{PMV},
\]
\[
\Gamma(R, u) := [0, u]_R, \text{ for any lu-ring } (R, u),
\]
\[
\Gamma(h) := h |_{[0,u]} \text{ for any lu-rings homomorphism } h.
\]
In [4] it is proved that \(\Gamma\) establishes a categorical equivalence between \(\mathcal{UR}\) and \(\mathcal{PMV}\).

Definition 2.9. [8] Let \(P\) be a \(\cdot\)-ideal of \(A\). \(P\) is called a \(\cdot\)-prime if (i) \(P \neq A\), (ii) for every \(a, b \in P\), if \(a \cdot b \in P\), then \(a \in P\) or \(b \in P\).

Definition 2.10. [3] An element \(a\) in MV-algebra \(A\) is said to be infinitesimal if and only if \(a \neq 0\) and \(na \leq a^*\) for each integer \(n \geq 0\). The set of all infinitesimals in \(A\) will be denoted by \(\text{Inf}(A)\).

Lemma 2.11. [4] If \(A\) is a PMV-algebra, then for any \(a, b \in A\),
(i) \(a \cdot 0 = 0 = 0 \cdot a\),
(ii) if \(a \leq b\), then for any \(c \in A\), \(a \cdot c \leq b \cdot c\) and \(c \cdot a \leq c \cdot b\).

We recall that in an MV-algebra \(A\), the Chang distance the function is defined by
\[
d : A \times A \to A, \quad d(a, b) := (a \otimes b^*) \oplus (b \otimes a^*) [2].
\]
In the following lemma, we state and prove some properties of PMV-algebras.

Lemma 2.12. [10] If \(A\) is a PMV-algebra, then the following properties hold for any \(x, y, \alpha \in A\),
(a) \((nx) \cdot y = x \cdot (ny)\), for any \(n \in \mathbb{N}\),
(b) \(x \cdot y^* \leq (x \cdot y)^*\),
(c) \((x \cdot y)^* = x^* \cdot y + (1 \cdot y)^*\),
(d) \((\alpha \cdot x) \odot (\alpha \cdot y)^* \leq \alpha \cdot (x \odot y)^*\),
(e) \(\alpha \cdot (x \oplus y) \leq \alpha \cdot x \oplus \alpha \cdot y\),
(f) \(d(\alpha \cdot x, \alpha \cdot y) \leq \alpha \cdot d(x, y)\).

Moreover, if \(A\) is a unital PMV-algebra, then
\((x \cdot y)^* = x^* \cdot y + y^*\).

Lemma 2.13. [4] If \(A\) is a unital PMV-algebra, then:
(a) The unity for the product is \(e = 1\),
(b) \(x \cdot y \leq x \land y\) for any \(x, y \in A\).
Theorem 2.14. [4] A finite MV-algebra A admits a product \cdot such that $a \cdot 1 = a = 1 \cdot a$ for any $a \in A$ if and only if A is a Boolean algebra, i.e., $a \oplus a = a$ for any $a \in A$. If it is the case, then $a \cdot b = a \wedge b \in A$.

Definition 2.15. [10] A nonempty subset of a PMV-algebra $S \subseteq A$ is called \textit{\~{n}}-closed system in A if $1 \in S$ and $x, y \in S$ implies $x \cdot y \in S$.

We denote by $S(A)$ the set of all \textit{\~{n}}-closed systems of A.

Remark 2.16. [10] Let A be a PMV-algebra. Then $I(a) = \{ x \in A : x \leq y \oplus ma \oplus n(\alpha \cdot a), \text{ for some } y \in I, \text{ integers } n, m \geq 0, \alpha \in A \}$.

Proposition 2.17. [10] Let A be a PMV-algebra.

(i) If $N \subseteq A$ is a nonempty set, then we have $(N) = \{ x \in A : x \leq x_1 \oplus \cdots \oplus x_n \oplus \alpha_1 \cdot y_1 \oplus \cdots \oplus \alpha_m \cdot y_m \text{ for some } x_1, \ldots, x_n, y_1, \ldots, y_m \in N, \alpha_1, \ldots, \alpha_m \in A \}$, where by (N), we mean the ideal generated by N.

In particular, for $a \in A$,

$$(a) = \{ x \in A : x \leq na \oplus m(\alpha \cdot a) \text{ for some integer } n, m \geq 0, \alpha \in A \},$$

(ii) If $I_1, I_2 \in Idp(A)$, then $I_1 \vee I_2 = (I_1 \cup I_2) = \{ a \in A : a \leq x_1 \oplus x_2 \text{ for some } x_1 \in I_1 \text{ and } x_2 \in I_2 \}$.

3. Radical of \textit{\~{n}}-ideals in PMV-algebras

From now on $(A, \oplus, *, 0)$ (or simply A) is a PMV-algebra.

Definition 3.1. The intersection of all maximal \textit{\~{n}}-ideals of A is called the radical of A and it is denoted by $Rad(A)$.

Lemma 3.2. If I is a proper \textit{\~{n}}-ideal of A, then the following are equivalent:

(i) I is a maximal \textit{\~{n}}-ideal of A,

(ii) for any $a \in A$, $a \not\in I$ if and only if $(na \oplus m(\alpha \cdot a))^* \in I$, for some integers $n, m > 0$ and $a \in A$.

Proof. (i) \Rightarrow (ii) Suppose that I is a maximal \textit{\~{n}}-ideal of A. Since $a \not\in I$, $I \vee (a) = A$. So by Proposition 2.17, there exist $x \in I$ and $n, m > 0$ and $a \in A$ such that $[na \oplus (m(\alpha \cdot a))] \oplus x = 1$. We deduce that $(na \oplus m(\alpha \cdot a))^* \leq x \in I$. This results $(na \oplus m(\alpha \cdot a))^* \in I$, for some $n, m \in \mathbb{N}$ and $a \in A$.

Conversely, if $a \in I$, then $na \in I$. Also, by \textit{\~{n}}-ideal property and Lemma 2.12(a), we have $\alpha(ma) \in I$ and $m(\alpha \cdot a) = (ma) \cdot a = \alpha \cdot (ma) \in I$. So $(na \oplus m(\alpha-a)) \in I$. Since I is a proper \textit{\~{n}}-ideal, we conclude that $(na \oplus m(\alpha-a))^* \notin I$.

(ii) \Rightarrow (i) Suppose there exists a \textit{\~{n}}-ideal J such that $I \not\subseteq J$. So there exists an $a \in J - I$. Hence $a \not\in I$ and by hypothesis, we conclude that $(na \oplus m(\alpha-a))^* \in I$, for some $n, m \in \mathbb{N}$ and $a \in A$. Hence $(na \oplus m(\alpha-a))^* \in J$. Since $a \in J$, we obtain $(na \oplus m(\alpha-a)) \in J$. Thus $1 = (na \oplus m(\alpha-a))^* \oplus (na \oplus m(\alpha-a)) \in J$,
Now, if \(x \in A \), then \(x \in J \) because \(x \leq 1 \in J \). It follows that \(A \subseteq J \). Thus \(A = J \).

By the following theorem, we characterize \(\text{Rad}(A) \) via elements of \(A \).

Theorem 3.3. Let \(A \) be a PMV-algebra. Then

\[
\text{Rad}(A) = \{ x \in A : nx \oplus m(\alpha \cdot x) \leq x^* , \text{ for any } n, m \in \mathbb{N} \text{ and } \alpha \in A \}
\]

\(\cup \text{Inf}(A) \cup \{ 0 \} \).

Proof. Suppose that \(kx \oplus t(\alpha \cdot x) \leq x^* \), for any \(k, t \in \mathbb{N} \) and \(\alpha \in A \) and \(0 < x \notin \text{Inf}(A) \). Let \(x \notin \text{Rad}(A) \). Then there exists a maximal \(-\)ideal \(I \) of \(A \) such that \(x \notin I \). We see that \([nx \oplus m(\alpha \cdot x)] \circ x = 0 \in I \). Since \(x \notin I \), it follows from Lemma 3.2, that \((nx \oplus m(\alpha \cdot x))^* \in I \), for some \(n, m \in \mathbb{N} \) and \(\alpha \in A \). Hence \((nx \oplus m(\alpha \cdot x))^* \oplus ((nx \oplus m(\alpha \cdot a))^* \circ x) \in I \). So \(x \leq (nx \oplus m(\alpha \cdot x))^* \circ x \in I \).

Then \(x \in I \), which is a contradiction. Thus \(x \in \text{Rad}(A) \).

Conversely, let \(x \in \text{Rad}(A) \) and suppose that there exist \(k, t \in \mathbb{N} \) and \(\beta \in A \) such that \(kx \oplus t(\beta \cdot x) \notin x^* \) and there exists \(m \in \mathbb{N} \) such that \(mx \leq x^* \) and \(x > 0 \). Hence \(x \in I \), for any maximal \(-\)ideal \(I \) and \(0 \neq [kx \oplus t(\beta \cdot x)] \circ x \).

Let \(x \geq 0 \) and \(0 \neq mx \circ x \), for some \(m \in \mathbb{N} \), this results \(nx \circ x \leq x \in I \), for all \(n \in \mathbb{N} \). It follows from Theorem 2.7 that \(x \in \text{Rad}(I) \) in \(\text{MV-algebra} \). Also by Theorem 2.5 (2), since \(mx \circ x \neq 0 \), there exists a prime ideal \(P \) of \(A \) such that \(mx \circ (x^*)^* = mx \circ x \notin P \). Since \(P \) is a prime ideal of \(\text{MV-algebra} \), \(x^* \circ (mx)^* \in P \). Hence by Theorem 2.5 (1), there exists a unique maximal ideal \(J \) of \(A \) such that \(P \subseteq J \). Therefore \((mx)^* \circ x^* \in J \). If \(x \in J \), then \(mx \in J \), also we have \((mx)^* \leq x \circ (mx)^* = x \circ (x^* \circ (mx)^*) \in J \). Thus \(mx \circ (mx)^* = 1 \in J \), which is a contradiction. Therefore \(x \notin J \). We conclude that \(I \subseteq P \subseteq J \) and \(x \notin J \). Hence \(x \notin \text{Rad}(I) \), which is a contradiction.

Therefore \(nx \oplus m(\alpha \cdot x) \leq x^* \), for all \(n, m \in \mathbb{N} \) and \(\alpha \in A \) or \(0 < x \notin \text{Inf}(A) \).

Lemma 3.4. If \(S \) is \(-\)closed system in \(A \) and \(I \) is a \(-\)ideal of \(A \) such that \(S \cap I = \emptyset \), then there exists a \(-\)prime \(P \) of \(A \) such that \(I \subseteq P \) and \(P \cap S = \emptyset \).

Proof. Let \(T = \{ J \in \text{Id}(A) : I \subseteq J, J \cap S = \emptyset \} \). A routine application of Zorn’s lemma shows that \(T \) has a maximal element \(P \). Suppose by contrary that \(P \) is not a \(-\)prime of \(A \). That is, there exist \(a, b \in A \) such that \(a \cdot b \in P \) but \(a \notin P \) and \(b \notin P \).

By the maximality of \(P \), we deduce that \(P(a), P(b) \notin T \), hence \(P(a) \cap S \neq \emptyset \) and \(P(b) \cap S \neq \emptyset \), that is, there exist \(p_1 \in P(a) \cap S \) and \(p_2 \in P(b) \cap S \). By Remark 2.16, \(p_1 \leq y \oplus ma \oplus n(\alpha \cdot a) \) and \(p_2 \leq x \oplus kb \oplus t(\beta \cdot b) \), where \(x, y \in P \) and \(m, n, k, t \in \mathbb{N} \).

Then by Lemma 2.12 (e), we have \(p_1 \cdot p_2 \leq x \cdot y \oplus x \cdot ma \oplus x \cdot n(\alpha \cdot a) \oplus kb \cdot y \oplus kb \cdot ma \oplus kb \cdot n(\alpha \cdot a) \oplus (t(\beta \cdot b) \cdot y \oplus t(\beta \cdot b) \cdot ma \oplus t(\beta \cdot b) \cdot n(\alpha \cdot a)) \).

Since \(x, y \in P \) and \(a \cdot b \in P \), we imply that \(p_1 \cdot p_2 \in P \) but \(p_1 \cdot p_2 \in S \), hence \(P \cap S \neq \emptyset \), which is a contradiction. Hence \(P \) is a \(-\)prime of \(A \).
Definition 3.5. Let I be a proper \sim-ideal of A. The intersection of all \sim-prime ideals of A which contain I is called the radical of I and it is denoted by $\text{Rad}(I)$. If there are not \sim-prime ideals of A containing I, then $\text{Rad}(I) = A$.

Example 3.6. Let $\Omega = \{1, 2\}$ and $A = \mathcal{P}(\Omega)$, which is a PMV-algebra with $\oplus = \cup$ and $\odot = \cdot = \cap$. Obviously, $P_1 = \{\emptyset, \{1\}\}$ and $P_2 = \{\emptyset, \{2\}\}$ are \sim-prime ideals of A. Hence $\text{Rad}(P_1) = P_1$ and $\text{Rad}(\emptyset, \{2\}) = P_2$ and $\text{Rad}(\emptyset) = \{\emptyset, \{1\}\} \cap \{\emptyset, \{2\}\} = \emptyset$.

Example 3.7. Let $M_2(\mathbb{R})$ be the ring of square matrices of order 2 with real elements and 0 be the matrix with all of its entries 0. If we define the order relation on components $A = (a_{ij})_{i,j=1,2} \geq 0$ if $a_{ij} \geq 0$ for all $i,j = 1,2$ such that $v = \left(\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right)$, then $A = \Gamma(M_2(\mathbb{R}), v) = [0, v]$ is a PMV-algebra. Obviously, $\text{Id}(A) = \{(0), A\}$. In [8], it is showed that $P = \{0\}$ is not a \sim-prime ideal of A. Hence $\text{Rad}(0) = \{0\}$.

Example 3.8. Let X be a compact topological space and $C(X)$ be the Riesz space of the real continuous functions defined on X, then the constant function $1(x) = 1$, for any $x \in X$ is a strong unit in $C(X)$. Then $A = \Gamma(C(X), 1)$ with the usual product of functions is a PMV-algebra. Consider $P = \{0\}$ (0 is the zero function). It is clear that P is a \sim-prime ideal of A. Hence $\text{Rad}(0) = \{0\}$.

Example 3.9. Let $G = \oplus\{Z_i\}_{i \in \mathbb{N}}$ be the lexicographic product of denumerable infinite copies of the abelian l-group Z of the relative integers and $e^i \in G$ such that $c^i_k = 0$ if $k \neq i$ and $c^i_i = 1$ if $k = i$, then G with the usual product is an lu-ring. It follows from [4] that $A = \Gamma(G, u) = [0, u]$ is a PMV-algebra, where Γ is a functor from the category of abelian lu-ring to the category PMV-algebras and $u = (1, 0, 0, 0, \ldots)$ is the strong unit of A, where \leq is the lexicographic order on G.

If we set $P_i = (0, e^i)$, then $P_i \subseteq P_j$, for $i > j$. We have $(0, e^1) \cdot (0, e^2) = 0 \in P_1$, while $(0, e^1) \notin P_1$, $(0, e^2) \notin P_1$, $i \neq 1,2$, hence P_1 is not a \sim-prime ideal of A. Thus $\text{Rad}(P_1) = A$.

By the following lemma, we characterize $\text{Rad}(I)$ via elements of A, where I is an arbitrary \sim-ideal of A.

Lemma 3.10. Let I be \sim-ideal of A. Then

$$\text{Rad}(I) = \{a \in A : a^n = a \cdot a \cdots a \in I, \text{ for some } n \in \mathbb{N}\}.$$

Proof. Set $T = \{a \in A : a^n \in I, \text{ for some } n > 0\}$. Let $r \in T$. Then there exists an integer number $n > 0$ such that $r^n \in I$.

Now for any \sim-prime ideal P containing I, we have $r^n \in P$. Since P is a \sim-prime ideal of A, $r \in P$. Hence $T \subseteq \text{Rad}(I)$.

Conversely, let $r \in \text{Rad}(I)$. We show that $r \in T$. By contrary, suppose that $r \notin T$, so $r^n \notin I$, for all $n > 0$. Consider $S = \{r^n \oplus x : n \in \mathbb{N} \cup \{0\}, x \in I\}$.

Forouzesh 240
Firstly, \(S \) is \(\sim \)-closed system in \(A \). By Theorem 2.12(e), for \(x, y \in I \) and \(n, m \in \mathbb{N} \), we have
\[
(r^n \oplus x) \cdot (r^m \oplus y) \leq r^{n+m} \oplus r^n \cdot y \oplus r^m \cdot x \cdot y,
\]
for some \(z \in I \). Hence \(S \) is a \(\sim \)-closed system.

Now, we claim that \(S \cap I = \emptyset \). If \(a \in S \cap I \), then there exist \(n \in \mathbb{N} \cup \{0\} \) and \(x \in I \) such that \(a = r^n \oplus x \). Hence \(r^n \leq a \in I \), we conclude that \(r^n \in I \), which is a contradiction. Thus \(S \cap I = \emptyset \). It follows from Theorem 3.4 that there exists a \(\sim \)-prime ideal \(P \) of \(A \) such that \(I \subseteq P \) and \(P \cap S = \emptyset \). Hence \(r \in P \) and \(r = r \oplus 0 \in S \). Therefore \(r \in P \cap S \), which is a contradiction. This results \(r \in T \). Thus \(\text{Rad}(I) \subseteq T \) and the proof is complete. \(\square \)

We recall that \(x \in I \rightarrow J \) if and only if \(\{x\} \cap I \subseteq J \), for ideals \(I \) and \(J \) of \(A \), where \(I \rightarrow J = \{x \in A | I \cap (x) \subseteq J\} \) [14].

Theorem 3.11. Let \(I \) and \(J \) be proper \(\sim \)-ideals of \(A \) and \(a, b \in A \). Then the following conditions hold:

1. If \(x \in B(A) \), for any \(x \in A \), then \(a \oplus b \in I \),
2. If \(I \subseteq J \), then \(\text{Rad}(I) \subseteq \text{Rad}(J) \),
3. If \(A \) is a unital PMV-algebra, then \(\text{Rad}(I) = A \) iff \(I = A \),
4. \(\text{Rad}(\text{Rad}(I)) = \text{Rad}(I) \),
5. \(\text{Rad}(I) \cup \text{Rad}(J) \subseteq \text{Rad}(I \cup J) \),
6. \(\text{Rad}(I) \rightarrow \text{Rad}(J) \subseteq I \rightarrow \text{Rad}(J) \),
7. \(\text{Rad}(I \rightarrow J) \subseteq \text{Rad}(I \rightarrow \text{Rad}(J)) \),
8. If for every \(a \in I \) there exists \(k \in \mathbb{N} \) such that \(ka \in J \), then \(\text{Rad}(I) \subseteq \text{Rad}(J) \).

Proof.

1. Let \(a, b \in \text{Rad}(I) \). Then \(a \oplus b \in \text{Rad}(I) \) and \((a \oplus b)^n \in I \), for some \(n \in \mathbb{N} \). It follows from Lemma 2.14 that \((a \oplus b)^n = (a \oplus b) \). We deduce that \(a \oplus b \in I \).

2. It is clear.

3. Let \(\text{Rad}(I) = A \). Then \(1 \in \text{Rad}(I) \), so \(1^1 \in I \), for some \(n \in \mathbb{N} \). Therefore \(I = A \). The converse is clear.

4. By (2), we have \(\text{Rad}(I) \subseteq \text{Rad}(\text{Rad}(I)) \). It is enough to show that \(\text{Rad}(\text{Rad}(I)) \subseteq \text{Rad}(I) \). Let \(x \in \text{Rad}(\text{Rad}(I)) \). Then there exists \(n \in \mathbb{N} \) such that \(x^n \in \text{Rad}(I) \). We imply that \((x^n)^m \in I \), for some \(m \in \mathbb{N} \). Hence \(x^{nm} \in I \). Therefore \(x \in \text{Rad}(I) \), that is \(\text{Rad}(\text{Rad}(I)) \subseteq \text{Rad}(I) \). Thus \(\text{Rad}(\text{Rad}(I)) = \text{Rad}(I) \).

5. The proof is clear by (2).

6. Let \(x \in \text{Rad}(I) \rightarrow \text{Rad}(J) \). Then \(\{x\} \cap \text{Rad}(I) \subseteq \text{Rad}(J) \). Hence \(I \cap \{x\} \subseteq \text{Rad}(J) \), that is \(x \in I \rightarrow \text{Rad}(J) \).
(7) Let \(x \in \text{Rad}(I \to J) \). Then \(x^n \in I \to J \), for some \(n \in \mathbb{N} \). Hence \(I \cap (x^n) \subseteq J \subseteq \text{Rad}(J) \), for some \(n \in \mathbb{N} \). Hence \(x^n \in I \to \text{Rad}(J) \), for some \(n \in \mathbb{N} \), so \(x \in \text{Rad}(I \to \text{Rad}(J)) \).

(8) Let \(a \in I \). Assume that there is \(k \in \mathbb{N} \) such that \(ka \in J \). We have \(a \leq ka \), thus \(a \in J \). Hence \(I \subseteq J \) and by (2), we have \(\text{Rad}(I) \subseteq \text{Rad}(J) \). □

In the following example, we show that the inclusions in parts (2) and (5) of Theorem 3.11 could be proper.

Example 3.12. Consider \(PMV \)-algebra \(A = P(\Omega) \) as in Example 3.6, we have \(\text{Rad}(P_1) \cup \text{Rad}(P_2) = P_1 \cup P_2 = \{\emptyset, \{1\}, \{2\}\} \), but \(\{1, 2\} \in (P_1 \cup P_2) \subseteq \text{Rad}(P_1 \cup P_2) \), since \(\{1, 2\} = \{1\} \oplus \{2\} \), then \(\{1, 2\} \in \text{Rad}(P_1 \cup P_2) \) but \(\{1, 2\} \not\in \text{Rad}(P_1) \cup \text{Rad}(P_2) \). Hence \(\text{Rad}(P_1) \cup \text{Rad}(P_2) \neq \text{Rad}(P_1 \cup P_2) \), therefore the equality of Theorem 3.11 (5), is not true in general.

Also, in Example 3.9, we have \(\text{Rad}(P_1) = \text{Rad}(\{(0, 0)\}) = A \), while \(A \not\subseteq \{(0, 0)\} \), hence the converse of Theorem 3.11, (2) is not true in general.

Theorem 3.13. Let \(\{I_i\}_{i \in I} \) be a family of proper \(\text{-}\)-ideals of \(A \). Then
\[
\text{Rad}(\bigcap_{i \in I} I_i) = \bigcap_{i \in I} \text{Rad}(I_i).
\]

Proof. We have \(\bigcap_{i \in I} I_i \subseteq I_i \subseteq \text{Rad}(I_i) \), for all \(i \in I \). Then by Theorem 3.11 (2), we get that \(\text{Rad}(\bigcap_{i \in I} I_i) \subseteq \text{Rad}(I_i) \) for all \(i \in I \). Therefore \(\text{Rad}(\bigcap_{i \in I} I_i) \subseteq \bigcap_{i \in I} \text{Rad}(I_i) \).

Conversely, let \(x \in \bigcap_{i \in I} \text{Rad}(I_i) \). Then \(x \in \text{Rad}(I_i) \), for all \(i \in I \) and so \(x^n \in I_i \), for all \(i \in I \) and for some \(n \in \mathbb{N} \). Hence \(x^n \in \bigcap_{i \in I} I_i \), for some \(n \in \mathbb{N} \), that is \(x \in \text{Rad}(\bigcap_{i \in I} I_i) \). Therefore \(\text{Rad}(\bigcap_{i \in I} I_i) = \bigcap_{i \in I} \text{Rad}(I_i) \). □

Proposition 3.14. Let \(f : A \to B \) be a \(PMV \)-homomorphism. Then \(\text{Rad}(\ker(f)) = f^{-1}(\text{Rad}(\{(0)\})) \).

Proof. By Theorem 3.11, we have
\[
\begin{align*}
 a \in \text{Rad}(\ker(f)) & \iff a^n \in \ker(f), \text{for some } n \in \mathbb{N}, \\
 & \iff f(a^n) = 0, \text{for some } n \in \mathbb{N}, \\
 & \iff f(a)^n = 0, \text{for some } n \in \mathbb{N}, \\
 & \iff f(a) \in \text{Rad}(\{(0)\}), \\
 & \iff a \in f^{-1}(\text{Rad}(\{(0)\})).
\end{align*}
\]

□

Theorem 3.15. Let \(I \) be a proper \(\text{-}\)-ideal of \(A \). Then \(\text{Rad}(I) \cap B(A) \subseteq I \).

Proof. Let \(x \in \text{Rad}(I) \cap B(A) \). Then \(x \in \text{Rad}(I) \) and \(x \in B(A) \). So \(x^n \in I \), for some \(n \in \mathbb{N} \) and by Lemma 2.14, \(x^n = x \cdot x \cdots x = x \land x \cdots \land x = x \in I \). Hence \(x \in I \). Therefore \(\text{Rad}(I) \cap B(A) \subseteq I \). □
Corollary 3.16. $\text{Rad} \{0\} \cap B(A) = \{0\}$.

By the following example we show that the inclusion in Theorem 3.15 could be proper.

Example 3.17. In Example 3.9, it is clear that $B(A) = \{(0,0), u\}$, hence $\text{Rad}(P_1) \cap B(A) = P_1 \cap \{(0,0), u\} = \{(0,0)\} \neq P_1$.

Theorem 3.18. Let I be a proper \(\ldots\)-ideal of A. Then the following statements hold:

1. $\text{Rad}(0/I) = \text{Rad}(I)/I$,
2. If $\text{Rad}(I) \subseteq B(A)$, then $\text{Rad}(I) = I$ and $B(A/\text{Rad}(I)) = B(A)/\text{Rad}(I)$,
3. If a is of finite order, then $a/\text{Rad}(I)$ is of finite order, for any $a \in A$.

Proof. (1) In the following by $I \subseteq N$, we means N is a \(\ldots\)-ideal of A containing I, then we have

$$\text{Rad}(0/I) = \bigcap_{N \in \text{Spec}(A), I \subseteq N} (N/I) = (\bigcap_{N \in \text{Spec}(A), I \subseteq N} N)/I = \text{Rad}(I)/I.$$

(2) Let $\text{Rad}(I) \subseteq B(A)$. By Theorem 3.15, we have $\text{Rad}(I) = I$ and

$$B(A)/\text{Rad}(I) = \{e/\text{Rad}(I) : e \in B(A)\},$$

$$= \{e/\text{Rad}(I) : e \vee e^* = 1\},$$

$$= \{e/\text{Rad}(I) : e/\text{Rad}(I) \vee (e/\text{Rad}(I))^* = 1/\text{Rad}(I)\},$$

$$= B(A/\text{Rad}(I)).$$

(3) Suppose that $0 \neq a \in A$ is of finite order. Then there exists $n \in \mathbb{N}$ such that $na = 1$, for all $0 \neq a \in A$. Hence

$$1/\text{Rad}(I) = na/\text{Rad}(I) = n(a/\text{Rad}(I)).$$

Note. It follows from Theorem 3.18(3) that, if A is locally finite MV-algebra, then $A/\text{Rad}(I)$ is locally finite.

In the following example, we show that converse of Theorem 3.18(3), is not true in general.

Example 3.19. In Example 3.6, $P_1 = \{0,\{1\}\}$ is a \(\ldots\)-ideal of A. We get $\text{Rad}(P_1) = P_1$ and $\{2\}/\text{Rad}(P_1) = \{1,2\}/\text{Rad}(P_1)$. Since $d(\{2\}, \{1,2\}) = \{2\} \ominus \{1,2\} \ast \ominus \{1,2\} \ominus \{2\} = 0 \ominus \{1\} = \{1\} \in P_1$. Hence $\{2\}/\text{Rad}(P_1) \in A/\text{Rad}(P_1)$ is of finite order, while $\{2\}$ is not of finite order.

Definition 3.20. The set of nilpotent elements of a PMV-algebra A is

$$\text{Nil}(A) = \{x \in A : x^n = x \cdots x = 0, \text{ for some } n \geq 1\}.$$

Corollary 3.21. Let I be a \(\ldots\)-ideal of a PMV-algebra A. Then $\text{Nil}(A) \subseteq \text{Rad}(I)$.

Remark 3.22. If I is a \sim-ideal of A, then from Lemma 3.10 $a \in \text{Rad}(I)$ if and only if $a/I \in \text{Nil}(A/I)$.

4. Semi-maximal \sim-ideals in PMV-algebras

Definition 4.1. Let I be a proper ideal of A. If $\text{Rad}(I) = I$, then I is called a semi-maximal \sim-ideal of A.

By Lemma 3.10, a \sim-ideal I of A is a semi-maximal if and only if

$$I = \{ a \in A : a^n \in I \text{ for some } n \in \mathbb{N} \}.$$

Example 4.2. In Example 3.6, we have $\text{Rad}(P_1) = P_1$, hence P_1 is a semi-maximal \sim-ideal.

Example 4.3. In Example 3.9, $\{(0,0)\}$ is not a semi-maximal \sim-ideal of A.

Proposition 4.4. Let A, B be PMV-algebras and $f : A \to B$ be a PMV-homomorphism. Then the following statements hold:

(a) If I is a semi-maximal \sim-ideal of B, then $f^{-1}(I)$ is a semi-maximal \sim-ideal of A.

(b) If f is onto and I is a semi-maximal \sim-ideal of A with $\text{Ker}(f) \subseteq I$, then $f(I)$ is a semi-maximal \sim-ideal of B.

Proof. (a) It is enough to show that $f^{-1}(\text{Rad}(I)) = \text{Rad}(f^{-1}(I))$, since then $f^{-1}(I) = f^{-1}(\text{Rad}(I)) = \text{Rad}(f^{-1}(I))$. Now, for $x \in A$, we have

$$x \in f^{-1}(\text{Rad}(I)) \iff f(x^n) \in I, \text{ for some } n \in \mathbb{N},$$

$$\iff f(x^n) \in I, \text{ for some } n \in \mathbb{N},$$

$$\iff x^n \in f^{-1}(I), \text{ for some } n \in \mathbb{N},$$

$$\iff x \in \text{Rad}(f^{-1}(I)).$$

(b) Let I be a semi-maximal \sim-ideal of A. We can easily check that $f(I)$ is a \sim-ideal of B. It is sufficient to show that $\text{Rad}(f(I)) = f(\text{Rad}(I)) = f(I)$.

Let $x \in f(\text{Rad}(I))$. Then there exists $t \in \text{Rad}(I)$ such that $x = f(t)$. Hence $t^n \in I$, for some $n \in \mathbb{N}$. This results $x^n = f(t)^n \in f(I)$, for some $n \in \mathbb{N}$, we obtain $x \in \text{Rad}(f(I))$. Then $f(\text{Rad}(I)) \subseteq \text{Rad}(f(I))$.

Conversely, let $x \in \text{Rad}(f(I))$. Then $x^n \in f(I)$, for some $n \in \mathbb{N}$. Since f is onto, there exists $t \in I$ such that $x = f(t)$. Thus for some $n \in \mathbb{N}$, we have

$$f(t)^n \in f(I) \Rightarrow f(t)^n = f(c), \text{ for some } c \in I,$$

$$\Rightarrow t^n \circ c^* \in \text{Ker} f \subseteq I,$$

$$\Rightarrow [t^n \circ c^*] \oplus c \in I,$$

$$\Rightarrow t^n \leq c \lor t^n \in I,$$
Let suppose that.

If $3.11(1)$ By Theorem 3.10 and only if $A=I$

$3.11(2)$ We have a^2 for every I

Then Rad a 2

Therefore n I

Proof. (1) By Theorem 4.7, $\text{Rad}(I)$ is a semi-maximal $-ideal$ of A. Let J be a semi-maximal $-ideal$ such that $I \subseteq J$. Then $\text{Rad}(I) \subseteq \text{Rad}(J) = J$.

(2) We have $\text{Rad}(I)/I \subseteq \text{Rad}(\text{Rad}(I))/I$. We show that $\text{Rad}(\text{Rad}(I))/I \subseteq \text{Rad}(I)/I$. Take $a/I \in \text{Rad}(\text{Rad}(I))/I$, then $(a/I)^n \in \text{Rad}(I)/I$, for some $n \in \mathbb{N}$. Hence $(a^n)/I = b/I$, for some $b \in \text{Rad}(I)$ and $n \in \mathbb{N}$, so $d(a^n, b) \in I \subseteq \text{Rad}(I)$. Therefore $((a^n) \circ b^n) \oplus [b \circ (a^n)'] \in \text{Rad}(I)$ and $b \in \text{Rad}(I)$. It follows that $[(a^n) \circ b^n] \oplus b \in \text{Rad}(I)$ and $(a^n) \forall b \in \text{Rad}(I)$. Hence $a^n \in \text{Rad}(I)$, for some $n \in \mathbb{N}$, that is $a \in \text{Rad}(\text{Rad}(I))$. Thus $a/I \in \text{Rad}(\text{Rad}(I))/I = \text{Rad}(I)/I$. □

Corollary 4.6. Let $\{I_i\}_{i \in I}$ be finite family of semi-maximal $-ideals$ of A. Then $\bigcap_{i \in I} I_i$ is a semi-maximal $-ideal$ of A.

Proof. Let $\{I_i\}$ be finite family of semi-maximal ideals of A. Hence $\text{Rad}(I_i) = I_i$, for every $i \in I$, so by Theorem 3.11, we have

\[
\text{Rad} \left(\bigcap_{i \in I} I_i \right) = \bigcap_{i \in I} \text{Rad}(I_i) = \bigcap_{i \in I} I_i.
\]

□

By the following theorem we prove that I is a semi-maximal $-ideal$ of A if and only if A/I has no nilpotent elements of A.

Theorem 4.7. If A is a PMV-algebra and I is a $-ideal$ of A, then A/I has no nilpotent elements if and only if I is a semi-maximal $-ideal$ of A.

Proof. Suppose that A/I has no nilpotent elements and $a \in \text{Rad}(I)$. Then from Lemma 3.10, we deduce that $a^n \in I$, for some integer $n > 0$. So $(a/I)^n = (a^n)/I = 0/I$. Since A/I has no nilpotent elements, $a/I = 0/I$. This implies $a \in I$. Therefore $\text{Rad}(I) \subseteq I$ and I is a semi-maximal $-ideal$ of A.

Conversely, let I be a semi-maximal ideal of A and $0 \neq a/I$ be a nilpotent element of A/I. Then $(a/I)^n = a^n/I = 0/I$, for some integer $n > 0$. Hence $a^n \in I$, for some integer $n > 0$ and so $a \in \text{Rad}(I)$. Since I is a semi-maximal $-ideal$ of A, $a \in \text{Rad}(I) = I$, $a \in I$. So $a/I = 0/I$, which is a contradiction. Therefore A/I has no nilpotent elements. □
5. Conclusion

MV-algebras were originally introduced by C. Chang in [2] in order to give an algebraic counterpart of the Łukasiewicz many valued logic.

A. Dvurečenskij and A. Di Nola in [4] introduced the notion of PMV-algebras, that is MV-algebras whose product operation (\cdot) is defined on the whole MV-algebra.

In this paper, we introduced the notion of the radical of a PMV-algebra and characterized radical A via elements of A. We also presented several different characterizations and many important properties of the radical of a \sim-ideal in a PMV-algebra. We introduced the notion of a semi-maximal \sim-ideal. We proved that if I is a \sim-ideal of a PMV-algebra A, I is a semi-maximal \sim-ideal of A if and only if $A/\text{Rad}(I)$ has no nilpotent elements.

Acknowledgement

The author thanks the referees for their valuable comments and suggestions.

REFERENCES

(Fereshteh Forouzesh) FACULTY OF MATHEMATICS AND COMPUTING, HIGHER EDUCATION COMPLEX OF BAM, BAM, IRAN.

E-mail address: frouzesh@bam.ac.ir