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ON ONE-SIDED IDEALS OF RINGS OF LINEAR
TRANSFORMATIONS
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Abstract. Let D be a division ring, V a right or left vector space
over D, and L(V) the ring of all right (resp. left) linear transfor-
mations on V. We characterize certain one-sided ideals of the ring
L(V) in terms of their rank-one idempotents. We use our result to
characterize a division ring D in terms of the one-sided ideals of
Mn(D). Some other consequences are presented.

1. One-sided ideals of rings of linear transformations

In this note, among other things, we present the counterparts of some
of the results of [3] for one-sided ideals of the ring of all right (resp.
left) linear transformations on a right (resp. left) vector space over a
general division ring. It is worth mentioning that the proofs presented
for Theorem 1.2 and Theorem 1.6 below are almost identical to those of
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their counterparts presented in [3] except that in [3] one needs to make
frequent use of Hahn-Banach theorem for locally convex vector spaces.
However, we have included proofs of Theorem 1.2 and Theorem 1.6 for
reader’s convenience.

Throughout this note, unless otherwise stated, D denotes a division
ring, V and W right (resp. left) vector spaces over D, and L(V,W) the
set of all right (resp. left) linear transformations A : V −→ W such
that A(x + y) = Ax + Ay and A(xλ) = (Ax)λ (resp. A(λx) = λ(Ax))
for all x, y ∈ V and λ ∈ D. When V = W, we use the symbol L(V)
to denote L(V,W). It is easy to see that the set L(V) forms a ring
under the addition and multiplication of linear transformations which
are, respectively, defined by (A + B)(x) := Ax + Bx and (AB)(x) :=
A(Bx).

A subspaceM is called invariant for a collection F in L(V) if TM⊆M
for all T ∈ F . A collection F of linear transformations in L(V) is called
reducible if F = {0} or it has a nontrivial invariant subspace and irre-
ducible otherwise. A collection F of linear transformations in L(V) is
called simultaneously triangularizable or simply triangularizable if there
exists a maximal chain of the subspaces of V each of which is invariant
under the collection F . If the space V happens to be finite-dimensional,
this is equivalent to saying that there exists a basis for the vector space
V relative to which all matrices in the family are upper triangular.

We define the dual space of V to be L(V, D), where D is regarded as a
one-dimensional vector space over itself with the same chirality as that
of V. (Here, by the chirality of a vector space V over a division ring,
we mean whether it is a left or a right vector space according to which
we define V to have left or right chirality, respectively.) As is usual,
we use the symbol V ′ for L(V, D). The members of V ′ are called linear
functionals on V. Also, when V is a right (resp. left) vector space, V ′
is a left (resp. right) vector space over D endowed with the addition
and the scalar multiplication defined by (f + g)(x) := f(x) + g(x) and
(λf)(x) := λf(x) (resp. (fλ)(x) := f(x)λ) for all x ∈ V and λ ∈ D. The
second dual of V, denoted by V ′′, is the dual of V ′. The space V ′′ has
the same chirality as that of V over D. It is easily seen that V naturally
imbeds into V ′′ via the natural mapping ̂ : V → V ′′ (x 7→ x̂) defined
by x̂(f) = f(x) for all f ∈ V ′, and that the natural mapping is an
isomorphism of the vector spaces V and V ′′ if and only if the space V is
finite-dimensional. Let {xi}i∈I be an independent subset of V. It is easy
to see that there is an independent subset {f i}i∈I of linear functionals
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on V satisfying f i(xj) = δij , where i, j ∈ I and δ denotes the Kronecker
delta. Every such independent subset of V ′ is called a dual independent
subset with respect to {xi}i∈I . If {xi}1≤i≤n happens to be a basis for
V, then the corresponding set {f i}1≤i≤n of linear functionals is unique
and forms a basis for V ′ and is called the dual basis of {xi}1≤i≤n. For a
collection C of vectors in a right (resp. left) vector space V over D, 〈C〉
is used to denote the right (resp. left) linear subspace spanned by C. For
a subset S of V, we define S⊥ := {f ∈ V ′ : f(S) = 0}. It is plain that
S⊥ is a subspace of V ′. For T ∈ L(V,W), T ′ ∈ L(W ′,V ′) denotes the
adjoint of T which is defined by (T ′f)(v) := f(Tv), where f ∈ W ′ and
v ∈ V.

We start off with a known lemma, which can be a good exercise for the
beginners with division rings. Throughout the remainder of the paper,
we assume that V and W have a fixed common chirality.

Lemma 1.1. Let V and W be two vector spaces over D and C ⊆
L(V,W). Then the following equalities hold.

(
⋂

T∈C
ker T )⊥ = 〈

⋃
T∈C

T ′W ′〉, (
⋂

T∈C
ker T ′) = 〈

⋃
T∈C

TV〉⊥.

An important subset of L(V,W) is the class of rank-one linear trans-
formations. It can be shown that every rank-one linear transformation is
of the form x⊗f for some x ∈ W and f ∈ V ′, where (x⊗f)(y) := xf(y)
or (x⊗ f)(y) := f(y)x for all y ∈ V depending on whether the space W
is a right or a left vector space over D.

For a family F ⊂ L(V), we use ri(F) (resp. li(F)) to denote the
right (resp. left) ideal generated by F . If F = {A}, it is obvious that
ri(A) = AL(V) (resp. li(A) = L(V)A). Also, by the image and the kernel
of the family F , denoted by im(F) and ker(F), respectively, we mean
〈{Ax : A ∈ F , x ∈ V}〉 and

⋂
A∈F ker A. The coimage and cokernel

of the family F , denoted by coim(F) and coker(F), respectively, are
defined as V/ kerF and V/im(F). The following theorem characterizes
all right (resp. left) ideals in L(V) whose image (resp. coimage) is
finite-dimensional. The theorem shows that rank-one idempotents play
an important role in characterizing such one-sided ideals of L(V).

Theorem 1.2. Let D be a division ring, V a right or left vector space
over D, and I a nonzero right (resp. left) ideal in L(V).
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(i) If the image (resp. coimage) of I is finite-dimensional, then there
are xi ∈ V and fi ∈ V ′ (1 ≤ i ≤ r) which are dual to each other, where
r = dim im(I) (resp. r = dim coim(I)), and such that

I = x1 ⊗ f1L(V) + · · ·+ xr ⊗ frL(V) = AL(V)

(resp.
I = L(V)x1 ⊗ f1 + · · ·+ L(V)xr ⊗ fr = L(V)A),

where A = x1⊗f1 + · · ·+xr⊗fr is an idempotent in I. Therefore, every
right (resp. left) ideal of L(V) whose image (resp. coimage) is finite-
dimensional is principal; in fact the right (resp. left) ideal is generated
by a finite-rank idempotent whose rank is equal to the dimension of the
image (resp. coimage) of the right (resp. left) ideal.

(ii) Let A ∈ L(V). Then the following are equivalent.
(a) rank(A) = r.
(b) ri(A) = AL(V) = x1⊗f1L(V)+ · · ·+xr⊗frL(V), where {xi}1≤i≤r

is a basis for im(A) and fi’s are dual to xi’s (1 ≤ i ≤ r).
(c) li(A) = L(V)A = L(V)x1 ⊗ f1 + · · · + L(V)xr ⊗ fr, where {xi +

ker A}1≤i≤r is a basis for coim(A) and fi’s are dual to xi’s (1 ≤ i ≤ r).

Proof. (i) With a fixed chirality for V, we first assume that I is a
right ideal in L(V). Choose Ai ∈ I and yi ∈ V (1 ≤ i ≤ r) such that
{Aiyi}1≤i≤r is a basis for im(I). Set xi := Aiyi and enlarge {xi}1≤i≤r

to a basis B ∪ {xi}1≤i≤r for V, where the set B is linearly independent.
Now, let {fi}1≤i≤r be a dual subset with respect to B ∪ {xi}1≤i≤r so
that 〈B〉 ⊆ ker fi and fi(xj) = δij for each i, j = 1, . . . , r. We show
that I = x1 ⊗ f1L(V) + · · · + xr ⊗ frL(V). Define Ei := xi ⊗ fi. We
have Ei = xi ⊗ fi = Ai(yi ⊗ fi). Since Ai ∈ I and I is a right ideal
in L(V), it follows that Ei = xi ⊗ fi ∈ I for each i = 1, . . . , r, whence
x1⊗f1L(V)+· · ·+xr⊗frL(V) ⊆ I. On the other hand, since {fi}1≤i≤r is
dual to {xi}1≤i≤r and {xi}1≤i≤r is a basis for im(I), it is easily seen that
B = x1⊗f1B + · · ·+xr⊗frB = (x1⊗f1 + · · ·+xr⊗fr)B for all B ∈ I.
So we have shown that I = x1 ⊗ f1L(V) + · · ·+ xr ⊗ frL(V) = AL(V),
where A ∈ I is the idempotent x1 ⊗ f1 + · · · + xr ⊗ fr ∈ L(V). This
finishes the proof in this case.

Next, let I be a left ideal in L(V) whose coimage is finite-dimensional.
Let r = dim(V/ ker I). Choose x1 /∈ ker I so that A1x1 6= 0 for some
A1 ∈ I. Let f be a linear functional such that f(A1x1) = 1. Then
E1 = x1 ⊗ fA1 = (x1 ⊗ f)A1 is a rank-one idempotent in I sending x1

to x1, annihilating ker I. Let 1 < m ≤ r be an integer. Assume that
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we have found linearly independent vectors x1 +ker I, . . . , xm−1 +ker I
in V/ ker I and a family of rank-one idempotents E1, . . . , Em−1 in I
such that Ei(ker I) = 0 and that Eixj = δijxj for i, j = 1, . . . , m − 1.
Therefore, Fm := E1 + · · ·+ Em−1 is an idempotent in I of rank m− 1
having ker I in its kernel and the vectors {x1, . . . , xm−1} in its range.
Now choose xm in the kernel of Fm such that x1 + ker I, . . . , xm−1 +
ker I, xm+ker I are linearly independent in V/ ker I. Again, there exists
a rank-one idempotent Cm ∈ I sending xm to itself, annihilating ker I.
Obviously, Em := Cm(I −Fm) = Cm −CmFm is a rank-one idempotent
in I sending xm to itself and including the range of Fm in its kernel.
Since dim(V/ ker I) < ∞, finite induction implies that there exist a
basis {x1 + ker I, . . . , xr + ker I} of V/ ker I and a family of rank-one
idempotents {E1, . . . , Er} ⊂ I such that Ei(ker I) = 0 and Eixj = δijxj

for all i, j = 1, . . . , r. It is plain that we can write Ei = xi⊗ fi for some
linear functional fi (i = 1, . . . , r). Therefore, we have fi(ker I) = 0
and fi(xj) = δij for all i, j = 1, . . . , r. Now, since xi ⊗ fi ∈ I for all
i = 1, . . . , r, it follows that L(V)x1⊗f1 + · · ·+L(V)xr⊗fr ⊆ I. On the
other hand, if B ∈ I is arbitrary, as the set {x1 + ker I, . . . , xr + ker I}
is a basis for V/ ker I, we easily see that B = Bx1⊗ f1 + · · ·+ Bxr ⊗ fr,
proving that I ⊆ L(V)x1 ⊗ f1 + · · ·+ L(V)xr ⊗ fr. Hence,

I = L(V)x1 ⊗ f1 + · · ·+ L(V)xr ⊗ fr = L(V)A,

where A = x1 ⊗ f1 + · · · + xr ⊗ fr ∈ I is an idempotent. This is what
we want, finishing the proof.

(ii) Just note that, if rank(A) = r, then, by the First Isomorphism
Theorem for modules (see [1, Theorem IV.1.7]), we have r = dim im(A) =
dim coim(A). So (i) above applies, establishing the theorem. �

Remark 1.3. If, in the theorem, the space V were finite-dimensional,
then it would be enough to present the proof of the assertion for right
ideals, which is short and simple. The proof for left ideals would then
follow by taking adjoints.

Theorem 1.4. Let D be a division ring, V a right or left vector space
over D, and I a nonzero right (resp. left) ideal in L(V) containing a
linear transformation A whose rank r ∈ N is maximal among all ele-
ments of I. Then, there are xi ∈ V and fi ∈ V ′ (1 ≤ i ≤ r) which are
dual to each other and such that

I = ri(A) = AL(V) = x1 ⊗ f1L(V) + · · ·+ xr ⊗ frL(V)
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(resp.

I = li(A) = L(V)A = L(V)x1 ⊗ f1 + · · ·+ L(V)xr ⊗ fr).

Moreover, the xi’s can be chosen to be in the range (resp. the complement
of the kernel) of A. In particular, if V is finite-dimensional, then the
above holds for all right (resp. left) ideals of L(V).

Proof. The proof is just an imitation of the proof of part (i) of the
preceding theorem, which is omitted for the sake of brevity. �

On the other hand, if the image (resp. coimage) of the right (resp.
left) ideal I is the whole space, then we can say the following, which
characterizes all one-sided ideals of L(V) that are irreducible.

Theorem 1.5. Let V be a vector space over a division ring D and
I a right (resp. left) ideal in the ring L(V). Then the following are
equivalent.

(i) I includes all finite-rank transformations in L(V).
(ii) I is irreducible.
(iii) im(I) = V (resp. coim(I) = V, which is equivalent to ker(I) =

0).
Therefore, when V is finite-dimensional, then I = L(V) if and only if

the right (resp. left) ideal I is irreducible if and only if im(I) = V (resp.
coim(I) = V).

Proof. The implications “(i) =⇒ (ii)” and “(ii) =⇒ (iii)” are obvious.
So it suffices to prove (iii) =⇒ (i). To this end, first, let I be a right ideal
in L(V) whose image is V. To prove the assertion, in view of Theorem
1.2(ii), it suffices to show that I contains all rank-one linear transforma-
tions. Let x ⊗ f be an arbitrary rank-one linear transformation, where
x ∈ V and f ∈ V ′. It follows from the hypothesis that there are Aj ∈ I
and yj ∈ V (1 ≤ j ≤ m) such that x =

∑
1≤j≤m Ajyj . We can write

x⊗ f = (
∑

1≤j≤m

Ajyj)⊗ f =
∑

1≤j≤m

Aj(yj ⊗ f),

implying that x⊗ f ∈ I because Aj ’s belong to I and I is a right ideal
in L(V). This is what we wanted.

As for left ideals, let I be a left ideal in L(V) whose kernel is zero.
Again, in view of Theorem 1.2(ii), it suffices to show that x⊗ f ∈ I for
all x ∈ V and f ∈ V ′. To this end, let x⊗ f ∈ L(V) be given. It follows
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from Lemma 1.1 that V ′ = 0⊥ = (
⋂

A∈I ker A)⊥ = 〈
⋃

A∈I A′V ′〉. This
implies that for f ∈ V ′, there are Ai ∈ I and fi ∈ V ′ (1 ≤ i ≤ m,m ∈ N)
such that f =

∑
1≤i≤m A′ifi =

∑
1≤i≤m fiAi. We can write

x⊗ f = x⊗ (
∑

1≤i≤m

fiAi) =
∑

1≤i≤m

(x⊗ fi)Ai,

implying that x ⊗ f ∈ I, for Ai’s belong to I and I is a left ideal in
L(V). This settles the proof. �

The following result characterizes all one-sided ideals of L(V) that are
triangularizable.

Theorem 1.6. Let V be a vector space over a division ring D and I a
nonzero right (resp. left) ideal in the ring L(V). Then the following are
equivalent.

(i) I is triangularizable.
(ii) I is generated by a rank-one idempotent.
(iii) I consists of all linear transformations of rank at most one.
(iv) The rank of AB −BA is at most one for all A,B ∈ I.
In particular, a linear transformation A ∈ L(V) has rank one if and

only if one of the one-sided ideals generated by A is triangularizable.

Proof. The implications “(ii) =⇒ (iii) =⇒ (iv)” are obvious. We es-
tablish the theorem by proving that “(i) =⇒ (ii)” and “(iv) =⇒ (i)”.

(i) =⇒ (ii): First, let I be a triangularizable right ideal. In view of the
proof of Theorem 1.2(i), it suffices to show that im(I) = 〈Ay〉 for some
A ∈ I and y ∈ V. To this end, let C be a maximal chain of subspaces of
V each of which is invariant under the right ideal I. Use 0+ to denote⋂

0 6=M∈CM. We claim that 0+ = 〈Ay〉 = im(I) for any choices of A ∈ I
and y ∈ V for which Ay 6= 0. Since C is a maximal chain of subspaces of
V, we see that dim(0+) ≤ 1. To prove our claim, it suffices to show that
for all 0 6= M∈ C, y ∈ V, and A ∈ I, we have Ay ∈M. For such an M,
choose a nonzero z ∈ M and a linear functional g such that g(z) = 1.
We note that the linear transformation E := Ay⊗ g = A(y⊗ g) belongs
to the ideal I. We have Ay = Ez ∈M because M is invariant under I
and z ∈M. This is what we want, finishing the proof for right ideals.

Next, let I be a triangularizable left ideal. Again, in view of the
proof of Theorem 1.2(i), it suffices to show that coim(I) = V/ ker I =
〈x + ker I〉 for some x /∈ ker I. To this end, let C be a maximal chain
of subspaces of V each of which is invariant under the left ideal I. Use
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V− to denote
⋃
V6=M∈CM. We claim that I(V−) = 0. To prove this

by contradiction, assume that there are x ∈ V− and A ∈ I such that
Ax 6= 0. Since x ∈ V−, it follows that there is an Mx ∈ C such that
x ∈ Mx 6= V. Now, since Mx is a proper subspace, there is a vector
y ∈ V \Mx. Let f be a linear functional such that f(Ax) = 1. Then
the rank-one linear transformation E := y⊗fA = (y⊗f)A belongs to I
because I is a left ideal and A ∈ I. On the other hand, as the space Mx

is invariant under I, E ∈ I, and x ∈Mx, we must have y = Ex ∈Mx,
which is impossible. Therefore, I(V−) = 0, yielding V− ⊂ ker(I) ⊂ V.
From this, we see that ker(I) = V− and dimV/V− = 1 because the left
ideal I is nonzero and that the chain C is a maximal chain of subspaces
of V. That is, we have shown that dim(coim(I)) = dim(V/ ker I) = 1
which is what we wanted, finishing the proof.

(iv) =⇒ (i): First, let I be a right ideal in L(V) with the property
that the rank of AB−BA is at most one for all A,B ∈ I. We claim that
im(I) is one-dimensional. If not, choose two independent vectors xi :=
Aiyi ∈ im(I) (i = 1, 2). From the proof of Theorem 1.2(i), we see that we
can obtain linear functionals fi’s so that they are dual to xi’s (i = 1, 2)
such that x1 ⊗ f2, x2 ⊗ f1 ∈ I whence x1 ⊗ f2L(V) + x2 ⊗ f1L(V) ⊆ I.
Then, we can write

(x1 ⊗ f2)(x2 ⊗ f1)− (x2 ⊗ f1)(x1 ⊗ f2) = x1 ⊗ f1 − x2 ⊗ f2,

implying that the linear transformation (x1⊗f2)(x2⊗f1)−(x2⊗f1)(x1⊗
f2) ∈ I has rank two, contradicting the hypothesis. Therefore, im(I)
is one-dimensional. Now, mimicking the proof of Theorem 1.2(i), we
see that I = x ⊗ fL(V) for some x = Ay ∈ im(I) spanning im(I) and
any linear functional f for which f(x) = 1. It is now plain that I is
triangularizable which is what we want.

Next, let I be a left ideal in L(V) satisfying the hypothesis. We
claim that V/ ker I is one-dimensional. If not, mimicking the proof of
Theorem 1.2(i) for left ideals, we can obtain linearly independent vectors
x1 + kerA, x2 + kerA ∈ V/ ker I and linear functionals f1, f2 ∈ V ′ such
that fi(ker I) = 0, that fi(xj) = δij for all i, j = 1, 2 and that x1 ⊗
f1, x2⊗f2 ∈ I. Now, choose rank-one linear transformations A,B taking
x1 to x2 and x2 to x1, respectively. From this, it follows that x2 ⊗ f1 =
Ax1⊗f1 ∈ I and x1⊗f2 = Bx2⊗f2 ∈ I whence L(V)x1⊗f2+L(V)x2⊗
f1 ⊆ I. Therefore, the linear transformation (x1 ⊗ f2)(x2 ⊗ f1)− (x2 ⊗
f1)(x1 ⊗ f2) ∈ I has rank two which contradicts the hypothesis. So we
conclude that V/ ker I is one-dimensional. Again, mimicking the proof
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of Theorem 1.2(i), we will see that I = L(V)x ⊗ fA, where x /∈ ker I,
A ∈ I, Ax 6= 0, and f is any linear functional for which f(Ax) = 1. It
is now plain that I is triangularizable which is what we want. �

Let Dn (resp. Dn = (Dn)′) denote the right (resp. left) vector space
of n× 1 column (resp. 1× n row) vectors with entries in D; that is, the
addition x + y is defined componentwise and the multiplication of the
scalar λ ∈ D into the vector x = (xi)n

i=1 ∈ Dn (resp. Dn) is defined by
xλ := (xiλ)n

i=1 (resp. λx := (λxi)n
i=1). The members of Mn(D) can be

viewed as linear transformations acting on the left of Dn (resp. right of
Dn = (Dn)′) via the usual matrix multiplication; that is, we can write
Mn(D) = L(Dn) (resp. Mn(D) = L(Dn)), where L(Dn) (resp. L(Dn))
is the ring of right (resp. left) linear transformations acting on the left
of Dn (resp. right of Dn).

Here is a quick consequence of the preceding results.

Corollary 1.7. Let D be a division ring, and n ∈ N. Then the following
hold.

(i) The ideal Mn(D) is the only irreducible left (resp. right) ideal in
Mn(D).

(ii) The only triangularizable one-sided ideals of Mn(D) are those
of the form AMn(D) or Mn(D)A for some rank-one idempotent A ∈
Mn(D).

Proof. Just note that, as explained above, Mn(D) = L(Dn) and that
Dn is n-dimensional. Thus, Theorem 1.5 and Theorem 1.6 apply, prov-
ing (i) and (ii) above. �

Let < R,+, . > be a ring. We use the symbol Rop to denote the
opposite ring of R which is defined as the ring < R,+, ◦ > where a ◦
b := b.a. Here are some easy-to-check facts about opposite rings. (i)
A ring R is unital if and only if its opposite ring is unital; (ii) A ring
R is a division ring if and only if Rop is; (iii) (Rop)op = R. If A,B ∈
Mn(Rop), then the (opposite) product of A and B, denoted by A ◦B, is
said to be the n × n matrix whose ij entry is defined by (A ◦ B)ij =∑n

i=1 aik ◦ bkj =
∑n

i=1 bkjaik. If At and Bt denote the transposes of
A,B ∈ Mn(R), it is then easy to check that (AB)t = Bt ◦ At. From
this, we see that if S ∈ Mn(R) is invertible, i.e., there is S−1 ∈ Mn(R)
such that S−1S = SS−1 = In, then St ◦ (S−1)t = (S−1)t ◦ St = In,
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implying that (St)−1 = (S−1)t in Mn(Rop). It is worth mentioning that
if V is any n-dimensional right (resp. left) vector space over a division
ring D, then, by fixing a basis for V, we see that the correspondence
of a linear transformation to its matrix representation with respect to
the fixed basis defines a ring isomorphism from L(V) onto Mn(D) (resp.
Mn(Dop) [1, Theorem VII.1.4]). Let R be a ring. For A ∈ Mn(R), we
use coli(A) (resp. rowi(A)) to denote the i-th column (resp. row) of the
matrix A. For F ⊂ Mn(D), the ith column coli(F) (resp. the ith row
rowi(F)) of F is defined to be the collection of all ith columns (resp.
rows) of the members of F . Let I be a left (resp. right) ideal in Mn(D).
It is not difficult to see that the columns (resp. rows) of the ideal I are
either Dn or 0n (resp. Dn or 0n) (see Lemma 1.8 below). In view of this,
the ith and jth columns (resp. rows) of I (1 ≤ i, j ≤ n, i 6= j) are said
to be linked if there exists a nonzero a ∈ D such that colj(A) = coli(A).a
(resp. rowj(A) = a.rowi(A)) for all A ∈ I.

Also, we say that the ith and jth columns of I (1 ≤ i, j ≤ n, i 6=
j) are independent if {(coli(A), colj(A)) : A ∈ I} = Dn × Dn (resp.
{(rowi(A), rowj(A)) : A ∈ I} = Dn ×Dn).

In order to present our next result, which characterizes a division
ring D in terms of the one-sided ideals of Mn(D), we need the following
lemma. It is worth noting that the equivalence of the parts (i)-(iv) of
the lemma is well-known. However, for reader’s convenience, we include
a proof of the well-known parts as hinted in [1, Exercise III.2.7].

Lemma 1.8. Let D be a ring such that D2 6= 0. Then the following are
equivalent.

(i) The ring D is a division ring.
(ii) Zero is the only proper left ideal in D.
(iii) Zero is the only proper right ideal in D.
(iv) Zero is the only proper two-sided ideal in D and that D has the

property that for all x, y ∈ D there is z ∈ D such that xy = zx.
(v) The only left ideals in Mn(D) are those collections whose columns

are 0n or Dn.
(vi) The only right ideals in Mn(D) are those collections whose rows

are 0n or Dn.
Moreover, if D is a division ring and I a left (resp. right) ideal in

Mn(D), then every two nonzero columns (resp. rows) of the ideal I are
either linked or they are independent.
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Proof. The implications “(i) =⇒ (ii)” and “(i) =⇒ (iii)” are obvious.
(ii) =⇒ (i): From D2 6= 0, it follows that the ideal {x ∈ D : Dx = 0}

is {0} because, otherwise {x ∈ D : Dx = 0} = D, implying D2 = 0, a
contradiction. Let d ∈ D be nonzero. Then the set {x ∈ D : xd = 0} is
a proper left ideal of D, implying that {x ∈ D : xd = 0} = {0}. Thus,
from x1d = x2d, we see that x1 = x2. On the other hand, if dx1 = dx2

for some x1, x2 ∈ D, then x1 = x2, for, otherwise the left ideal {x ∈ D :
x(x1 − x2) = 0} is nonzero, and hence {x ∈ D : x(x1 − x2) = 0} = D
a contradiction. So the cancelation law holds in D. Now, since Dd is
a nonzero left ideal in D, it follows that Dd = D. Therefore, there is
an e ∈ D such that ed = d. Letting x ∈ D be arbitrary, we can write
xed = xd. Canceling d, we get xe = x for all x ∈ D. In particular,
de = d. Hence, dex = dx for all x ∈ D. Canceling d, we get ex = x
for all x ∈ D. Therefore, e is the identity element of D. Now, let x
be a nonzero element of D. We have Dx = D, for Dx is a nonzero left
ideal in D. It follows that, there is x′ ∈ D such that x′x = e. We can
write x′xx′ = ex′ = x′ = x′e, yielding xx′ = e, in view of the cancelation
property. That is, every nonzero member of D has an inverse. Therefore,
D is a division ring, as desired (see [1, Exercise III.2.7]).

(iii) =⇒ (i): This is similar to “(ii) =⇒ (i)”.
(i) =⇒ (iv): This is obvious.
(iv) =⇒ (i): Since for all x, y ∈ D there is z ∈ D such that xy = zx, it

follows that every left ideal in D is a two-sided ideal. Therefore, zero is
the only proper left ideal in D. So D is a division ring by the equivalence
of (i) and (ii).

(i) =⇒ (v): Let I be a left ideal of Mn(D). For 1 ≤ k, l ≤ n and
A ∈ Mn(D), let (A)kl denote the kl entry of the matrix A. With this in
mind, define Jkl := {a ∈ D : ∃A ∈ I such that (A)kl = a}. Multiplying
the members of I from the left by the elementary matrix interchanging
rows 1 and k of the identity matrix, we will see that Jkl = J1l := Jl

for all 1 ≤ k, l ≤ n. Since I is a left ideal in Mn(D), it follows that Jl

is a left ideal of D for each l = 1, . . . , n. Therefore, Jl = 0 or D, for
D is a division ring. Now, let l ∈ {1, . . . , n} and d1, d2 ∈ D be given.
If there are matrices A,B ∈ Mn(D) and 1 ≤ i1, i2 ≤ n with i1 6= i2
such that (A)i1l = d1 and (B)i2l = d2, then we will have (C)i1l = d1

and (C)i2l = d2, where C = A1A + B1B, A1 = diag(δi11, . . . , δi1n),
B1 = diag(δi21, . . . , δi2n), and where δ denotes the Kronecker delta.
This shows that the columns of the left ideal I are 0n or Dn, which is
what we want.
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(v) =⇒ (i): Let I be a nonzero left ideal of D. In view of the implica-
tion “(ii) =⇒ (i)”, it suffices to show that I = D. To this end, just note
that the set (In, 0n, ..., 0n), where In and 0n denote the n × 1 column
vectors with entries in I and 0 respectively, is a nonzero left ideal in
Mn(D). So it follows from the hypothesis that In = Dn, implying that
I = D which is what we want.

(i) =⇒ (vi) and (vi) =⇒ (i): These can be done by an easy modi-
fication of the proofs of the preceding two implications. We omit the
details.

For the rest, we prove the assertion for left ideals. The proof for right
ideals can be done similarly. Let D be a division ring, I be a left ideal
in Mn(D), and coll1(I) and coll2(I) be nonzero and distinct. For the
columns l1 and l2 of I (1 ≤ l1 < l2 ≤ n) there are two cases to consider:
(a) there is an A ∈ I such that (A)1l1 = 0 but (A)1l2 6= 0, and (b)
otherwise. In case (a), since collj (I) = Dn, it follows that there is a B ∈
Mn(D) such that (B)1l1 6= 0. The matrix B ∈ I can be chosen so that
(B)1l2 = 0 because for the matrix C := B − ba−1A ∈ I with b = (B)1l2 ,
a = (A)1l2 , we have (C)1l1 6= 0 and (C)1l2 = 0. Now, since I is a left
ideal in Mn(D), since D is a division ring, and since such matrices A and
B in the ideal I exist, it easily follows that {((X)l11, (X)l21) : X ∈ I} =
D ×D. As the rows of the left ideal I can arbitrarily be interchanged,
we conclude that {(coll1(X), coll2(X)) : X ∈ I} = Dn × Dn, which
is what we want. In case (b), we see that the mapping f : D → D
defined by f((C)l11) = (C)l21 for all C ∈ I is well-defined and, in fact,
f is a nonzero left linear transformation from D into D. Thus, we have
f(x) = xf(1) for all x ∈ D, where 0 6= f(1) ∈ D. Hence, the mapping
f is one-to-one and onto. Again, as the rows of the left ideal I can
arbitrarily be interchanged, we conclude that coll2(A) = coll1(A)f(1)
for all A ∈ I. This is what we want, completing the proof. �

Question. Let R be a ring. Is there a description of one-sided ideals of
the matrix ring Mn(R) in terms of those of the ring R?

The following result characterizes a division ring D in terms of the
one-sided ideals of Mn(D). It is worth mentioning that the implications
“(i) =⇒ (ii)” and “(i) =⇒ (iii)” in the theorem below are likely known
to the experts.

Theorem 1.9. Let D be a unital ring. Then the following are equivalent.
(i) The ring D is a division ring.
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(ii) Up to similarity, the only left ideals in Mn(D) are those that
consist of all matrices in Mn(D) whose first r columns are completely
arbitrary and whose last n − r columns are zero, where r ≤ n is a
nonnegative integer depending on the ideal.

(iii) Up to similarity, the only right ideals in Mn(D) are those that
consist of all matrices in Mn(D) whose first r rows are completely arbi-
trary and whose last n− r rows are zero, where r ≤ n is a nonnegative
integer depending on the ideal.

If D is a division ring, then the integer r in (i) (resp. in (ii)) above
is the dimension of the coimage (resp. the image) of the left (resp. the
right) ideal.

Proof. The implications “(i) =⇒ (ii)” and “(i) =⇒ (iii)” are quick
consequences of Theorem 1.2. Let I be a one-sided ideal in Mn(D).
View the members of Mn(D) as right linear transformations acting on
the left of the right vector space Dn. With that in mind, apply Theorem
1.2(i) to obtain the independent set {xi}1≤i≤r and extend it to a basis
{xi}1≤i≤r∪B for Dn. Now, let {fi}1≤i≤r be a dual subset with respect to
{xi}1≤i≤r such that fi(xj) = δij and 〈B〉 ⊆ ker fi for each i, j = 1, . . . , r
so that the conclusion of Theorem 1.2(i) is true for the one-sided ideal
I. It is now easily seen that the matrix representations of the members
of I with respect to the basis {xi}1≤i≤r∪B for Dn have the desired form
described in (ii) and (iii) above, which is what we want.

(ii) =⇒ (i): First we show that the ring D has the property that
for all a, b ∈ D, ab = 1 if and only if ba = 1. And this, in view
of [5, Theorem 3.2.37], follows as soon as we show that the ring D is
left Noetherian. To see this, it suffices to prove that the left ideals
of D are finitely generated. To this end, let I be a left ideal of D.
We consider the left ideal (In, 0n, . . . , 0n) in Mn(D), where In and
0n denote the n × 1 column vectors with entries in I and 0, respec-
tively. Then, by the hypothesis, the left ideal (In, 0n, . . . , 0n) is sim-
ilar to the left ideal (Dn, . . . , Dn, 0n, . . . , 0n) in which Dn’s and 0n’s
occur r and n − r times, respectively, for some nonnegative integer
r ≤ n. Thus, there is an S ∈ GLn(D) such that S(In, 0n, . . . , 0n)S−1 =
(Dn, . . . , Dn, 0n, . . . , 0n). From this, since S is invertible, it easily fol-
lows that (In, 0n, . . . , 0n) = (Dn, . . . , Dn, 0n, . . . 0n)S, whence the ideal
I is finitely generated. In fact, we have I = Ds11 + · · ·+Dsr1, where r is
the number of times that Dn appears in (In, 0n, . . . , 0n) =
(Dn, . . . , Dn, 0n, . . . 0n)S and that sij denotes the ij entry of the matrix
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S. This shows that every left ideal I of the ring D is finitely generated,
implying that the ring D is left Noetherian.

Now, let I be an arbitrary left ideal of the unital ring D that is not
zero. In view of Lemma 1.8, it suffices to show that I = D. Following
the argument presented in the preceding paragraph, if we let T = S−1,
we will obtain (In, 0n, . . . , 0n)T = (Dn, . . . , Dn, 0n, . . . 0n). This implies
that It11 = D, where t11 denotes the 11 entry of the matrix T . This, in
particular, shows that there is an i ∈ I such that it11 = 1. Since D is
left Noetherian, it follows that 1 = t11i ∈ I, implying that I = D. This
is what we want, finishing the proof.

(iii) =⇒ (i): Let I be an arbitrary left ideal in Mn(Dop). Set It =
{At ∈ Mn(D) : A ∈ I}. In view of the identity (A ◦B)t = BtAt, we see
that It is a right ideal in Mn(D). So it follows from the hypothesis that
there is an S ∈ GLn(D) such that S−1ItS = (Dn, . . . , Dn, 0n, . . . , 0n)
in which Dn’s and 0n’s occur r and n − r times, respectively, for some
nonnegative integer r ≤ n. Taking transpose of both sides of the
above equality and again noting that (A ◦ B)t = BtAt for all At, Bt ∈
Mn(D) and that (St)−1 = (S−1)t, we conclude that St ◦ I ◦ (St)−1 =
(Dn, . . . , Dn, 0n, . . . , 0n). That is, every left ideal in Mn(Dop) is of the
form described in (ii). So the preceding implication applies. Therefore,
the ring Dop is a division ring which, in turn, implies that so is D,
finishing the proof. �

Corollary 1.10. Let D be a division ring, n a positive integer, and
A ∈ Mn(D). Then the following are equivalent.

(i) rank(A) = r.
(ii) Up to similarity, the left ideal generated by A in Mn(D) is the left

ideal that consists of all matrices in Mn(D) whose first r columns are
completely arbitrary and whose last n− r columns are zero.

(iii) Up to similarity, the right ideal generated by A in Mn(D) is the
right ideal that consists of all matrices in Mn(D) whose first r rows are
completely arbitrary and whose last n− r rows are zero.

Proof. This is a quick consequence of Theorem 1.2(ii) in the same way
as the implications “(i) =⇒ (ii)” and “(i) =⇒ (iii)” of the preceding
theorem are consequences of Theorem 1.2(i). We omit the details. �
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