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Abstract. The main contribution of the current paper is to propose
a new effective numerical method for solving the first-order linear ma-
trix differential equations. Properties of the Legendre basis operational

matrix of integration together with a collocation method are applied to
reduce the problem to a coupled linear matrix equations. Afterwards, an
iterative algorithm is examined for solving the obtained coupled linear

matrix equations. Numerical experiments are presented to demonstrate
the applicably and efficiency of our method.
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1. Introduction

Matrix differential equations occur frequently as a model in chemistry, physics
and engineering, see [1–3,5,12,19–21,24]. In the present work, we focus on the
following first-order matrix differential equation

(1.1)

{
Y ′(x) = A(x)Y (x) +B(x), a ≤ x ≤ b,
Y (a) = Ya,

where Y ∈ Rp×q is an unknown matrix, the matrices Ya ∈ Rp×q, A(x) : [a, b] →
Rp×p, and B(x) : [a, b] → Rp×q are given. Consider the first-order matrix differ-
ential equation (1.1) such that A(x), B(x) ∈ Cs([a, b]), s ≥ 1, which guarantees
the existence of a unique and continuously differentiable solution Y (x) of (1.1);
for more details see [13].

The applications of the first-order matrix differential equation (1.1) in the
real world are admirably discussed in [8–10]. In [10], the matrix cubic splines
have been utilized to compute an approximate solution of (1.1).
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Assume that △[a,b] denotes an arbitrary partition of [a, b] defined by

△[a,b]= {a = x0 < x1 < · · · < xn = b}, xk = a+ kh, k = 0, 1, 2, . . . , n,

where n is a positive integer and h = (b−a)/n is the step size. Recently, Defez
et al. [8] have proposed a numerical method by means of higher-order matrix
splines for solving (1.1). To do so, at each subinterval [a+kh, a+(k+1)h], the
exact solution Y (x) is approximated by a matrix spline S(x) of order m ∈ N
with 1 ≤ m ≤ s, where s stands for the order of differentiability. In [8], it is
pointed out that the approximate solution of (1.1) can be calculated by using
splines of order m in the interval [a, b] with a local (global) error of the order
O(hm) (O(hm−1)) under some certain conditions.

In this paper, we present a novel framework to obtain the numerical solution
of (1.1). In fact by using orthogonal polynomials [7] and collocation points, a
new computational approach is given for solving (1.1). To this end, we first
expand each entry of the approximate solution Y ′(x) with unknown coefficients
in terms of Legendre polynomials up to degree m. Then, with the aid of a collo-
cation method, we obtain a coupled linear matrix equations where its solution
gives the unknown coefficients. In [23] the authors have developed the well-
known CGNE iterative algorithm to solve general coupled matrix equations.
We use this algorithm to solve the the obtained matrix equations.

The rest of this paper is organized as follows. In Section 2, we first review
some definitions and concepts which are used throughout this paper. Then,
we recall the basic properties of the Legendre functions which are required for
our subsequent developments. In Section 3, we first discuss how the Legendre
basis can be applied to reduce the problem (1.1) to the solution of a coupled
matrix equations. Then, an iterative algorithm for solving the obtained coupled
matrix equations is exploited. Section 4 is devoted to report some numerical
experiments which demonstrate the accuracy of the proposed numerical scheme
for solving (1.1) in compare with those given in [8]. Finally, the paper is ended
with a brief conclusion in Section 5.

2. Definitions and Properties

In this section, we review some principles and results which are utilized for
obtaining our main results. Throughout this paper, we use tr(A) and AT to
represent the trace and the transpose of the matrix A, respectively. Further-
more, Rm×n denotes the set of all m×n real matrices. The Kronecker product
of the matrices A = [aij ]m×s and B = [bij ]n×q is defined as the mn×sq matrix
A⊗ B = [aijB]. The “vec” operator transforms a matrix A of size m× s to a
vector a = vec(A) of size ms×1 by stacking the columns of A. For two matrices
Y and Z in Rm×n, the inner product ⟨Y,Z⟩F is defined by ⟨Y, Z⟩F = tr(Y TZ),
where the associated matrix norm is the Frobenius norm denoted by ∥.∥F .
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For two given functions f, g ∈ L2[a, b], the L2 inner product on the interval
[a, b] is defined by

⟨f, g⟩2 =

∫ b

a

f(x)g(x)dx.

For a given function f ∈ L2[a, b], we call ∥f∥2 as the square norm of f and
define as follows:

∥f∥2 =

(∫ b

a

f(x)2dx

) 1
2

.

The following inner product and its induced norm will be utilized for estab-
lishing our theoretical results.

Definition 2.1. Φ = (Φ1,Φ2, . . . ,Φk) and Φ̃ = (Φ̃1, Φ̃2, . . . , Φ̃k) be two matrix

groups where Φi, Φ̃i ∈ Rp×q for i = 1, 2, . . . , k. We define the inner product
⟨., .⟩ as follows:

(2.1) ⟨Φ, Φ̃⟩ :=
k∑

j=1

tr(ΦT
j Φ̃j).

Remark 2.2. For any matrix group Φ = (Φ1,Φ2, . . . ,Φk), where Φi ∈ Rp×q

for i ∈ 1, . . . , k, the norm of Φ is defined by ∥Φ∥2 :=
k∑

j=1

tr(ΦT
j Φj).

2.1. Properties of the Legendre basis. In this subsection, we recall some
properties of the Legendre polynomials for our future use. The Legendre poly-
nomials are defined on the interval [-1,1] and can be determined by the following
recurrence formulae:

L0(t) = 1, L1(t) = t,

Lm+1(t) = (
2m+ 1

m+ 1
)tLm(t)− (

m

m+ 1
)Lm−1(t), m = 1, 2, 3, . . . .

The Legendre polynomials are orthogonal polynomials with respect to L2 inner
product; for more details see [14,18] and the references therein.

In order to use these polynomials on an arbitrary interval [a, b], we define the
so-called shifted Legendre polynomials by introducing the change of variable

t =
2(x− a)− h

h
, a ≤ x ≤ b,

where h = b− a. The shifted Legendre polynomials in x are then obtained by

p0(x) = 1, p1(x) =
2(x− a)− h

h
,

and for m = 1, 2, 3, . . . ,

pm+1(x) =
2m+ 1

h(m+ 1)
(2(x− a)− h)pm(x)− m

m+ 1
pm−1(x).
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Let us assume that ϕi ≡
√

2i+1
h pi. Straightforward computations show that∫ b

a

ϕi(x)ϕj(x)dx =

{
1, for i = j,
0, for i ̸= j.

Another way of presenting the shifted Legendre polynomials in [a, b] in its
analytical form is (see [18])

(2.2) ϕi(x) =

√
2i+ 1

h

i∑
k=0

(−1)
i+k

(i+ k)!(x− a)
k

(i− k)!(k!)
2
hk

.

2.2. The best approximation of a function. Let H = L2[a, b] and

Y = span{ϕ0, ϕ1, . . . , ϕm},

where m ∈ N ∪ {0} and ϕi’s are the Legendre polynomials. Since Y ⊂ H is a
finite dimensional vector space, for every f ∈ H there exists a unique y0 ∈ Y
such that

∥f − y0∥2 ≤ ∥f − y∥2 ∀y ∈ Y,

where ∥f∥2 =
√
⟨f, f⟩. Here, the function y0 is called the best approximation

to f out of Y . Since y0 ∈ Y ,

f(x) ≈ y0(x) =
m∑
j=0

cjϕj(x) = CTΨ(x),

where CT = (c0, c1, ..., cm) such that cj ’s are uniquely calculated by cj = ⟨f, ϕj⟩
and

(2.3) ΨT (x) = (ϕ0(x), ϕ1(x), . . . , ϕm(x)).

For more details see [16].

Theorem 2.3. ( [16]) Suppose that H is a Hilbert space and Y is a finite
dimensional closed subspace of H and {y1, y2, . . . , yn} is any basis for Y . Let
x be an arbitrary element in H and y0 be the unique best approximation to x
from Y . Then

∥x− y0∥22 =
G(x, y1, y2, ..., yn)

G(y1, y2, ..., yn)
,

where

G(x, y1, y2, ..., yn) =

∣∣∣∣∣∣∣∣∣
⟨x, x⟩ ⟨x, y1⟩ . . . ⟨x, yn⟩
⟨y1, x⟩ ⟨y1, y1⟩ . . . ⟨y1, yn⟩

...
...

...
⟨yn, x⟩ ⟨yn, y1⟩ . . . ⟨yn, yn⟩

∣∣∣∣∣∣∣∣∣ .
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2.3. The operational matrix of integration. The integration of the vector
Ψ(t) in (2.3) can be approximated by∫ t

a

Ψ(s)ds ≈ PΨ(t),

where the (m + 1) × (m + 1) matrix P is called the operational matrix of
integration. There are several ways to compute P . We will use the analytical
form of Legendre basis to show how this matrix is constructed. By (2.2), we
see that∫ t

a

ϕi(s)ds =

√
2i+ 1

h

i∑
k=0

(−1)i+k(i+ k)!(t− a)k+1

(i− k)!(k!)
2
(k + 1)hk

, i = 0, . . . ,m.

Now we approximate (t− a)k+1 in terms of Legendre basis up to degree m as

(t− a)k+1 ≈
m∑
j=0

βk
j ϕj(t),

in which

βk
j =

∫ b

a

(t− a)
k+1

ϕj(t)dt =

√
2j + 1

h

j∑
l=0

(−1)
j+l

(j + l)!hk+2

(j − l)!(l!)
2
(k + l + 2)

,(2.4)

j = 0, . . . ,m.

Hence, it is not difficult to see that each entry pij of P = [pij ](m+1)×(m+1) has
the following form:

pij = h
√
2i+ 1

√
2j + 1

i∑
k=0

j∑
l=0

(−1)
i+k+j+l

(i+ k)!(j + l)!

(i− k)!(k!)
2
(j − l)!(l!)

2
(k + l + 2)(k + 1)

.

Therefore, the operational matrix of integration for Legendre polynomials in
[a, b] can be written as

(2.5) P =
h

2


1 γ1

−γ1 0 γ2
−γ2 0 γ3

. . .
. . . γm
−γm 0

 ,

with γk = 1√
(2k+1)(2k−1)

for k = 1, . . . ,m (see [6]). The following lemma is

stated for operational matrix of integration.

Lemma 2.4. Let Ψ(x) be the vector and P be the matrix which are defined by
(2.3) and (2.5), respectively. in respectively. Then, for the Legendre operational
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matrix of integration we have∥∥∥∥∫ x

a

Ψ(t)dt− PΨ(x)

∥∥∥∥
∞

= max
0≤i≤m

∥∥∥∥∥
∫ x

a

ϕi(t)dt−
m∑

j=0

pijϕj(x)

∥∥∥∥∥
2

=

√
2m+ 1

h

(2m)!

(m!)2(m+ 1)hm

(
G((x− a)m+1, ϕ0, ϕ1, . . . , ϕm)

G(ϕ0, ϕ1, . . . , ϕm)

) 1
2

.

Proof. It is not difficult to verify that∥∥∥∥∥
∫ x

a

ϕi(t)dt−
m∑

j=0

pijϕj(x)

∥∥∥∥∥
2

=

√
2i+ 1

h

∥∥∥∥∥
i∑

k=0

(i+ k)!

(i− k)!(k!)2(k + 1)hk
((x− a)k+1 −

m∑
j=0

βk
j ϕj(x))

∥∥∥∥∥
2

,

for i = 0, . . . ,m, where βk
j ’s are defined in (2.4). On the other hand, in view

of Theorem 2.3, we may conclude that(
G((x− a)k+1, ϕ0, ϕ1, . . . , ϕm)

G(ϕ0, ϕ1, . . . , ϕm)

) 1
2

=

∥∥∥∥∥(x− a)k+1 −
m∑

j=0

βk
j ϕj

∥∥∥∥∥
2

.

We point out here that for k = 0, 1, ...,m− 1,∥∥∥∥∥∥(x− a)
k+1 −

m∑
j=0

βk
j ϕj(x)

∥∥∥∥∥∥
2

= 0.

Therefore, we have∥∥∥∥∫ x

a

Ψ(t)dt− PΨ(x)

∥∥∥∥
∞

=
√

2m+1
h

(2m)!

(m!)2(m+1)hm

(
G((x−a)m+1,ϕ0,ϕ1,...,ϕm)

G(ϕ0,ϕ1,...,ϕm)

) 1
2

.

□

3. Proposed strategy for solving the main problem

In this section we discuss how Legendre polynomials can be exploited to
reduce our main problem to a system of matrix equations. Then CGNE algo-
rithm [23] is handled for solving the obtained matrix equations. Let us approx-

imate each entry of Y
′
(x) = [Y

′

ij(x)]p×q in (1.1) by the Legendre polynomials.
Consequently, we have

(3.1) Y
′

ij(x) ≈ AijΨ(x), i = 1, . . . , p, j = 1, . . . , q,

where Ψ(x) is defined as in (2.3), Aij ∈ R1×(m+1) are the unknown row vectors
to be determined and m is the order of the Legendre polynomial. It is not
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difficult to see that

Y
′
(x) ≈


A11Ψ(x) . . . . . . A1qΨ(x)

...
. . .

...
...

. . .
...

Ap1Ψ(x) . . . . . . ApqΨ(x)



=


A11 . . . . . . A1q

...
. . .

...
...

. . .
...

Ap1 . . . . . . Apq





 ϕ0(x)
...

ϕm(x)

 0(m+1)×1

. . .

. . .

0(m+1)×1

 ϕ0(x)
...

ϕm(x)




.

For simplicity, we set

A =


A11 . . . . . . A1q

...
. . .

...
...

. . .
...

Ap1 . . . . . . Apq

 .

Therefore, we have

(3.2) Y
′
(x) ≈ A(Iq ⊗Ψ(x)).

Moreover, the definition of the operational matrix of integration P implies that

(3.3) Y (x) ≈ A(Iq ⊗ PΨ(x)) + Y (a).

By Substituting Eqs. (3.2) and (3.3) in (1.1), we derive

(3.4) A(Iq ⊗Ψ(x)) = A(x)A(Iq ⊗ PΨ(x)) +A(x)Y (a) +B(x).

Now, for evaluating the unknown coefficients in (3.4), we collocate this equation
at (m+ 1) points. The suitable collocation points, the roots of

(1− (
2(x− a)− h

h
)2)T ′

m(
2(x− a)− h

h
),

(the Chebyshev-Gauss-Lobatto nodes in [a, b]) are utilized where Tm stands for
the well-known Chebyshev polynomial of order m. These m+ 1 roots that we
use them as collocation knots are defined by

ti+1 =
h

2
(cos(

iπ

m
) + 1) + a, i = 0, . . . ,m,
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which are all in [a, b]. By replacing the above knots in (3.4), we reach the
following coupled linear matrix equations

ACi = DiAEi + Fi +Gi, i = 1, 2, . . . ,m+ 1,

where Ci = Iq ⊗ Ψ(ti), Di = A(ti), Ei = Iq ⊗ PΨ(ti), Fi = A(ti)Y (a) and
Gi = B(ti).

Therefore, in order to numerically solve the problem (1.1), we may solve the
following coupled linear matrix equation

(3.5) XCi −DiXEi = Hi, i = 1, 2, . . . ,m+ 1,

where Hi = Fi + Gi, Ci, Di and Ei are constant matrices and the unknown
matrix X := A is to be determined.

Using the following relation (see [4]),

vec(AXB) = (BT ⊗A)vec(X),

it can be found that the coupled matrix equations (3.5) are equivalent to the
following linear system

(3.6)

 CT
1 ⊗ Ip − ET

1 ⊗D1

...
CT

m+1 ⊗ Ip − ET
m+1 ⊗Dm+1

 vec(X) =

 vec(H1)
...

vec(Hm+1)

 ,

where Ip is the identity matrix of order p. The next theorem shows that under
a mild condition the coefficient matrix of the system (3.6) is nonsingular.

Theorem 3.1. For sufficiently small h, the coefficient matrix of the system
(3.6) is nonsingular.

Proof. Let us define the matrices S and T (h) as follows:

S :=

 CT
1 ⊗ Ip
...

CT
m+1 ⊗ Ip

 =

 (Iq ⊗ΨT (t1))⊗ Ip
...

(Iq ⊗ΨT (tm+1))⊗ Ip


=

 Iq ⊗ΨT (t1)
...

Iq ⊗ΨT (tm+1)

⊗ Ip,

T (h) :=

 ET
1 ⊗D1

...
ET

m+1 ⊗Dm+1

 .

The coefficient matrix of (3.6) can be written as W = S − T (h). We first show
that the matrix S is nonsingular. According to Corollary 13.13 in [17], S is



305 Golbabai, Beik and Salkuyeh

nonsingular if and only the matrix

U =

 Iq ⊗ΨT (t1)
...

Iq ⊗ΨT (tm+1)

 ,

is nonsingular. It is easy to verify that if U is singular, then there exists a
nonzero vector v = [v0, v1, . . . , vm]T such that ΨT (ti)v = 0 ( i = 1, 2, . . . ,m+1).
This shows that the polynomial q(x) = ΨT (x)v, which is of degree m, has m+1
distinct zeros which is a contradiction. From (2.5), it is apparent that T (h) → 0
as h tends to zero. Therefore, for sufficiently small h we have ∥S−1T (h)∥ < 1,
for every induced matrix norm. By Lemma 2.3.3 in [15], W = S(I −S−1T (h))
is nonsingular. □

Here, we would like to point out that the above theorem reveals that the
linear system (3.6) is consistent and it has a unique solution. Note that the
linear system (3.6) is equivalent to the coupled matrix equations (3.5). Thence,
we may infer that the coupled matrix equations (3.5) have a unique solution.

Throughout the paper we assume that the parameter h is sufficiently small
such that the matrix W is nonsingular. The classical methods such as the GM-
RES method [22] can be applied for solving the above linear system. However,
the size of the coefficient matrix of the linear system (3.6) is pq(m + 1) and
it may become too large even for moderate values of p, q and m. Therefore,
we focus on the coupled matrix equations (3.5) and implement Algorithm 3.2
in [23] to solve it instead of solving the linear system (3.6).

3.1. Solving the coupled linear matrix equations. In this subsection, we
first review the CGNE algorithm proposed by Zhang in [23] to solve the general
coupled matrix equations M(X) = H where

M(X) = (M1(X),M2(X), . . . ,Mp(X)),

in which

Mi(X) = Ai1X1Bi1 +Ai2X2Bi2 + · · ·+AipXpBip, i = 1, 2, . . . , p,

H = (H1, H2, . . . , Hp) and X = (X1, X2, . . . , Xp). Here, Aij ∈ Rm×m, Bij ∈
Rn×n, Hi ∈ Rm×n for i, j = 1, 2, . . . , p, are given matrices and Xj ∈ Rm×n are
unknown matrices. By defining MT as

MT (X) = (M̃1(X), M̃2(X), . . . , M̃p(X))

with

M̃i(X) = AT
1iX1B

T
1i +AT

2iX2B
T
2i + · · ·+AT

piXpB
T
pi, i = 1, 2, . . . , p,

the CGNE algorithm for solving M(X) = H can be written as Algorithm 1
(for more details see [23]).
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CGNE for solving M(X) = H.

1. Choose an arbitrary matrix X(0) and a tolerance ϵ.
2. Compute R(0) = H −M(X(0)) and P (0) = MT (R(0)).
3. For k = 0, 1, . . . , Do:
4. αk := ∥R(k)∥2/∥P (k)∥2
5. X(k+1) := X(k) + αkP

(k)

6. R(k+1) := R(k) − αkM(P (k))
7. If ∥R(k+1)∥ < ϵ , then stop.
8. βk := ∥R(k+1)∥2/∥R(k)∥2
9. P (k+1) := MT (R(k+1)) + βkP

(k)

10. EndDo

In the sequel, we show that one can employ Algorithm 1 to solve (3.5). To
do this we define the linear operator M as

M : Rp×q(m+1) → Rp×q × · · · × Rp×q,
X 7→ M(X) = (M1(X), . . . ,Mp(X)),

where Mi(X) = XCi − DiXEi, i = 1, 2, . . . ,m + 1. Therefore, using the
linear operator M(X), the matrix equations (3.5) can be reformulated in the
following form

M(X) = H,

where H = (H1, . . . , Hm+1) and Hi ∈ Rp×q, i = 1, 2, . . . ,m + 1. In this case
the linear operator MT is defined as

MT : Rp×q × · · · × Rp×q → Rp×q(m+1),
Y = (Y1, . . . , Ym+1) 7→ MT (Y ),

where

MT (Y ) =
m+1∑
i=1

(
YiC

T
i −DT

i YiE
T
i

)
.

Now, with the above notations Algorithm 1 can be used to solve (3.5).

3.2. Implementing the method. For solving (1.1), we use a step-by-step
manner. More precisely, we first choose a step length h ̸= 0. Then, starting
with the given initial values x0 := a, Y0 := Y (x0) and considering the equidis-
tant points xi = x0+ ih, i = 1, 2, . . ., we successively compute the approximate
solution Z(x) to Y (x) on [xi, xi+1) for i = 0, 1, . . . , [ b−a

h ] − 1. That is, we
employ the following algorithm.

4. Numerical experiments

In this section, three numerical examples are presented to demonstrate the
efficiency of Algorithm 2 for solving (1.1). All the numerical experiments are
performed using Mathematica 6 with a machine unit round off precision
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Algorithm for solving (1.1).

1. Choose a step length h ̸= 0. Set n = [ b−a
h ].

2. Set Z0 = Y0 and x0 = a.
3. For i = 0, 1, . . . , n− 1, Do
4. Compute the approximate solution Z(x) of Y (x) on the
subintervalxi ≤ x < xi+1 by solving the following linear matrix differential

equation with the approach described in Subsection 3.1,{
Z ′(x) = A(x)Z(x) +B(x), xi ≤ x < xi+1,
Z(xi) = Zi.

5. Set Zi+1 = Z(xi+1) and goto 3.
6. EndDo.

of around 10−16. We would like to point out that, in Algorithm 2 at each
subinterval [xl, xl+1], l = 0, 1, . . . , n− 1, Algorithm 1 is applied with the stop-
ing criterion ∥R(k+1)∥ < 10−16. To compare the approximate solution of the
problem computed by the proposed method Z(x) = [Zij(x)]p×q and the exact
solution Y (x) = [Yij(x)]p×q we define the following two notations

Err = max
i,j

∥Yij − Zij∥∞ = max
i,j

max
xl≤x≤xl+1

|Yij(x)− Zij(x)|,(4.1)

E(x) = ∥Y (x)− Z(x)∥F .(4.2)

In continuation, we report the application of Algorithm 2 for solving (1.1).

Example 4.1. Consider the following first-order linear matrix differential
equation (see [8])
(4.3)

Y ′(x) =
1

x3 − x− 1

(
2x2 − 1 x2 − 2x− 1
−x− 1 x3 + x2 − x− 1

)
Y (x), 0 ≤ x ≤ 1,

Y (0) =

(
1
0

)
.

It can be verified that the exact solution of (4.3) is

Y (x) =

(
ex

xex

)
.

Example 4.2. Consider the following problem (see [8]) Y ′(x) = A(x)Y (x) +B(x),

Y (0) =

(
3 0
1 1

)
, x ∈ [0, 1],

where

A(x) =

(
1 −1
1 ex

)
, B(x) =

(
−3e−x − 1 2− 2e−x

−3e−x − 2 1− 2 cosh(x)

)
,
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which has the exact solution

Y (x) =

(
2e−x + 1 e−x − 1

e−x 1

)
.

Example 4.3. Consider the following problem Y ′(x) = A(x)Y (x) +B(x),

Y (0) =

(
1/8 0
1 1/8

)
, x ∈ [0, 1],

where

A(x) =

(
x 0
0 1

)
, B(x) =

(
b11 0
−1 b22

)
,

and b11 and b22 defined as

b11 =

{
−(1−2x)2

8 (2x2 − 6− x), x ≥ 0.5,
(1−2x)2

8 (2x2 − 6− x), x < 0.5,

b22 =

{
−(1−2x)2

8 ((2x− 7) cosx+ (2x− 1) sinx), x ≥ 0.5,
(1−2x)2

8 ((2x− 7) cosx+ (2x− 1) sinx), x < 0.5.

The exact solution of the problem is

Y (x) =

(
y11 0
1 y22

)
,

in which

y11(x) =

{
(x− 0.5)

3
, x ≥ 0.5,

(0.5− x)
3
, x < 0.5,

and

y22 =

{
(x− 0.5)

3
cosx, x ≥ 0.5,

(0.5− x)
3
cosx, x < 0.5.

In Table 1, we report the approximate solution of the first example computed
by Algorithm 2 in each subinterval for m = 4 and h = 0.1. The comparison
results between the Spline method [8] and Algorithm 2 are presented in Ta-
bles 2 and 3. In fact, these tables compare Err (defined by Eq. (4.1)) of the
computed solutions by the Spline method and Algorithm 2. For more inves-
tigation, the function log10 E(x) (defined by (4.2)) in the interval [0, 1] of the
proposed method for different values of m is displayed in Figure 1. As we see
the computed solution by the proposed method is in good agreement with the
exact solution. Moreover, we observe that the proposed method is superior to
the Spline method.

Similar to Example 4.1, numerical results for Example 4.2 and 4.3 are pre-
sented in Table 4, Figure 2 and Table 5, Figure 3, respectively. As we see the
proposed method is more effective than the Spline method proposed by Defez
et al. in [8].
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Table 1. Approximate solution computed by the proposed
method for Example 4.1 (m = 4 and h = 0.1).

[xi, xi+1] Approximation (computed by Algorithm 2)

[0, 0.1]

(
1 + x + 0.500007x2 + 0.166472x3 + 0.043819x4

0.999999x + 1.000036x2 + 0.499031x3 + 0.177439x4

)

[0.1, 0.2]

(
1 + 0.999978x + 0.500305x2 + 0.164609x3 + 0.048429x4

0.999887x + 1.001553x2 + 0.489536x3 + 0.200942x4

)

[0.2, 0.3]

(
1.000010 + 0.999805x + 0.501558x2 + 0.160511x3 + 0.053523x4

0.000050 + 0.998991x + 1.008061x2 + 0.468244x3 + 0.227425x4

)

[0.3, 0.4]

(
1.000058 + 0.999179x + 0.504639x2 + 0.153731x3 + 0.059152x4

0.000304 + 0.995678x + 1.024375x2 + 0.432329x3 + 0.257256x4

)

[0.4, 0.5]

(
1.000222 + 0.997557x + 0.510665x2 + 0.143749x3 + 0.065374x4

0.001190 + 0.986926x + 1.056893x2 + 0.378452x3 + 0.290848x4

)

[0.5, 0.6]

(
1.000661 + 0.9940723x + 0.521049x2 + 0.129966x3 + 0.072250x4

0.003603 + 0.967783x + 1.113956x2 + 0.302683x3 + 0.328658x4

)

[0.6, 0.7]

(
1.001663 + 0.987439x + 0.537552x2 + 0.111692x3 + 0.079850x4

0.009204 + 0.930674x + 1.206296x2 + 0.200406x3 + 0.371204x4

)

[0.7, 0.8]

(
1.003706 + 0.975819x + 0.562356x2 + 0.088134x3 + 0.088249x4

0.020837 + 0.864516x + 1.347551x2 + 0.066215x3 + 0.419064x4

)

[0.8, 0.9]

(
1.007551 + 0.956671x + 0.598143x2 + 0.058380x3 + 0.097534x4

0.043102 + 0.753610x + 1.554893x2 − 0.106214x3 + 0.472884x4

)

[0.9, 1]

(
1.014349 + 0.926561x + 0.648192x2 + 0.021383x3 + 0.107797x4

0.083129 + 0.576262x + 1.849759x2 − 0.324255x3 + 0.533387x4

)

Table 2. Comparison of Err error for the Spline method [8]
and the proposed method for Example 4.1 (m = 4 and h =
0.1).

Interval [0, 0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

Algorithm 2 1.75 × 10−9 3.97 × 10−9 6.7 × 10−9 1.01 × 10−8 1.4 × 10−8

Spline Algorithm [8] 1.14 × 10−7 2.62 × 10−7 4.51 × 10−7 6.89 × 10−7 9.89 × 10−7

Interval [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1]

Algorithm 2 1.9 × 10−8 2.5 × 10−8 3.3 × 10−8 4.1 × 10−8 5.2 × 10−8

Spline Algorithm [8] 1.36 × 10−6 1.82 × 10−6 2.37 × 10−6 3.05 × 10−6 3.86 × 10−6
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Table 3. Comparison of Err error for the Spline method [8]
and the proposed method for Example 4.1 (m = 5 and h =
0.1).

Interval [0, 0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

Algorithm 2 9.56 × 10−12 2.15 × 10−11 3.63 × 10−11 5.45 × 10−11 7.68 × 10−11

Spline Algorithm [8] 1.80 × 10−9 4.09 × 10−9 7.00 × 10−9 1.07 × 10−8 1.53 × 10−8

Interval [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1]

Algorithm 2 1.04 × 10−10 1.36 × 10−10 1.75 × 10−10 2.22 × 10−10 2.76 × 10−10

Spline Algorithm [8] 2.10 × 10−8 2.80 × 10−8 3.65 × 10−8 4.67 × 10−8 5.90 × 10−8

0.0 0.2 0.4 0.6 0.8 1.0
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-18

-16
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-12

-10

x
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m=6

m=5

m=4

Figure 1. log10 E(x) for Example 4.1 (m = 4, 5, 6 and

h = 0.01).
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Figure 2. log10 E(x) for Example 4.2 (m = 4, 5, 6 and

h = 0.01).
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Figure 3. log10 E(x) Example 4.3 (m = 3, 4, 5 and h = 0.01).
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Table 4. Comparison of Err error for the Spline method [8]
and the proposed method for Example 4.2 (m = 4, 5 and h =
0.1).

Interval [0, 0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

Algorithm 2 (m = 4) 6.28 × 10−10 1.22 × 10−9 1.78 × 10−9 2.28 × 10−9 2.73 × 10−9

Spline Algorithm [8] (m = 4) 5.06 × 10−8 1.02 × 10−7 1.54 × 10−7 2.10 × 10−7 2.70 × 10−7

Algorithm 2 (m = 5) 2.79 × 10−12 5.45 × 10−12 7.94 × 10−12 1.02 × 10−11 1.22 × 10−11

Spline Algorithm [8] (m = 5) 6.75 × 10−10 1.36 × 10−9 2.06 × 10−9 2.80 × 10−9 3.60 × 10−9

Interval [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1]

Algorithm 2 (m = 4) 3.09 × 10−9 3.31 × 10−9 3.41 × 10−9 3.26 × 10−9 2.80 × 10−9

Spline Algorithm [8] (m = 4) 3.38 × 10−7 4.19 × 10−7 5.21 × 10−7 6.59 × 10−7 8.51 × 10−7

Algorithm 2 (m = 5) 1.39 × 10−11 1.50 × 10−11 1.55 × 10−11 1.50 × 10−11 1.32 × 10−11

Spline Algorithm [8] (m = 5) 4.50 × 10−9 5.57 × 10−9 6.93 × 10−9 8.75 × 10−9 1.13 × 10−8

Table 5. Comparison of Err error for the Spline method [8]
and the proposed method for Example 4.3 (m = 4, 5 and h =
0.1).

Interval [0, 0.1] [0.1,0.2] [0.2,0.3] [0.3,0.4] [0.4,0.5]

Algorithm 2 (m = 4) 7.98 × 10−9 1.28 × 10−8 1.46 × 10−8 1.76 × 10−8 1.65 × 10−8

Algorithm 2 (m = 5) 1.75 × 10−10 3.73 × 10−10 5.90 × 10−10 8.24 × 10−10 1.07 × 10−9

Interval [0.5,0.6] [0.6,0.7] [0.7,0.8] [0.8,0.9] [0.9,1]

Algorithm 2 (m = 4) 1.70 × 10−8 3.31 × 10−8 5.35 × 10−8 7.81 × 10−8 1.06 × 10−7

Algorithm 2 (m = 5) 1.23 × 10−9 1.19 × 10−9 1.16 × 10−9 1.16 × 10−9 1.18 × 10−9

5. Conclusion

The properties of the Legendre basis together with a collocation method
have been utilized to numerically solve a class of first-order matrix differential
problems by a new framework. The proposed approach reduces the main prob-
lem to the coupled linear matrix equations. An iterative algorithm is exploited
to solve the obtained coupled linear matrix equations. Numerical examples
have illustrated to show the efficiency and applicably of our method.
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