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Abstract. In this paper, using Clarke’s generalized directional deriva-

tive and dI -invexity, we introduce new concepts of nonsmooth K-α-dI -
invex and generalized type I univex functions over cones for a nonsmooth
vector optimization problem with cone constraints. We obtain some suf-
ficient optimality conditions and Mond-Weir type duality results under

the foresaid generalized invexity and type I cone-univexity assumptions.
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1. Introduction

Convexity plays a vital role in optimality and duality of mathematical pro-
gramming, see [1, 2]. During the past several decades many attempts have
been made to weaken convexity hypothesis, see [3–5]. In this endeavor, Han-
son and Mond [6] introduced type I function for a scalar optimization problem.
Later, various generalized type I functions have been presented and a number
of optimality conditions and duality results have been obtained by using these
functions, see [7–10] and the references therein.

Jayswal and Kumar [11] proposed d-V-type-I univex functions for a multi-
objective optimization problem in Rn and established several sufficient opti-
mality criteria and duality results. Jayswal [12] defined generalized α-univex
type-I vector-valued functions for a multiobjective programming problem in Rn

and obtained some K-T type sufficient optimality conditions and Mond-Weir
type duality results. Then, Suneja et al. [13] introduced various generalized

Article electronically published on April 30, 2016.

Received: 5 October 2013, Accepted: 20 December 2014.

c⃝2016 Iranian Mathematical Society

285



Sufficiency and duality for a nonsmooth vector 286

type-I functions over cones for a nonsmooth vector minimization problem us-
ing Clarke’s generalized gradients and established a few sufficient optimality
conditions and duality results under cone generalized type-I assumptions.

In this paper, using Clarke’s generalized directional derivative of locally Lip-
schitz functions we study a nonsmooth vector optimization problem with cone
constraints. Utilizing an idea of [4], we introduce nonsmooth K-α-dI -invex
function over cones and various generalized type I univex functions over cones,
which we call nonsmooth (K × Q)-α-dI -type-I univex, nonsmooth (K × Q)-
α-dI -type-I quasi-pseudo univex and nonsmooth (K ×Q)-α-dI -type-I pseudo-
quasi univex and obtain some sufficient optimality conditions under the fore-
said generalized invexity and type I cone-univexity assumptions. Moreover,
a Mond-Weir type dual is formulated and weak and converse duality results
are established. The results obtained in this paper generalize and extend the
previously known results in this area.

2. Preliminaries and definitions

Throughout this paper, denote intK the interior of K ⊆ Rm in which Rm =
{(x1, x2, . . . , xm)|xi ∈ R, i = 1, 2, . . . ,m}. We assume that the spaces Rm and
Rp are ordered by cones K ⊆ Rm and Q ⊆ Rp respectively, which are pointed,
closed, convex and with nonempty interiors. The dual cone of K is defined as

K∗ = {u∗ ∈ Rm : ⟨u∗, x⟩ ≥ 0, ∀x ∈ K}.

The cone K induces a partial order ≤K on Rm given by
x, y ∈ Rm, x ≦K y ⇐⇒ y − x ∈ K;
x, y ∈ Rm, x ≤K y ⇐⇒ y − x ∈ K\{0};
x, y ∈ Rm, x <K y ⇐⇒ y − x ∈ intK.

Similarly, Q induces a partial order on Rp.
The following important property is from [14], which will be used in the

sequel.

Lemma 2.1. [14] Let K ⊆ Rm be a convex cone with intK ̸= ∅. Then,
(a) ∀ u∗ ∈ K∗ \ {0}, x ∈ intK ⇒ ⟨u∗, x⟩ > 0;
(b) ∀ u∗ ∈ intK∗, x ∈ K \ {0} ⇒ ⟨u∗, x⟩ > 0.

A function ω : Rn → R is said to be locally Lipschitz at u ∈ Rn, if there
exists s > 0 such that |ω(x)−ω(y)| ≤ s∥x− y∥, for all x, y in a neighbourhood
of u.

A function is locally Lipschitz on Rn, if it is locally Lipschitz at each point
of Rn.

Definition 2.2. [15] Let ω : Rn → R be a locally Lipschitz function, then
ω◦(u; υ) denotes the Clarke’s generalized directional derivative of ω at u ∈ Rn
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in the direction υ and is defined as

ω◦(u; υ) = lim sup
y→u t→0

ω(y + tυ)− ω(y)

t
, t > 0, y ∈ Rn.

And the usual directional derivative of ω at u in the direction υ is defined as

ω′(u; υ) = lim
t→0

ω(u+ tυ)− ω(u)

t
,

whenever this limit exists. Obviously, ω◦(u; υ) ≥ ω′(u; υ).
We say that ω is directionally differentiable at u, if for all υ ∈ Rn, its

directional derivative ω′(u; υ) exists finite.

Let f : Rn → Rm be given by f = (f1, f2, . . . , fm), where fi : Rn →
R, i = 1, 2, . . . ,m. We say that f is locally Lipschitz on Rn if each fi is locally
Lipschitz on Rn. The generalized directional derivative of a locally Lipschitz
function f at u in the direction v = (v1, v2, . . . , vm) is defined as

f◦(u; v) = (f◦
1 (u; v1), f

◦
2 (u; v2), . . . , f

◦
m(u; vm)).

Note that f◦(u; v) reduces to the notion of [15] if v1 = v2 = . . . = vm.

Definition 2.3. [12] A subset E ⊆ Rn is said to be an α-invex set, if there
exists τ : E × E → Rn, α : E × E → R+ such that

x̄+ λα(x, x̄)τ(x, x̄) ∈ E, ∀x, x̄ ∈ E, λ ∈ [0, 1].

Note that, for α(x, x̄) ≡ 1, α-invex set becomes the invex set. However, the
α-invex need not be convex sets, see [16].

Definition 2.4. [12] A function h : E → Rm is said to be α-preinvex
function, if there exist τ : E × E → Rn, α : E × E → R+ such that
h(x̄+ λα(x, x̄)τ(x, x̄)) ≤ λh(x) + (1− λ)h(x̄), ∀x, x̄ ∈ E, λ ∈ [0, 1].

Definition 2.5. [11] Let h : E → Rm be directionally differentiable at x̄ ∈ E.
h is said to be α-d-invex at x̄ with respect to τ : E×E → Rn if for any x ∈ E,

h(x)− h(x̄) ≥ α(x, x̄)h′(x̄; τ(x, x̄)).

It is clear that every directionally differentiable α-preinvex function is an
α-d-invex function.

From now onwards, we always assume that f : Rn → Rm and g : Rn → Rp

are locally Lipschitz and that α : Rn × Rn → R+ \ {0}, ηi, θj : Rn × Rn →
Rn, i = 1, 2, . . . ,m, j = 1, 2, . . . , p are fixed mappings,where R+ = {x|x ≥ 0}.
Denote η = (η1, η2, . . . , ηm) and θ = (θ1, θ2, . . . , θp).

Now, we extend Definition 2.4 to the function over cones in the following
way.

Definition 2.6. Let f : Rn → Rm be locally Lipschitz at x̄ ∈ Rn. f is said
to be nonsmooth K-α-dI -invex at x̄ with respect to η if for any x ∈ Rn and
u∗ ∈ K∗,

⟨u∗, f(x)−f(x̄)⟩ ≥ α(x, x̄)(u∗ ◦f)◦(x̄; η(x, x̄)), where (u∗ ◦f)(x) = u∗(f(x)).



Sufficiency and duality for a nonsmooth vector 288

Remark 2.7. If f is directionally differentiable, K∗ = Km
+ and η1 = η2 =

· · · = ηm, then the above definition reduces to α-d-invex [11]. If α(x, x̄) ≡ 1,
for all x, x̄ ∈ Rn and η1 = η2 = · · · = ηm, then the above definition reduces to
the notion of K-nonsmooth invex [18].

In this paper, we consider the vector optimization problem with cone con-
straints as follows

(V P )

 K −min f(x)
s.t. − g(x) ∈ Q,
x ∈ X,

where f : X → Rm, g : X → Rp are locally Lipschitz functions on X ⊆ Rn, K
and Q are closed convex cones with intK ̸= ∅ and intQ ̸= ∅.

Denote F = {x ∈ X| − g(x) ∈ Q} the feasible set of problem (V P ). Let
b0, b1 : X ×X → R+ and ϕ0, ϕ1 : R → R.

Next, following Jayswal and Kumar [11], Jayswal [12] and Suneja et al. [13]
we introduce various nonsmooth (K ×Q)-α-dI -type-I cone-univex functions.

Definition 2.8. (f, g) is said to be nonsmooth (K ×Q)-α-dI -type-I univex at
x̄ ∈ X, if for each x ∈ X, there exist b0, b1, ϕ0, ϕ1, α, η and θ such that for all
u∗ ∈ K∗ and v∗ ∈ Q∗

b0(x, x̄)ϕ0⟨u∗, f(x)− f(x̄)⟩ ≥ α(x, x̄)(u∗ ◦ f)◦(x̄, η(x, x̄)),
− b1(x, x̄)ϕ1⟨v∗, g(x̄)⟩ ≥ α(x, x̄)(v∗ ◦ g)◦(x̄, θ(x, x̄)).

Definition 2.9. (f, g) is said to be nonsmooth (K × Q)-α-dI -type-I quasi-
pseudo univex at x̄ ∈ X, if for each x ∈ X, there exist b0, b1, ϕ0, ϕ1, α, η and θ
such that for all u∗ ∈ K∗ and v∗ ∈ Q∗

b0(x, x̄)ϕ0⟨u∗, f(x)− f(x̄)⟩ ≤ 0 ⇒ α(x, x̄)(u∗ ◦ f)◦(x̄; η(x, x̄)) ≤ 0,

α(x, x̄)(v∗ ◦ g)◦(x̄; θ(x, x̄)) ≥ 0 ⇒ −b1(x, x̄)ϕ1⟨v∗, g(x̄)⟩ ≥ 0.

If in the second relation, we have

α(x, x̄)(v∗ ◦ g)◦(x̄; θ(x, x̄)) ≥ 0 ⇒ −b1(x, x̄)ϕ1⟨v∗, g(x̄)⟩ > 0,

then we say that (f, g) is nonsmooth (K × Q)-α-dI -type-I quasi-strict-pseudo
univex at x ∈ X.

Definition 2.10. (f, g) is said to be nonsmooth (K ×Q)-α-dI -type-I pseudo-
quasi univex at x̄ ∈ X, if for each x ∈ X, there exist b0, b1, ϕ0, ϕ1, α, η and θ
such that for all u∗ ∈ K∗ and v∗ ∈ Q∗

α(x, x̄)(u∗ ◦ f)◦(x̄; η(x, x̄)) ≥ 0 ⇒ b0(x, x̄)ϕ0⟨u∗, f(x)− f(x̄)⟩ ≥ 0,

− b1(x, x̄)ϕ1⟨v∗, g(x̄)⟩ ≤ 0 ⇒ α(x, x̄)(v∗ ◦ g)◦(x̄; θ(x, x̄)) ≤ 0.

Remark 2.11. The notions defined above are different from those in Slimani
and Radjef [4], Yu and Liu [5], Jayswal and Kumar [11], Jayswal [12], Suneja
et al. [13] and Mishra et al. [17].
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Definition 2.12. We say that x̄ ∈ F is a weakly efficient (or an efficient)
solution of problem (V P ), if there exists no x ∈ F such that

f(x) <K f(x̄) (or f(x) ≤K f(x̄)).

3. Optimality criteria

In this section, we establish a few sufficient optimality conditions for problem
(V P ) under the assumptions of various nonsmooth (K ×Q)-α-dI -invexity and
(K ×Q)-α-dI -type-I univexity.

Theorem 3.1. Let f be nonsmooth K-α-dI-invex at x̄ ∈ F with respect to η
and g be nonsmooth Q-α-dI-invex at x̄ ∈ F with respect to θ. Suppose that
there exist u∗ ∈ K∗ \ {0}, v∗ ∈ Q∗ such that

(u∗ ◦ f)◦(x̄; η(x, x̄)) + (v∗ ◦ g)◦(x̄; θ(x, x̄)) ≥ 0, ∀x ∈ F,(3.1)

(3.2) ⟨v∗, g(x̄)⟩ = 0.

Then x̄ is a weakly efficient solution of (V P ).

Proof. Since f is nonsmooth K-α-dI -invex at x̄ with respect to η and g is
nonsmooth Q-α-dI -invex at x̄ with respect to θ, we get

(3.3) ⟨u∗, f(x)− f(x̄)⟩ ≥ α(x, x̄)(u∗ ◦ f)◦(x̄; η(x, x̄)),

(3.4) ⟨v∗, g(x)− g(x̄)⟩ ≥ α(x, x̄)(v∗ ◦ g)◦(x̄; θ(x, x̄)).

Let if possible x̄ be not a weakly efficient solution of (V P ). Then there exists
x ∈ F such that f(x) <K f(x̄). By u∗ ∈ K∗ \ {0} and Lemma 2.1, we have
⟨u∗, f(x)− f(x̄)⟩ < 0.

From (3.3) and α(x, x̄) > 0, we deduce

(3.5) (u∗ ◦ f)◦(x̄, η(x, x̄)) < 0.

As x ∈ F , −g(x) ∈ Q gives ⟨v∗, g(x)⟩ ≤ 0, for all v∗ ∈ Q∗. Considering (3.2),
we obtain ⟨v∗, g(x)− g(x̄)⟩ ≤ 0.

From (3.4), it follows that α(x, x̄)(v∗ ◦ g)◦(x̄; θ(x, x̄)) ≤ 0.
Hence,

(3.6) (v∗ ◦ g)◦(x̄; θ(x, x̄)) ≤ 0.

Adding (3.5) and (3.6), we get

(u∗ ◦ f)◦(x̄; η(x, x̄)) + (v∗ ◦ g)◦(x̄; θ(x, x̄)) < 0,

which contradicts (3.1).
Therefore, x̄ is a weakly efficient solution of (V P ). □
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Theorem 3.2. Assume that there exist x̄ ∈ F , u∗ ∈ K∗ \ {0} (or u∗ ∈ intK∗)
and v∗ ∈ Q∗ such that (3.1) and (3.2) hold. Moreover, suppose any one of the
following conditions is satisfied:
(a) (f, g) is nonsmooth (K×Q)-α-dI-type-I univex at x̄ with respect to b0, b1, ϕ0,
ϕ1, α, η and θ;
(b) (f, g) is nonsmooth (K ×Q)-α-dI-type-I pseudo-quasi univex at x̄ with re-
spect to b0, b1, ϕ0, ϕ1, α, η and θ;
(c) (f, g) is nonsmooth (K × Q)-α-dI-type-I quasi-strict-pseudo univex at x̄
with respect to b0, b1, ϕ0, ϕ1, α, η and θ.
Further, assume that a < 0 ⇒ ϕ0(a) < 0 and a ≤ 0 ⇒ ϕ1(a) ≤ 0 and
b0(x, x̄) > 0 and b1(x, x̄) > 0.

Then x̄ is a weakly efficient (or an efficient) solution of (V P ).

Proof. Suppose, on the contrary, we assume that x̄ is not a weakly efficient (or
an efficient) solution of (V P ). Then there exists a feasible solution x̆ of (V P )
such that

f(x̆) <K f(x̄) (or f(x̆) ≤K f(x̄)).

Since u∗ ∈ K∗ \ {0} (or u∗ ∈ intK∗), from Lemma 2.1, we have

(3.7) ⟨u∗, f(x̆)− f(x̄)⟩ < 0.

From a < 0 ⇒ ϕ0(a) < 0 and b0(x̆, x̄) > 0, it follows that

b0(x̆, x̄)ϕ0⟨u∗, f(x̆)− f(x̄)⟩ < 0.

By condition (a), we deduce

α(x̆, x̄)(u∗ ◦ f)◦(x̄; η(x̆, x̄)) < 0.

On account of positivity of α(x̆, x̄), we get

(3.8) (u∗ ◦ f)◦(x̄; η(x̆, x̄)) < 0.

According to a ≤ 0 ⇒ ϕ1(a) ≤ 0 and b1(x̆, x̄) > 0 and (3.2), we obtain

−b1(x̆, x̄)ϕ1⟨v∗, g(x̄)⟩ ≤ 0.

By condition (a), we also have

α(x̆, x̄)(v∗ ◦ g)◦(x̄; θ(x̆, x̄)) ≤ 0.

From α(x̆, x̄) > 0, the above inequality gives

(3.9) (v∗ ◦ g)◦(x̄; θ(x̆, x̄)) ≤ 0.

Adding the inequalities (3.8) and (3.9), we obtain

(u∗ ◦ f)◦(x̄; η(x̆, x̄)) + (v∗ ◦ g)◦(x̄; θ(x̆, x̄)) < 0,

which contradicts (3.1).
By condition (b), the above inequality −b1(x̆, x̄)ϕ1⟨v∗, g(x̄)⟩ ≤ 0 also yields

α(x̆, x̄)(v∗ ◦ g)◦(x̄; θ(x̆, x̄)) ≤ 0.
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From α(x̆, x̄) > 0, we get

(v∗ ◦ g)◦(x̄; θ(x̆, x̄)) ≤ 0.

Combining the above inequality and (3.1), we have

(u∗ ◦ f)◦(x̄; η(x̆, x̄)) ≥ 0.

Hence, α(x̆, x̄)(u∗ ◦ f)◦(x̄; η(x̆, x̄)) ≥ 0.
By condition (b) again, we obtain

b0(x̆, x̄)ϕ0⟨u∗, f(x̆)− f(x̄)⟩ ≥ 0.

From a < 0 ⇒ ϕ0(a) < 0 and b0(x̆, x̄) > 0, it follows that

⟨u∗, f(x̆)− f(x̄)⟩ ≥ 0,

which is a contradiction to (3.7).
Using the above inequality b0(x̆, x̄)ϕ0⟨u∗, f(x̆) − f(x̄)⟩ < 0 and condition (c),
we have

α(x̆, x̄)(u∗ ◦ f)◦(x̄; η(x̆, x̄)) ≤ 0,

that is , (u∗ ◦ f)◦(x̄; η(x̆, x̄)) ≤ 0.
By (3.1), the above inequality implies

(v∗ ◦ g)◦(x̄; θ(x̆, x̄)) ≥ 0.

Therefore, α(x̆, x̄)(v∗ ◦ g)◦(x̄; θ(x̆, x̄)) ≥ 0.
Applying condition (c) again, we obtain

(−b1(x̆, x̄)ϕ1⟨v∗, g(x̄)⟩ > 0.)

From b1(x̆, x̄) > 0 and a ≤ 0 ⇒ ϕ1(a) ≤ 0, it follows that

−⟨v∗, g(x̄)⟩ > 0,

which is in contradiction with (3.2).
The proof is completed. □

4. Duality

In relation to (V P ), we formulate the following Mond-Weir type dual prob-
lem

(4.1) (V D)


K −max f(y)
s.t. (u∗ ◦ f)◦(y; η(x, y)) + (v∗ ◦ g)◦(y; θ(x, y)) ≥ 0, ∀x ∈ F,
⟨v∗, g(y)⟩ ≥ 0,
y ∈ X, u∗ ∈ K∗, v∗ ∈ Q∗.

Denote the feasible set of problem (V D) by G, i.e., G = {(y, u∗, v∗) : (u∗ ◦
f)◦(y; η(x, y))+ (v∗ ◦ g)◦(y; θ(x, y)) ≥ 0, ⟨v∗, g(y)⟩ ≥ 0, ∀x ∈ F, y ∈ X, u∗ ∈
K∗, v∗ ∈ Q∗}.

Now, we establish weak and converse duality results.
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Theorem 4.1. (Weak duality) Let x ∈ F, (y, u∗, v∗) ∈ G and u∗ ∈ K∗ \ {0}
(or u∗ ∈ intK∗). Furthermore, suppose any one of the following conditions is
satisfied:
(a) (f, g) is nonsmooth (K × Q)-α-dI-type-I univex at y ∈ F with respect to
b0, b1, ϕ0, ϕ1, α, η and θ;
(b) (f, g) is nonsmooth (K×Q)-α-dI-type-I pseudo-quasi univex at y ∈ F with
respect to b0, b1, ϕ0, ϕ1, α, η and θ;
(c) (f, g) is nonsmooth (K×Q)-α-dI-type-I quasi-strict-pseudo univex at y ∈ F
with respect to b0, b1, ϕ0, ϕ1, α, η and θ.
Further assume that a < 0 ⇒ ϕ0(a) < 0 and a ≤ 0 ⇒ ϕ1(a) ≤ 0 and b0(x, y) >
0 and b1(x, y) > 0.

Then f(x) ≮K f(y) (or f(x) ≰K f(y)).

Proof. Assume to the contrary that there exist x̆ ∈ F, (y, u∗, v∗) ∈ G such that
f(x̆) <K f(y) (or f(x̆) ≤K f(y)).

By u∗ ∈ K∗ \ {0} (or u∗ ∈ intK∗) and Lemma 2.1, we have

(4.2) ⟨u∗, f(x̆)− f(y)⟩ < 0.

In view of the fact that a < 0 ⇒ ϕ0(a) < 0 and b0(x̆, y) > 0, we get

b0(x̆, y)ϕ0⟨u∗, f(x̆)− f(y)⟩ < 0.

By condition (a), the above inequality gives

(4.3) α(x̆, y)(u∗ ◦ f)◦(y; η(x̆, y)) < 0.

From (y, u∗, v∗) ∈ G, it follows that

(4.4) − ⟨v∗, g(y)⟩ ≤ 0.

By a ≤ 0 ⇒ ϕ1(a) ≤ 0 and b1(x̆, y) > 0, we deduce

−b1(x̆, y)ϕ1⟨v∗, g(y)⟩ ≤ 0.

Using condition (a), we obtain

(4.5) α(x̆, y)(v∗ ◦ g)◦(y; θ(x̆, y)) ≤ 0.

Since α(x̆, y) > 0, adding (4.3) and (4.5), we have

(u∗ ◦ f)◦(y; η(x̆, y)) + (v∗ ◦ g)◦(y; θ(x̆, y)) < 0,

which is a contradiction to (4.1).
By the above inequality −b1(x̆, y)ϕ1⟨v∗, g(y)⟩ ≤ 0 and condition (b), we have

α(x̆, y)(v∗ ◦ g)◦(y; θ(x̆, y)) ≤ 0.

From α(x̆, y) > 0, it follows that

(v∗ ◦ g)◦(y; θ(x̆, y)) ≤ 0.
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Taking (4.1) into account, we obtain

(u∗ ◦ f)◦(y; η(x̆, y)) ≥ 0.

Thus, α(x̆, y)(u∗ ◦ f)◦(y; η(x̆, y)) ≥ 0. By condition (b) again, the above in-
equality leads to

b0(x̆, y)ϕ0⟨u∗, f(x̆)− f(y)⟩ ≥ 0.

According to b0(x̆, y) > 0 and a < 0 ⇒ ϕ0(a) < 0, we get

⟨u∗, f(x̆)− f(y)⟩ ≥ 0,

which contradicts (4.2).
By condition (c) and α(x̆, y) > 0, the above relation b0(x̆, y)ϕ0⟨u∗, f(x̆) −
f(y)⟩ < 0 gives

(u∗ ◦ f)◦(y; η(x̆, y)) ≤ 0.

Considering (4.1) and positivity of α(x̆, y), we obtain

α(x̆, y)(v∗ ◦ g)◦(y; θ(x̆, y)) ≥ 0.

Using condition (c) again, we get

−b1(x̆, y)ϕ1⟨v∗, g(y)⟩ > 0.

From a ≤ 0 ⇒ ϕ1(a) ≤ 0 and b1(x̆, y) > 0, the above relation yields

−⟨v∗, g(y)⟩ > 0,

which is in contradiction with (4.4).
Therefore, the theorem is proved. □

Theorem 4.2. (Converse duality) Let (ȳ, ū∗, v̄∗) be a weakly efficient (or an
efficient) solution of problem (V D). Assume that ū∗ ∈ K∗\{0} (or ū∗ ∈ intK∗)
and that all conditions of Theorem 4.1 hold at ȳ. Then ȳ is a weakly efficient
(or an efficient) solution of (V P ).

Proof. Assume to the contrary that ȳ is not a weakly efficient (or an efficient)
solution of (V P ), then there exists y̆ ∈ F such that

f(y̆) <K f(ȳ) (or f(y̆) ≤K f(ȳ)).

From ū∗ ∈ K∗ \ {0} (or ū∗ ∈ intK∗) and Lemma 2.1, it follows that

(4.6) ⟨ū∗, f(y̆)− f(ȳ)⟩ < 0.

By (ȳ, ū∗, v̄∗) ∈ G, we have

(4.7) (ū∗ ◦ f)◦(ȳ; η(y̆, ȳ)) + (v̄∗ ◦ g)◦(ȳ; θ(y̆, ȳ)) ≥ 0,

(4.8) ⟨v̄∗, g(ȳ)⟩ ≥ 0.

By a < 0 ⇒ ϕ0(a) < 0 and b0(y̆, ȳ) > 0, (4.6) gives

b0(y̆, ȳ)ϕ0⟨ū∗, f(y̆)− f(ȳ)⟩ < 0.
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If condition (a) of Theorem 4.1 holds, then the above inequality yields

(4.9) α(y̆, ȳ)(ū∗ ◦ f)◦(ȳ; η(y̆, ȳ)) < 0.

Similarly, from a ≤ 0 ⇒ ϕ1(a) ≤ 0 and b1(y̆, ȳ) > 0 and condition (a), (4.8)
implies

(4.10) α(y̆, ȳ)(v̄∗ ◦ g)◦(ȳ; θ(y̆, ȳ)) ≤ 0.

Since α(y̆, ȳ) > 0, summing (4.9) and (4.10), we get

(ū∗ ◦ f)◦(ȳ; η(y̆, ȳ)) + (v̄∗ ◦ g)◦(ȳ; θ(y̆, ȳ)) < 0,

which contradicts (4.7).
If condition (b) or (c) of Theorem 4.1 holds, by an argument similar to that

of Theorem 4.1, we obtain

(4.11) ⟨ū∗, f(y̆)− f(ȳ)⟩ ≥ 0,

or

−⟨v̄∗, g(ȳ)⟩ > 0.(4.12)

The inequalities (4.11) and (4.12) contradict (4.6) and (4.8), respectively.
Therefore, the proof is completed. □
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[3] L. Batista dos Santos, R. Osuna-Gómez, M. A. Rojas-Medar, and A. Rufián-Lizana,

Preinvex functions and weak efficient solutions for some vectorial optimization problem
in Banach spaces, Comput. Math. Appl. 48 (2004), no. 5-6, 885–895.

[4] B. D. Craven, Control and Optimization, Chapman & Hall, London, 1995.
[5] F. H. Clarke, Optimization and Nonsmooth Analysis, A Wiley-Interscience Publication,

John Wiley & Sons, Inc., New York, 1983.

[6] M. Hachimi and B. Aghezzaf, Sufficiency and duality in nondifferentiable multiobjective
programming involving generalized type I functions, J. Math. Anal. Appl. 319 (2006),
no. 1, 110–123.

[7] M. A. Hanson and B. Mond, Necessary and sufficient conditions in constrained opti-

mization, Math. Programming 37 (1987), no. 1, 51–58.



295 Jiao

[8] M. A. Hanson, R. Pini, and C. Singh, Multiobjective programming under generalized

type-I invexity. J. Math. Anal. Appl. 261 (2001), no. 2, 562–577.
[9] A. Jayswal, On sufficiency and duality in multiobjective programming problem under

generalized α-type I univexity, J. Global Optim. 46 (2010), no. 2, 207–216.
[10] A. Jayswal and R. Kumar, Some nondifferentiable multiobjective programming under

generalized d-V-type-I univexity, J. Comput. Appl. Math. 229 (2009), no. 1, 175–182.
[11] O. L. Mangasarian, Nonlinear Programming, McGraw-Hill Book Co., New York-London-

Sydney, 1969.
[12] S. K. Mishra, S. Y. Wang, and K. K. Lai, Nondifferentiable multiobjective programming

under generalized d-univexity, European J. Oper. Res. 160 (2005), no. 1, 218–226.
[13] M. A. Noor, On generalized preinvex functions and monotonicities, JIPAM. J. Inequal.

Pure Appl. Math. 5 (2004), no. 4, Article 110, 9 pages.
[14] H. Slimani and M. S. Radjef, Nondifferentiable multiobjective programming under gen-

eralized dI -invexity, European J. Oper. Res. 202 (2010), no. 1, 32–41.
[15] S. K. Suneja and M. K. Srivastava, Optimality and duality in nondifferentiable multiob-

jective optimization involving d-type I and related functions, J. Math. Anal. Appl. 206
(1997), no. 2, 465–479.

[16] S. K. Suneja, S. Khurana and M. Bhatia, Optimality and duality in vector optimization
involving generalized type I functions over cones, J. Global Optim. 49 (2011), no. 1,
23–35.

[17] N. D. Yen and P. H. Sach, On locally Lipschitz vector-valued invex functions, Bull.
Austral. Math. Soc. 47 (1993) 259–271.

[18] G. L. Yu and S. Y. Liu, Some vector optimization problems in Banach spaces with
generalized convexity, Comput. Math. Appl. 54 (2007), no. 11-12, 1403–1410.

(Hehua Jiao) School of Mathematics and Statistics, Yangtze Normal University,

Chongqing 408100, P. R. China.
E-mail address: jiaohh361@126.com


	1. Introduction 
	2. Preliminaries and definitions
	3. Optimality criteria
	4. Duality
	Acknowledgements
	References

