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Abstract. An integral domain D is called a locally GCD domain if DM

is a GCD domain for every maximal ideal M of D. We study some ring-

theoretic properties of locally GCD domains. For example, we show that

D is a locally GCD domain if and only if aD ∩ bD is locally principal for

all 0 ̸= a, b ∈ D, and flat overrings of a locally GCD domain are locally

GCD. We also show that the t-class group of a locally GCD domain is just

its Picard group. We study when a locally GCD domain is Prüfer or a

generalized GCD domain. We also characterize locally factorial domains

as domains D whose minimal prime ideals of a nonzero principal ideal are

locally principal and discuss conditions that make them Krull domains.

We use the D + XDS [X] construction to give some interesting ex-
amples of locally GCD domains that are not GCD domains.
Keywords: Locally GCD domain, generalized GCD domain, D +
XDS [X].
MSC(2010): Primary: 13A15, 13F05; Secondary: 13F20, 13G05.

1. Introduction

1.1. Motivation. Let D be an integral domain and D∗ = D\{0}. An integral
domain D is called a GCD domain if for each pair a, b ∈ D∗, GCD(a, b) exists.
We say that D is a locally GCD domain if DM is a GCD domain for every
maximal ideal M of D. A Prüfer domain is an integral domain whose nonzero
finitely generated ideals are invertible, while a Bezout domain is an integral
domain in which every finitely generated ideal is principal; so Bezout domain
⇔ Prüfer domain + GCD domain. Since D is a Prüfer domain if and only if
DM is a valuation domain for all maximal ideals M of D, Prüfer domains can
serve as celebrated examples of locally GCD domains. Also, since a GCD Prüfer
domain is Bezout and there are non-Bezout Prüfer domains, there are locally
GCD domains that are not GCD. Another example of a locally GCD domain is
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Locally GCD domains 264

a locally factorial domain (an integral domain D such that DM is factorial for
each maximal ideal M of D). Let S be a multiplicative subset of D, X be an
indeterminate over D, and D(S) = D +XDS [X] = {f ∈ DS [X] | f(0) ∈ D}.
The last-named author of this paper showed that D(S) is a GCD domain if
and only if D is a GCD domain and S is a splitting set [39, Corollary 1.5] and
proved some results about D(S) being locally GCD. In this paper, we study
some ring-theoretic properties of locally GCD domains. We also characterize
locally factorial domains and indicate conditions under which a locally factorial
domain becomes a locally factorial Krull domain. We use the D + XDS [X]
construction to give some interesting examples of locally GCD domains that
are not GCD domains.

We show, in Section 1, that D is a locally GCD domain if and only if DP

is a GCD domain for every prime ideal P of D, if and only if aD ∩ bD is
locally principal for all a, b ∈ D∗. We also give some necessary and sufficient
conditions for a locally GCD domain to be a generalized GCD domain (i.e.,
aD ∩ bD is invertible for all a, b ∈ D∗) or a Prüfer domain. In Section 2,
we study and characterize locally factorial Krull domains. We show that D
is a locally factorial Krull domain if and only if every minimal prime of a
nonzero principal ideal is locally principal and a v-ideal of finite type, if and
only if every minimal prime of a nonzero principal ideal is invertible. Finally,
in section 3, we study when D + XDS [X] is a locally GCD domain. Among
other things, we show that D +XDS [X] is a locally GCD domain if and only
if D is a locally GCD domain and the saturation of S in DP is a splitting set
of DP for every maximal ideal P of D with P ∩ S ̸= ∅. As corollaries, we have
several interesting results: (i) if D is a locally factorial domain or a locally
GCD domain with dimD = 1, where dimD denotes the (Krull) dimension of
D, then D + XDS [X] is a locally GCD domain for each multiplicative set S
of D; and (ii) if S is a saturated multiplicative set of E, the ring of entire
functions, generated by infinitely many prime elements, then E+XES [X] is a
locally GCD domain but not a GCD domain.

1.2. Definitions and related results. As our work will take us into the
territory of the so-called star operations it seems pertinent to give the reader
an idea of some of the notions. Let D be an integral domain, K be the quotient
field of D, and F (D) (resp., f(D)) be the set of nonzero fractional ideals (resp.,
nonzero finitely generated fractional ideals) of D.

A star operation ∗ on D is a function ∗ : F (D) → F (D) such that for all
A,B ∈ F (D) and for all 0 ̸= x ∈ K

(i) (x)∗ = (x) and (xA)∗ = xA∗,
(ii) A ⊆ A∗ and A∗ ⊆ B∗ whenever A ⊆ B,
(iii) (A∗)∗ = A∗.

A fractional ideal A ∈ F (D) is called a ∗-ideal if A = A∗ and a ∗-ideal of
finite type if A = B∗ for some B ∈ f(D). A star operation ∗ is said to be of
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finite character if A∗ =
∪
{B∗ | B ⊆ A and B ∈ f(D)}. For I ∈ F (D), let

I−1 = {x ∈ K | xI ⊆ D}, Iv = (I−1)−1, It =
∪
{Jv | J ⊆ I and J ∈ f(D)}, and

Iw = {x ∈ K | xJ ⊆ I for some J ∈ f(D) with Jv = D}. The functions defined
by I 7→ Iv, I 7→ It and I 7→ Iw are all examples of star operations. For a finite
character star operation ∗, a maximal ∗-ideal is an integral ∗-ideal maximal
among proper integral ∗-ideals. Let ∗-Max(D) be the set of maximal ∗-ideals
of D. Continuing with a star operation ∗ of finite character, it is well known
that a maximal ∗-ideal is a prime ideal; every integral ∗-ideal is contained in
a maximal ∗-ideal; ∗-Max(D) ̸= ∅ if D is not a field. The t-operation is of
finite character and so is the w-operation. Moreover, t-Max(D) = w-Max(D);
Iw = ∩P∈t-Max(D)IDP for all I ∈ F (D); and IwDP = IDP for all I ∈ F (D)

and P ∈ t-Max(D). An I ∈ F (D) is said to be ∗-invertible if (II−1)∗ = D.
We say that D is a Prüfer v-multiplication domain (PvMD) if every nonzero
finitely generated ideal I of D is t-invertible, i.e., (II−1)t = D. A reader in
need of more introduction may consult [42], [22, Sections 32 and 34], or [24].

Let T (D) be the group of t-invertible fractional t-ideals of D under the
t-multiplication I ∗ J = (IJ)t, and let Prin(D) be its subgroup of nonzero
principal fractional ideals of D. Then Clt(D) = T (D)/Prin(D), called the
t-class group of D, is an abelian group, which was defined by Bouvier in [14],
at the suggestion of the last named author. Unlike the divisor class group
which is defined only for completely integrally closed integral domains, the t-
class group is defined for a general integral domain. However, it is interesting
to note that for a Krull domain, the t-class group is exactly the divisor class
group and for a Prüfer domain or an integral domain of dimension one, the
t-class group is precisely the ideal class group. Here, the ideal class group of
D is Inv(D)/Prin(D), where Inv(D) is the group of invertible ideals of D
under the ordinary ideal multiplication. The ideal class group is also called the
Picard group, so Pic(D) = Inv(D)/Prin(D). Clearly, Pic(D) is a subgroup of
Clt(D) because an invertible ideal is t-invertible. The reader is referred to [12]
for more on the t-class group.

An integral domain D is a GCD domain if and only if for every pair of
elements a, b ∈ D∗, we have that aD ∩ bD is principal. It is well known
that D is a GCD domain if and only if D is a PvMD with Clt(D) = 0 [14,
Proposition 2]. A saturated multiplicative subset S of D is called a splitting
set of D if for every d ∈ D∗, d = st for some s ∈ S and t ∈ N(S), where
N(S) = {x ∈ D∗ | (x, s)v = D for all s ∈ S}. We say that a multiplicative set
S of D is a t-splitting set if for each d ∈ D∗, we have dD = (AB)t for some
integral ideals A and B of D with At ∩ sD = sAt for all s ∈ S and Bt ∩ S ̸= ∅.
Clearly, a splitting set is t-splitting, and if Clt(D) = 0, then a t-splitting set is
splitting. It is known that D is a weakly factorial domain if and only if every
saturated multiplicative subset ofD is a splitting set [10, Theorem]. (A nonzero
element x ∈ D is said to be primary if xD is a primary ideal, and a weakly
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factorial domain (WFD) is an integral domain in which every nonzero nonunit
can be written as a finite product of primary elements.) Following [39], we say
that D is a generalized UFD (GUFD) if D is a GCD domain whose nonzero
nonunits can be expressed as a product of finitely many rigid elements r with
the following property: for each nonunit h|r, there is an integer n ≥ 1 such
that r|hn. Here r ∈ D∗ is a rigid element if for all x, y ∈ D∗ with x|r and y|r,
we have x|y or y|x. Later, in [6, Theorem 10], it was shown that D is a GUFD
if and only if D is a weakly factorial GCD domain, if and only if D[X] is a
WFD.

2. Locally GCD domains

We say that an ideal A of D is locally principal if ADM is principal for each
maximal ideal M of D. It is known that D is a GCD domain if and only if
every nonzero prime ideal of D contains an element a ∈ D∗ with aD ∩ xD
principal for all x ∈ D [11, Theorem 2], if and only if aD ∩ bD is principal for
all a, b ∈ D∗. Our first result is a locally GCD domain analogue of these two
characterizations of GCD domains.

Theorem 2.1. The following are equivalent for an integral domain D.

(1) D is a locally GCD domain.
(2) DP is a GCD domain for every prime ideal P of D.
(3) aD ∩ bD is locally principal for all a, b ∈ D∗.
(4) Every nonzero prime ideal of D contains an element a ∈ D∗ such that

aD ∩ xD is locally principal for all x ∈ D.

Proof. (1) ⇒ (2) This follows from the fact that if S is a multiplicative subset
of a GCD domain D, then DS is a GCD domain.

(2) ⇒ (3) Let M be a maximal ideal of D. Then DM is a GCD domain,
and since (aD ∩ bD)DM = aDM ∩ bDM , (aD ∩ bD)DM is principal.

(3) ⇒ (1) Let M be a maximal ideal of D, and let 0 ̸= α, β ∈ DM . Then
α = a

s and β = b
t for some a, b ∈ D and s, t ∈ D\M , and hence αDM = aDM

and βDM = bDM . Also, as (aD ∩ bD)DM = aDM ∩ bDM = αDM ∩ βDM , we
conclude that αDM ∩ βDM is principal.

(3) ⇒ (4) Clear.
(4) ⇒ (3) Let S be the set of elements a ∈ D∗ such that aD ∩ xD is

locally principal for all x ∈ D. To prove the implication, it suffices to show
that S = D∗. Let b, c ∈ S, and let x ∈ D. If M is a maximal ideal, then
(bD ∩ xD)DM = byDM for some y ∈ D. Hence, (bcD ∩ xD)DM = bcDM ∩
(bDM ∩ xDM ) = bcDM ∩ byDM = b(cDM ∩ yDM ) is principal. Next, assume
that d, e ∈ D∗ with d ̸∈ S. Then there is a z ∈ D such that dD ∩ zD is not
locally principal. Hence, deD ∩ ezD is not locally principal, and so de ̸∈ S.
Thus, S is a saturated multiplicative set ofD. If S ̸= D∗, then as S is saturated,
there is a nonunit α ∈ D∗ \ S, so αD ∩ S = ∅. Again, since S is saturated, we
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can enlarge αD to a prime ideal P of D such that P ∩S = ∅ which is contrary
to the assumption. □

Corollary 2.2. Let D be a locally GCD domain and let R be a flat overring
of D (e.g. a fraction ring of D). Then R is a locally GCD domain.

Proof. Let Q be a maximal ideal of R, and let P = Q∩D. Then RQ = DP [30,
Proposition 4.14], and hence RQ is a GCD domain by Theorem 2.1 because D
is a locally GCD domain. Thus, R is a locally GCD domain. □

Clearly, a GCD domain is a locally GCD domain, while a locally GCD
domain need not be a GCD domain. To give some examples, recall that D is
a Prüfer domain if and only if DM is a valuation domain for every maximal
ideal M of D (see, for example, [22, Theorem 22.1]), and a valuation domain
is a GCD domain. Hence, a Prüfer domain is a locally GCD domain. A good
example of a Prüfer domain is a Dedekind domain which can be characterized
as a Noetherian Prüfer domain. It is well known that Z[

√
−5] is a non-PID

Dedekind domain. Also, a Dedekind domain that is a GCD domain is a PID.
Thus, Z[

√
−5] is a locally GCD domain which is not a GCD domain.

Recall that D is an essential domain if there is a family {Pα}α∈Λ of prime
ideals of D such that D = ∩DPα

and DPα
is a valuation domain for each α ∈ Λ.

The family {Pα}α∈Λ may be called a defining family of valued primes of the
essential domain D. A PvMD D is essential because DM is a valuation domain
for each maximal t-ideal M of D and D = ∩M∈t-Max(D)DM . Since a GCD
domain is a PvMD, we conclude that a GCD domain is essential.

Lemma 2.3. Let {Dα}α∈J be a family of flat overrings of an integral domain
D such that D = ∩α∈ΛDα. If for each α ∈ Λ, Dα is essential then so is D.

Proof. Let {Pαβ}β∈Kα be the defining family of valued primes of Dα. Since Dα

is a flat overring of D, we get (Dα)Pαβ
= DP ′

αβ
where P ′

αβ = Pαβ ∩D. Thus,

Dα = ∩β∈KαDP ′
αβ

. Now if we set ∆ = ∪Kα, then D = ∩α∈ΛDα = ∩αβ∈∆DP ′
αβ

and DP ′
αβ

is a valuation domain for all αβ ∈ ∆. □

Proposition 2.4. If D is a locally GCD domain, then D is essential.

Proof. Let M be a maximal ideal of D. Then DM is a GCD domain, and hence
DM is essential. Thus, by Lemma 2.3, D is essential because D = ∩DM where
M ranges over maximal ideals of D. □

As the definition of the t-class group hinges on the group of t-invertible
t-ideals, the nature of the t-class group of a locally GCD domain will be de-
termined by the nature of its t-invertible t-ideals. Let’s go a bit general on
this. Recall that an integral domain D is called a ∗-domain if (∩(ai))(∩(bj)) =
∩(aibj) for all a1, a2, ..., am; b1, ..., bn ∈ D∗. It may be noted that the ∗-property
is equivalent to the property that for all a1, a2, ..., am; b1, ..., bn ∈ K \{0}, where
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K is the quotient field of D, we have (∩(ai))(∩(bj)) = ∩(aibj). The reason is
that (i)D∗ ⊆ K\{0}, and (ii) if ∗ holds, let a1, a2, ..., am; b1, ..., bn ∈ K\{0} and
let x, y ∈ D∗ such that xai, ybj ∈ D, then by ∗, (∩(xai))(∩ybj) = ∩(xaiybj),
and hence cancelling xy from both sides gives (∩(ai))(∩(bj)) = ∩(aibj). This
notion was introduced in [38].

Lemma 2.5. Let A be a nonzero fractional ideal of a ∗-domain D such that
A = Bv where B is finitely generated and suppose that A−1 = Cv where C is
finitely generated. Then A is invertible. Consequently, in a ∗-domain, every
t-invertible t-ideal is invertible, i.e., Clt(D) = Pic(D).

Proof. According to [37, Proposition 1.6], D is a ∗-domain if and only if
for every pair of nonzero finitely generated fractional ideals A,B of D, we
have (AB)−1 = A−1B−1 = (AvBv)

−1. Applying this to our situation we get
(AA−1)−1 = (BvCv)

−1 = B−1C−1 = A−1A since B−1 = A−1 and C−1 =
(A−1)−1 = A. But as AA−1 ⊆ D and (AA−1)−1 ⊇ D, AA−1 = (AA−1)−1

implies that AA−1 = D. Now if A is a t-invertible t-ideal, then A satisfies the
requirements of the lemma. □

An integrally closed domain D is called a Schreier domain if for all nonzero
x, y, z ∈ D, x|yz implies that x = rs for some r, s ∈ D with r|y and s|z.
Proposition 2.6. If D is a locally GCD domain, then D is a ∗-domain, and
hence Clt(D) = Pic(D).

Proof. We know that a GCD domain is Schreier [16, Theorem 2.4] and a
Schreier domain is a ∗-domain [38, Corollary 1.7]; hence a GCD domain is a
∗-domain. Also, recall that a locally ∗-domain is a ∗-domain [38, Theorem 2.1].
Thus, a locally GCD domain is a ∗-domain, and hence Clt(D) = Pic(D) by
Lemma 2.5. (The fact that a locally GCD domain D satisfies Clt(D) = Pic(D)
follows also from [4, Theorem 2.1] where it is shown that this equality can be
tested locally.) □

As in [2], we say that D is a generalized GCD domain (GGCD domain) if
aD∩bD is invertible for all a, b ∈ D∗. It is known that D is a GGCD domain if
and only if every v-ideal of finite type is invertible [3, Theorem 1]; so a GGCD
domain is a PvMD D with Clt(D) = Pic(D) [3, page 218]. Clearly, a GCD
domain is a GGCD domain. Also, D is a PvMD if and only if aD ∩ bD is
t-invertible for all a, b ∈ D∗ [31, Corollary 1.8], and an invertible ideal of D is
locally principal [22, Corollary 2.7]. So by Theorem 2.1 and Proposition 2.6,
we get

GCD domain ⇒ GGCD domain ⇔ locally GCD domain + PvMD.

In [8, Corollary 1.3], it was shown that if D is of finite t-character, then D is
a GGCD domain if and only if D is a locally GCD domain. (D is said to be
of finite t-character if each nonzero nonunit of D is contained in only finitely
many maximal t-ideals of D.)
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Corollary 2.7. (cf. [38, Corollary 3.4]) The following are equivalent for a
PvMD D.

(1) D is a GGCD domain.
(2) D is a locally GCD domain.
(3) Clt(D) = Pic(D).
(4) D is a ∗-domain.

Proof. (1) ⇒ (2) Clear.
(2) ⇒ (3) Proposition 2.6.
(3) ⇒ (1) Let a, b ∈ D∗. Then aD∩ bD is t-invertible because D is a PvMD,

and since Clt(D) = Pic(D), aD∩bD is invertible. Thus, D is a GGCD domain.
(2) ⇔ (4) [38, Corollary 3.4]. □

We next give some necessary and sufficient conditions for a locally GCD
domain to be a GGCD domain.

Lemma 2.8. Let a, b ∈ D∗. If the ideal (a, b) is not t-invertible, then there is
a maximal t-ideal M of D such that (a) ∩ (b) = Ma ∩Mb.

Proof. (a, b) not being t-invertible means that there is a maximal t-idealM such
that ((a, b)(a, b)−1)t ⊆ M . Hence, (a, b)−1 ⊆ M : (a, b) = Ma−1 ∩ Mb−1 ⊆
(a)−1 ∩ (b)−1 = (a, b)−1. Multiplying by ab we get (a) ∩ (b) = Ma ∩Mb. □

Corollary 2.9. The following are equivalent for a locally GCD domain D.

(1) D is a GGCD domain.
(2) D is a PvMD.
(3) aD ∩ bD is t-invertible for all a, b ∈ D∗.
(4) aD ∩ bD is a v-ideal of finite type for all a, b ∈ D∗.
(5) (M((a) ∩ (b)))w = Ma ∩ Mb for all a, b ∈ D∗ and for all maximal

t-ideals M of D.

Proof. (1) ⇒ (5) Let Q be a maximal t-ideal of D. Then DQ is a valua-
tion domain and hence a Prüfer domain. Moreover in a Prüfer domain every
ideal is flat and so MDQ is a flat ideal of DQ. Hence, (M((a) ∩ (b))DQ =
MDQ((a) ∩ (b))DQ = MDQ((a)DQ ∩ (b)DQ) = MDQaDQ ∩ MDQbDQ =
MaDQ ∩MbDQ = (Ma ∩Mb)DQ. Thus, (M((a) ∩ (b)))w = Ma ∩Mb.

(5) ⇒ (2) Suppose that (a, b) is not t-invertible. Then by Lemma 2.8, (a) ∩
(b) = Ma∩Mb for some maximal t-ideal M of D. Note that (M((a)∩ (b)))w =
Ma ∩Mb by assumption; hence (M((a) ∩ (b)))DM = (Ma ∩Mb)DM = ((a) ∩
(b))DM . This gives MDM ((a)∩ (b))DM = ((a)∩ (b))DM . Since DM is a GCD
domain we have that ((a)∩ (b))DM is principal. Cancelling ((a)∩ (b))DM from
both sides we have MDM = DM which is impossible. So every nonzero two
generated ideal of D is t-invertible, and hence D is a PvMD.

(2) ⇔ (3) [31, Corollary 1.8].
(3) ⇒ (4) This follows because a t-invertible t-ideal is a v-ideal of finite type.



Locally GCD domains 270

(4) ⇒ (1) By Theorem 2.1, aD∩ bD is locally principal, and hence aD∩ bD
is flat. Thus, the result follows directly from the fact that a flat v-ideal of finite
type in an integral domain is invertible [41, Proposition 1]. □
Remark 2.10. (1) By Corollary 2.9, if D is a locally GCD domain, then D
is a GGCD domain if and only if aD ∩ bD is t-invertible for all a, b ∈ D∗. So
it’s natural to ask if we can change “t-invertible” to “v-invertible”. However,
the requirement that (a) ∩ (b) is v-invertible for all a, b ∈ D∗ is already met by
a locally GCD domain, in fact, by any essential domain [20, Proposition 2.1].

(2) By Corollary 2.9, a locally GCD domain that is not a PvMD is not a
GGCD domain. It so happens that there are a lot of locally GCD domains that
are not PvMDs, and hence not GGCD domains. A classical example can be
found in [32, Example 2.1]. This example is a redo of an example given by
Heinzer and Ohm [26] of an essential domain that is not a PvMD. With some
effort it was shown in [32] that every quotient ring of the ring of [32, Example
2.1] was essential. Towards the end of [32, Example 2.1], it was shown that
the domain constructed in [26] is actually locally factorial and so a locally
GCD domain. This establishes the existence of locally GCD domains that are
not PvMDs. A similar remark is in [3, page 218]. We shall encounter other
examples of non-PvMD locally GCD domains in Section 3, in connection with
the D +XDS [X] construction from locally GCD domains.

Corollary 2.9 tells us one way of deciding whether a locally GCD domain is
a GGCD domain. Here is another.

Proposition 2.11. The following are equivalent for a locally GCD domain D.

(1) D is a GGCD domain.
(2) PDP is a t-ideal of DP for every maximal t-ideal P of D.
(3) For every prime t-ideal Q of D and for every multiplicative set S of D

with Q ∩ S = ∅, QDS is a prime t-ideal of DS.
(4) For all nonzero finitely generated ideals A of D and for every multi-

plicative set S of D, we have (ADS)v = AvDS.
(5) For every a, b ∈ D∗ and for every maximal ideal M of D, we have

((a, b)DM )v = (a, b)vDM .

Proof. (1) ⇒ (4) Since A is finitely generated, (ADS)
−1 = A−1DS [36, Lemma

4]. Also, since D is a GGCD domain, A−1 is invertible, and hence finitely
generated. Thus, (ADS)v = (A−1DS)

−1 = AvDS .
(4) ⇒ (3) Let Q be a prime t-ideal of D. Then, by (4), (QDS)t = ∪{AvDS |

(0) ̸= A ⊆ Q is finitely generated } ⊆ QDS ⊆ (QDS)t. Thus, (QDS)t = QDS .
(3) ⇒ (2) Clear.
(2)⇒ (1) Let P be a maximal t-ideal ofD. Then PDP is a t-ideal ofDP , and

sinceDP is a GCD domain (hence a PvMD) by Theorem 2.1, DP = (DP )PDP is
a valuation domain. Thus, D is a PvMD, and so a GGCD domain by Corollary
2.9.
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(4) ⇒ (5) Clear.
(5) ⇒ (1) Since DM is a GCD domain, (a, b)vDM = ((a, b)DM )v is principal.

Hence, (a, b)v is locally principal, and thus (a, b)v is invertible [41, Corollary
2]. □

Recall that D is a GCD domain if and only if (a, b)v is principal for every
a, b ∈ D∗. Also, note that if (a, b) is principal, then (a, b)v = (a, b). Hence,
a GCD domain D is a Bezout domain if and only if (a, b)v = (a, b) for every
a, b ∈ D∗. We next give a locally GCD domain analogue of this result.

Corollary 2.12. The following are equivalent for an integral domain D.

(1) D is a Prüfer domain.
(2) D is a GGCD domain and (a, b)v = (a, b) for every a, b ∈ D∗.
(3) D is a locally GCD domain and ((a, b)DM )v = (a, b)DM for every

a, b ∈ D∗ and every maximal ideal M of D.
(4) D is a locally GCD domain and M((a) ∩ (b)) = Ma ∩ Mb for each

maximal ideal M and for all a, b ∈ D∗.

Proof. (1)⇒ (3) The result follows from the fact thatDM is a valuation domain
for all maximal ideals M of a Prüfer domain D.

(3) ⇒ (2) Since (a, b) is finitely generated, ((a, b)DM )v = ((a, b)vDM )v [36,
Lemma 4], and hence ((a, b)DM )v = (a, b)vDM = (a, b)DM . Thus, D is a
GGCD domain by Proposition 2.11 and (a, b)v = (a, b) [22, Theorem 4.10].

(2) ⇒ (1) Let a, b ∈ D∗. Then (a, b)v is invertible because D is a GGCD
domain, and thus (a, b) is invertible. Hence, D is a Prüfer domain.

(1) ⇔ (4) This follows from [1, Proposition 1] because a Prüfer domain is a
locally GCD domain. □

3. Locally factorial domains

Let D be an integral domain. As already mentioned, D is called a locally
factorial domain if DM is a UFD for each maximal ideal M of D. An essential
part of being a UFD or of being factorial is being Krull. So we start with
a somewhat novel characterization of Krull domains. Kang in [28, Theorem
3.6] proved that D is a Krull domain if and only if every minimal prime of
a nonzero principal ideal of D is t-invertible. Using this result we prove the
following lemma.

Lemma 3.1. An integral domain D is factorial if and only if every minimal
prime of a nonzero principal ideal of D is principal.

Proof. Indeed, as a nonzero principal ideal is invertible and hence t-invertible,
so by [28, Theorem 3.6], D is Krull. Hence, as in a Krull domain the minimal
primes of nonzero principal ideals are of height-one, we have a Krull domain
whose height-one primes are all principal which is a UFD. The converse is
obvious. □
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Using Lemma 3.1, we can state the following characterization of locally
factorial domains.

Proposition 3.2. An integral domain D is locally factorial if and only if every
minimal prime of a nonzero principal ideal is locally principal.

Proof. Let D be locally factorial and let P be a minimal prime of a nonzero
principal ideal ofD. Then for any maximal idealM, PDM is a minimal prime of
a principal ideal of DM and hence principal if P ⊆ M, otherwise PDM = DM .
Thus every minimal prime of a nonzero principal ideal is locally principal.
Conversely, suppose that every minimal prime of a nonzero principal ideal is
locally principal and let M be a maximal ideal of D. Now let P be a minimal
prime of a nonzero principal ideal of DM . Then it is easy to see that P = PDM

where P is a minimal prime of a principal ideal. But then PDM is principal and
so is P. As P is arbitrary, we conclude, by Lemma 3.1, that DM is factorial. □

Proposition 3.2 shows that a number of results involving local factoriality can
be stated using minimal primes of nonzero principal ideals. This brings to mind
a celebrated characterization of UFDs from Kaplansky’s book [29, Theorem
178].

Theorem 3.3. Let R be an integral domain. The following three conditions
are necessary and sufficient for R to be a UFD.

(1) RM is a UFD for each maximal ideal M .
(2) Every minimal prime ideal in R is finitely generated.
(3) Every invertible ideal in R is principal.

With a great deal of hindsight, of course, we can restate Theorem 3.3 as
follows.

Theorem 3.4. The following three conditions are necessary and sufficient for
an integral domain D to be a UFD.

(1) Minimal primes of nonzero principal ideals are locally principal.
(2) Every minimal prime of a nonzero principal ideal is a v-ideal of finite

type.
(3) Every invertible ideal in D is principal, i.e., Pic(D) = 0.

Proof. By Proposition 3.2, (1) accounts for Theorem 3.3(1). In the presence of
(1), (2) accounts for Theorem 3.3(2), because a nonzero locally principal ideal
I is invertible if and only if I is of finite type [4, Theorem 2.1], and an invertible
ideal is finitely generated. □

Throwing out (3) from Theorem 3.4, we have the following characterization
of locally factorial Krull domains. Of course it is a well known result but we
include it here to show the ease with which it can be proven with the approach
of this paper and with Proposition 3.2.
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Theorem 3.5. The following are equivalent for an integral domain D:

(1) D is a locally factorial Krull domain.
(2) Every minimal prime of a nonzero principal ideal is locally principal

and a v-ideal of finite type.
(3) Every minimal prime of a nonzero principal ideal is invertible.

Proof. (1) ⇒ (2) D being locally factorial implies that every minimal prime of
a nonzero principal ideal is locally principal. Also, D being Krull implies that
the minimal prime is a t-invertible t-ideal and hence a v-ideal of finite type.

(2) ⇒ (3) This follows from the fact that a nonzero locally principal ideal is
invertible if and only if it is of finite type [4, Theorem 2.1].

(3) ⇒ (1) We note that every minimal prime of a principal ideal being
invertible means it’s locally principal which implies that D is locally factorial.
Again, as an invertible ideal is t-invertible, that implies that D is a Krull
domain. □

Let’s note that (1) and (2) in Theorem 3.4 combine to give locally factorial
Krull domains and that seems to indicate that locally factorial domains and
locally factorial Krull domains are different. Indeed they are different and in
the following we give two examples which can be useful in many contexts. As
these examples are already amply discussed in literature we shall only give
references to them.

Example 3.6. (a) Example 2.1 of [32] is given as an example of a locally
factorial domain that is not a PvMD. Since a Krull domain is a PvMD, this
example is not a Krull domain. Also, the ring D described in [32, Example
2.1], being an ascending union of UFDs has the property that Pic(D) = (0).

(b) Almost Dedekind domains are integral domains D such that DM is a
rank-one discrete valuation domain for every maximal ideal M of D. These
domains, discussed in Section 36 of [22], obviously pass as locally factorial
domains. Using [22, Theorem 37.2] one can conclude that an almost Dedekind
domain is a Dedekind domain if and only if it is a Krull domain. The first
ever example of a non-Krull almost Dedekind domain was due to Nakano [33].
Perhaps because this example was steeped in algebraic number theory and in
German, Gilmer who formally introduced almost Dedekind domains in [21]
chose to refer to this example as an example on page 426 of Nakano’s paper.
By [22, Theorem 36.7] one can always get a Bezout almost Dedekind domain
that is not a PID. Thus in this case too we can find a non-Krull locally factorial
domain D with Pic(D) = (0).

One reason why we have chosen to give somewhat elaborate treatment to
Example 3.6 is the following statement that one of the authors found in [43].
The statement goes as: Proposition 3.16. R is factorial if and only if R is
locally factorial and Pic(R) = 0. Of course, as a locally GCD domain is
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integrally closed and as a Noetherian integrally closed domain is Krull, the
above statement would be true if R is assumed to be Noetherian, but removed
from that context it would be false. So, perhaps, it would be safer to restate
the above proposition as: R is factorial if and only if R is locally factorial Krull
and Pic(R) = 0.

Incidentally, for Noetheran domains, conditions apparently far less than lo-
cally factorial imply the locally factorial property. We start with a generaliza-
tion of Noetherian domains that goes by the name of Mori domains to push
the point home. An integral domain is called a Mori domain if it satisfies
the ascending chain conditions on integral v-ideals. It is clear that Noetherian
domains and Krull domains are Mori domains; and D is a Mori domain if and
only if every nonzero ideal A of D is strictly v-finite, i.e., there is a nonzero
finitely generated subideal J of A such that Av = Jv [40, Corollary 1.2].

Lemma 3.7. A Mori domain D is a GCD domain if and only if D is a factorial
domain.

Proof. Let Q be a nonzero prime ideal of D. Then Q contains a prime t-ideal
P of D, and since D is a Mori domain, there is a finitely generated ideal I of
D such that Iv = P . Hence, if D is a GCD domain, then P = Iv is principal,
i.e., P is a principal prime ideal. Thus, D is a factorial domain [29, Theorem
5]. The converse is clear. □

An integral domain D is a π-domain if every nonzero principal ideal of D is
a finite product of prime ideals. It is known [2, Theorem 1] that

factorial domain ⇒ π-domain ⇔ Krull domain + locally factorial domain

⇔ Krull domain + Clt(D) = Pic(D).

Also, D is a π-domain if and only if D is a Krull domain and minimal prime
ideals of D are invertible, if and only if D is a locally factorial domain of
finite t-character (cf. [22, Theorem 46.7]). Moreover, if D is a π-domain, then
Clt(D) = Pic(D), and hence D is a factorial domain if and only if every
invertible ideal of D is principal (cf. [35, Theorem 1]).

Theorem 3.8. The following are equivalent for a Mori domain D.

(1) D is a locally factorial domain.
(2) D is a locally GCD domain.
(3) D is a GGCD domain.
(4) D is a π-domain.
(5) Every minimal prime of a nonzero principal ideal is locally principal.

Proof. (1) ⇒ (2) Clear.
(2) ⇔ (3) This follows from [8, Corollary 1.3] because a Mori domain is of

finite t-character [27, Proposition 1.4].
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(2) ⇒ (4) Let M be a maximal ideal of D. Then DM is a GCD domain that
is a Mori domain by (2) and [34, Théorème 2], and hence DM is a factorial
domain by Lemma 3.7. Thus, D is a π-domain because D is a locally factorial
domain of finite t-character.

(4) ⇒ (5) Let P be a prime ideal of D minimal over a principal ideal. Since
D is a π-domain, P must be a height-one prime ideal, and hence P is invertible.
Thus, P is locally principal.

(5) ⇒ (1) Let M be a maximal ideal of D, and let Q be a nonzero prime
ideal of DM . Then Q∩D ̸= (0), and so there is a prime ideal P of D such that
P ⊆ Q∩D and P is minimal over a principal ideal. Hence, PDM is a principal
prime ideal by (5) and PDM ⊆ Q. Thus, DM is factorial [29, Theorem 5]. □

We have already characterized locally GCD domains saying that D is locally
GCD if and only if for all a, b ∈ D∗, aD∩ bD is locally principal. In some cases
there are some conditions on ideals that end up giving something more than
locally GCD property. The first such condition that comes to mind is GD: For
all A,B ∈ F (D), (AB)−1 = A−1B−1. This condition was first studied in [37]
(see also [9]) and domains with GD were called generalized Dedekind domains
(G-Dedekind domain) in [37] and pseudo-Dedekind domains in [9]. Now, as it
was shown in [37, Theorem 1.1], D is a G-Dedekind domain if and only if Av

is invertible for each A ∈ F (D). In particular, in a G-Dedekind domain D, Av

is invertible for each finitely generated ideal which is a characterizing property
of GGCD domains which are locally GCD domains, as we already know.

The next result appears in [37, Theorem 1.10] that is a number of equivalent
conditions for an integral domain to be a π-domain. Indeed these indicate that
a Krull domain becomes locally factorial under conditions that are apparently
far less than the locally factorial property.

Theorem 3.9. The following are equivalent for an integral domain D.

(1) D is a G-Dedekind Krull domain.
(2) D is a G-Dedekind domain and Mori.
(3) D is Krull and locally factorial.
(4) D is Krull and a ∗-domain.
(5) D is Krull and, for all a, b, c, d ∈ D \ {0},

((a) ∩ (b))((c) ∩ (d)) = (ac) ∩ (ad) ∩ (bc) ∩ (bd).

(6) D is Mori and locally factorial.
(7) D is Mori and a ∗-domain.
(8) D is Mori and GGCD.
(9) Every t-ideal of D is invertible.
(10) Every associated prime ideal of D is invertible.
(11) D is Krull such that the product of any two v-ideals is again a v-ideal.
(12) D is G-Dedekind, every quotient ring of D is G-Dedekind and every

rank one prime ideal of D is invertible.
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An integral domain D is said to be a TV-domain if every t-ideal of D is
divisorial, i.e., It = Iv for all I ∈ F (D). TV-domains were studied in [27]
where it was shown among other results that a Mori domain is a TV domain.
Also, recall that a prime ideal minimal over a proper nonzero ideal of the form
(a) :D (b) is called an associated prime of a principal ideal. Associated primes
of principal ideals were studied in [15]. It can be shown that the associated
prime of a principal ideal is a t-ideal [25]. So in a TV-domain every associated
prime of a principal ideal is divisorial. Now according to [27, Theorem 2.3], D
is a Krull domain if and only if every associated prime of D is t-invertible.

Theorem 3.10. The following are equivalent to each of the conditions in The-
orem 3.9.

(13) D is a Krull domain and a locally GCD domain.
(14) D is a TV-domain that is also G-Dedekind.

Proof. (3) ⇒ (13) Clear.
(13) ⇒ (4) This follows from Corollary 2.7 because a Krull domain is a

PvMD.
(2) ⇒ (14) This follows because a Mori domain is a TV-domain.
(14) ⇒ (10) Note that an associated prime is a t-ideal which is divisorial in a

TV-domain. Now take an associated prime P in D. Because D is G-Dedekind,
Pv is invertible. But P being divisorial Pv = P and so in D every associated
prime of a principal ideal is invertible, which is (10). □

Next, while for a locally factorial domainD to be Krull, D has to be Mori but
there are simpler looking conditions that will make a locally factorial domain
into locally factorial Krull.

Theorem 3.11. Let D be a locally factorial domain. Then D is locally factorial
Krull if and only if there is a family {Pα} of prime ideals of D such that
D = ∩DPα and the intersection is locally finite.

Proof. If D is Krull then {Pα} can be taken to be the family of height-one
primes. Conversely, if there is a family {Pα} of prime ideals of D such that
D = ∩DPα and the intersection is locally finite, then each of DPα is factorial
and hence a Krull domain. Also, a locally finite intersection of Krull domains
is a Krull domain. □

Corollary 3.12. The following hold for a locally factorial domain D.

(1) D is locally factorial Krull if D is of finite character.
(2) D is locally factorial Krull if and only if D is of finite t-character.

We can prove several routine results for locally factorial domains. For in-
stance, if D is locally factorial then so is DS and so is D[X] as we did in the
locally GCD case. Also one may wonder if a locally factorial domain is of t-
dimension one. The answer is no. Example 2.1 of [32] is not a PvMD and so
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must have t-dimension greater than one, for if a locally factorial domain is of
t-dimension one, it must be a PvMD as D is a PvMD if and only if DM is a
valuation domain for every maximal t-ideal M. This leaves us with the ques-
tion: Is there a non-Krull locally factorial domain of t-dimension one that is
not Prüfer? The answer is yes, take a non-Dedekind almost Dedekind domain
D and X an indeterminate then D[X] is such an example.

4. The D +XDS [X] construction from locally GCD domains

Let D be an integral domain, S be a multiplicative set in D, X be an
indeterminate over D, and D(S) = D +XDS [X], i.e.,

D(S) = {f(X) ∈ DS [X] | f(0) ∈ D}.

Let’s elaborate on the importance of the D + XDS [X] construction. This
construction was studied in [17] as a way of constructing examples. It was
shown in [17, Theorem 1.1] that D +XDS [X] is a GCD domain if and only if
D is a GCD domain and GCD(d,X) exists for all d ∈ D∗. This result later
developed into “D+XDS [X] is a PvMD if and only if D is a PvMD and (d,X)
is a t-invertible ideal for all d ∈ D∗” [7, Theorem 2.5]. So we can ask: when
D +XDS [X] is a locally GCD domain, given that D is locally GCD ? In this
section, we study some necessary and sufficient conditions for D+XDS [X] to
be a locally GCD domain.

Clearly, the map φ : D + XDS [X] → D, given by φ(a + Xf) = a, is a
retract, i.e., φ is a ring homomorphism such that φ(a) = a for each a ∈ D.
Our first result shows that if D +XDS [X] is a locally GCD domain, then so
is D.

Lemma 4.1. Let A ⊆ B be an extension of integral domains having a retract
φ : B → A.

(1) If B is a GCD domain, then so is A.
(2) If B is a locally GCD domain, then so is A.

Proof. (1) is well-known: If aB ∩ bB = cB with a, b ∈ A and c ∈ B, then we
derive easily that aA ∩ bA = φ(c)A.

(2) Let P be a maximal ideal of A and Q = φ−1(P ). It follows easily that
Q ∩ A = P . Then φ induces the ring homomorphism q : BQ → AP given by
q(b/s) = φ(b)/φ(s) for b ∈ B and s ∈ B \ Q. It follows that q is a retract of
AP ⊆ BQ, so part (1) applies. □

The next result is already known [39, Corollary 4.2], but we give its proof
for the completeness of this section.

Lemma 4.2. D is a locally GCD domain if and only if D[X] is a locally GCD
domain.
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Proof. (⇒) Let M be a maximal ideal of D[X], and let P = M ∩ D. Then
DP is a GCD domain, and hence DP [X] is a GCD domain. Thus, D[X]M is a
GCD domain because D[X]M = (DP [X])MP

. (⇐) This follows directly from
Lemma 4.1(2). □

Remark 4.3. Let A ⊆ B be an extension of integral domains. According
to [18], B is called a locally polynomial ring over A if for every prime ideal
P ⊆ A, BP = B ⊗A AP is a polynomial ring over AP . It is easy to adapt
the proof of Lemma 4.2 to show that if A is a locally GCD domain and B is a
locally polynomial ring over A, then B is a locally GCD domain. For example,
let D = Z[{X/pn, Y/pn}n], where {pn}n is the set of prime numbers. Then D
is a locally GCD domain (cf. [18, Introduction]), while D is not a PvMD [13].
Thus, D is not a GCD domain.

It is known that D +XDS [X] is a GCD domain if and only if D is a GCD
domain and S is a splitting set in D [39, Corollary 1.5]. We next give a locally
GCD domain analogue which has many interesting applications. To do this, we
first recall that a splitting set S ofD is an lcm splitting set if sD∩dD is principal
for all s ∈ S and d ∈ D. It is known that if S is an lcm splitting set, then D
is a GCD domain if and only if DS is a GCD domain [23, Theorem 3.1]. The
proof of (2) ⇒ (1) of the next theorem is almost the same as in [39, Proposition
4.1], except that the proof is a bit more streamlined.

Theorem 4.4. The following are equivalent for a multiplicative subset S of D.

(1) D +XDS [X] is a locally GCD domain.
(2) D is a locally GCD domain and the saturation of S in DP is a splitting

set in DP for every maximal ideal P of D with P ∩ S ̸= ∅.
(3) D is a locally GCD domain and aDS ∩D is a locally principal ideal for

every a ∈ D∗.

Proof. (1)⇒ (2) By Lemma 4.1, D is a locally GCD domain, and hence we need
only prove that the saturation of S in DP is splitting for every maximal ideal
P of D with P ∩S ̸= ∅. Let M = P +XDS [X]. Then M is a maximal ideal of
D(S) with M ∩ S ̸= ∅ [17, Theorem 2.1]. Now as D\P ⊆ D(S)\M we conclude
that (D(S))M is a ring of fractions of (D(S))D\P = DP +XDS(D\P )[X]. Next

D(S)\M = {a + Xf | a ∈ D\P and f ∈ XDS [X]}. So (D(S))M = (DP +
XDS(D\P )[X])D(S)\M = (DP +XDS(D\P )[X])W , where W = {u+Xf | u is a

unit in DP and f ∈ XDS(D\P )[X]}.
Note that (i) DP +XDS(D\P )[X] is a Schreier domain [17, Remark before

Theorem 1.1] because DP is a GCD domain and (ii) each of 1+Xf is a product
of atoms which generate height-one primes. Hence, W is an lcm splitting set of
DP +XDS(D\P )[X], once we note that every element g of DP +XDS(D\P )[X]
can be written as g = h(1+Xf) where h is not divisible by any of the members
of W and 1 +Xf ∈ W. Thus (DP +XDS(D\P )[X])W is a GCD domain if and
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only if DP + XDS(D\P )[X] is a GCD domain. But DP + XDS(D\P )[X] is a
GCD domain if and only if the saturation of S in DP is a splitting set (as S is
a multiplicative set of DP and DS(D\P ) = (DP )S).

(2) ⇒ (1) Let M be a maximal ideal of D +XDS [X]. Then there are three
possibilities: (i) M ∩ D = (0), (ii) M ∩ D ̸= (0) but M ∩ S = ∅, and (iii)
M ∩ S ̸= ∅.

(i) If M ∩ D = (0), then (D + XDS [X])M = ((D + XDS [X])D∗)MD∗ =
K[X]MK[X] is a valuation domain, where K is the quotient field of D.

(ii) If M ∩ D ̸= (0) but M ∩ S = ∅, then (D + XDS [X])M = ((D +
XDS [X])S)MS = (DS [X])MDS [X] is a GCD domain because DS [X] is a locally
GCD domain, by Corollary 2.2 and Lemma 4.2.

(iii) Finally, assume M ∩ S ̸= ∅, and let M ∩D = P . Then P is a maximal
ideal of D and M = P + XDS [X] [8, Lemma 2.1]. Now (D + XDS [X])M ⊇
(D+XDS [X])D\P = DP+XDS(D\P )[X] which is a GCD domain [39, Corollary
1.5] because DP is a GCD domain and the saturation of S (hence of S(D \P ))
in DP is a splitting set by assumption. Now as (D +XDS [X])M is a ring of
fractions of the GCD domainDP+XDS(D\P )[X], we have that (D+XDS [X])M
is a GCD domain.

(2) ⇒ (3). Let a ∈ D∗ and P be a maximal ideal of D. If P ∩ S = ∅,
then (aDS ∩ D)DP = aDP is principal. If P ∩ S ̸= ∅, then (aDS ∩ D)DP =
aDS(D\P ) ∩DP is principal [5, Corollary 1.3].

(3) ⇒ (2) This follows from [5, Corollary 1.3]. □

The next result is a locally GCD domain analogue of the fact that if D is
a UFD and if S is any multiplicative set in D, then D + XDS [X] is a GCD
domain [17, Corollary 1.2].

Corollary 4.5. If D is a locally factorial domain, then D + XDS [X] is a
locally GCD domain for each multiplicative set S of D.

Proof. Let P be a maximal ideal of D such that P ∩ S ̸= ∅. Then DP is
a UFD, and hence every saturated multiplicative subset of DP is a splitting
set [10, Theorem]. Thus, by Theorem 4.4, D + XDS [X] is a locally GCD
domain. □

Corollary 4.5 can be put to use immediately to get various examples of
locally GCD domains from locally factorial domains. What is interesting is
that if we start with a locally factorial domain D, we end up with a locally
GCD domain D +XDS [X] for any multiplicative set S of D. Also, if D is a
locally factorial domain that is not a UFD, then D + XDS [X] is not a GCD
domain for some multiplicative set S of D. This is because D+XDS [X] being
a GCD domain for every multiplicative set S of D forces D to be a GUFD and
a locally factorial GUFD is a UFD.

The t-dimension of an integral domain D is defined by
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t-dimD = sup{n | P1 ⊊ P2 ⊊ · · · ⊊ Pn is a chain of prime t-ideals of D}.
Hence, t-dimD = 1 if and only if D is not a field and every prime t-ideal of D
is a maximal t-ideal. As already pointed out, D is called an almost Dedekind
domain if DM is a local PID for every maximal ideal M of D. Obviously,
an almost Dedekind domain D is a Prüfer domain (see Gilmer [22] for basic
material on this type of Prüfer domains and [19] for some factorization prop-
erties of almost Dedekind domains), and it is a Bezout domain if and only if
Pic(D) = 0. Also, Dedekind domains are almost Dedekind and the (Krull)
dimension of an almost Dedekind domain is one.

Corollary 4.6. Let D be an almost Dedekind domain but not a field.

(1) D+XDS [X] is a locally GCD domain for every multiplicative set S of
D.

(2) D is a Dedekind domain if and only if D+XDS [X] is a GGCD domain
for every multiplicative set S of D.

(3) D is a PID if and only if D + XDS [X] is a GCD domain for every
multiplicative set S of D.

(4) t-dim(D +XDS [X]) = 2 if and only if D[X] ⊊ D +XDS [X].

Proof. (1) This is an immediate consequence of Corollary 4.5, because an al-
most Dedekind domain is a locally factorial domain.

(2) Recall that an almost Dedekind domain D is a Dedekind domain if and
only if D is of finite character (i.e., each nonzero nonunit of D is contained in
only finitely many maximal ideals of D) [22, Theorem 37.2], if and only if every
multiplicative subset of D is a t-splitting set [7, p. 8]; a locally GCD domain is
a GGCD domain if and only if it is a PvMD (Corollary 2.9); and D+XDS [X]
is a PvMD if and only if D is a PvMD and S is a t-splitting set [7, Theorem
2.5]. Thus, by (1), D is a Dedekind domain if and only if D + XDS [X] is a
GGCD domain for every multiplicative set S of D.

(3) This result is an immediate consequence of the following two facts: (i) D
is a weakly factorial GCD domain if and only if D+XDS [X] is a GCD domain
for every multiplicative subset S of D [39, Theorem 3.1] and (ii) an almost
Dedekind domain is a PID if and only if it is a weakly factorial domain [22,
Theorem 37.2].

(4) This follows from the facts that dim(D + XDS [X]) = 2 [17, Theorem
2.6], t-dim(D[X]) = 1, and if P is a prime ideal of D with P ∩ S ̸= ∅, then
P + XDS [X] is a prime t-ideal if and only if P is a prime t-ideal [8, Lemma
2.1]. □

As in [39], we say that a prime ideal P intersects a multiplicative set S in
detail if for all nonzero prime ideals Q ⊆ P , Q∩ S ̸= ∅. It is easy to show that
P intersects S in detail if and only if DS(D\P ) = K, the quotient field of D.
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Corollary 4.7. (cf. [39, Proposition 4.1]) Let S be a multiplicative set in D
such that M intersects S in detail for every maximal ideal M of D with M∩S ̸=
∅. Then D is a locally GCD domain if and only if D + XDS [X] is a locally
GCD domain.

Proof. Let M be a maximal ideal of D such that M∩S ̸= ∅. Then M intersects
S in detail, that is, DS(D\M) = K; so, in this case, the saturation S of S in

DM is DM \ {0}. Hence, S is a splitting set of DM . Thus, the result follows
directly from Theorem 4.4. □

As remarked in [39, p. 104], Corollary 4.7 is hard to apply. But in some cases,
it delivers locally GCD domains that are not PvMDs. Of these, [39, Example
2.6] is a very easy example of a locally GCD domain that is a non-GCD Schreier
domain and hence a non-PvMD.

Remark 4.8. (1) Let S be a multiplicative set of D such that D ⊊ DS; so
there is a nonunit s ∈ S of D. Clearly, X · ( 1s )

n ∈ D+XDS [X] for all integers

n ≥ 1, but 1
s ̸∈ D+XDS [X]. Hence, D+XDS [X] is not completely integrally

closed, while a locally factorial domain is locally completely integrally closed,
and so completely integrally closed. Therefore, D + XDS [X] is not a locally
factorial domain even though D is factorial.

(2) Let D be a locally factorial domain with dimD ≥ 2 that is not factorial,
and let M be a maximal ideal of D. Choose 0 ̸= a ∈ M , and put S = {an | n ≥
0}. Then D +XDS [X] is a locally GCD domain and S ∩M ̸= ∅. But, since
dimD ≥ 2, we may assume that DM is a factorial domain of dimDM ≥ 2. So
there is at least one prime ideal P of D such that P ⊊ M and P ∩ S = ∅.
This shows that the assumption about S of Corollary 4.7 is not necessary for
D +XDS [X] to be a locally GCD domain.

Corollary 4.9. Let K be the quotient field of D. Then D is a locally GCD
domain if and only if D +XK[X] is a locally GCD domain.

Proof. Let S = D∗. Then S is a multiplicative set of D that satisfies the
condition of Corollary 4.7 and D +XK[X] = D +XDS [X]. Thus, the result
follows directly from Corollary 4.7. □

Let S be a multiplicative set of D. Clearly, if P is a height-one prime ideal
of D intersecting S, then P intersects S in detail. Hence, if dimD = 1, then
every prime ideal of D intersecting S intersects S in detail; so by Corollary 4.7,
we have

Corollary 4.10. Let D be a locally GCD domain of dimD = 1. Then D +
XDS [X] is a locally GCD domain for every multiplicative set S of D.

Let E be the ring of entire functions, and let S be the multiplicative set
of E generated by the principal primes of E. It is well known that E is a
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Bezout domain in which every principal prime ideal is a maximal ideal of height-
one [22, Exercise 19 on p. 147]. Hence, by Corollary 4.7, E + XES [X] is a
locally GCD domain [39, page 95].

Example 4.11. Let E be the ring of entire functions, and let S be a saturated
multiplicative set of E generated by prime elements.

(1) E +XES [X] is a locally GCD domain.
(2) If E+XES [X] is a GGCD domain, then E+XES [X] is a GCD domain.
(3) E +XES [X] is a GCD domain if and only if S is generated by finitely

many prime elements.

Proof. (1) If M is a maximal ideal of E with M ∩ S ̸= ∅, then M is of height-
one, and hence M intersects S in detail. Thus, by Corollary 4.7, E +XES [X]
is a locally GCD domain because E is a Bezout domain (and so a locally GCD
domain).

(2) Since a GGCD domain is a PvMD, E +XES [X] is a PvMD, and hence
S is a splitting set [7, Theorem 2.5] because Clt(E) = 0. Thus, E +XES [X]
is a GCD domain [39, Corollary 1.5].

(3) Let z be a prime element of E and 0 ̸= d ∈ E. It is well known that
there is an integer n = n(z) ≥ 0 such that zn|d but zn+1 ∤ d in E; z ∤ d if
and only if (z, d) = E; and for any set {zi} of prime elements, there exists a
nonzero x ∈ E such that zi|x for all zi. Hence, S is finitely generated if and
only if S is a splitting set. Thus, by [39, Corollary 1.5], E+XES [X] is a GCD
domain if and only if S is finitely generated. □
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