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ABSTRACT. This paper considers a non-local initial-boundary value prob-
lem containing a first order partial differential equation with variable co-
efficients. At first, the non-self-adjoint spectral problem is derived. Then
its adjoint problem is calculated. After that, for the adjoint problem the
associated eigenvalues and the subsequent eigenfunctions are determined.
Finally the convergence of series solution and the uniqueness of this so-
lution will be proved.
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1. Introduction

Initial-boundary value problems are usually discussed in classic text books,
when the problems are self-adjoint and the variables of related partial dif-
ferential equations are real and complex constants [7, 17]. These problems
are generally the mathematical models for physics and engineering problems.
When these problems contain partial differential equations with variable coef-
ficients in a non-self-adjoint case, they are often unsolved problems. Some of
these problems, when including variable coefficients as well as Navier-Stokes
system [1, 12] and Benjamin-Ono equation [13] have been solved by authors.
On the other hand, partial differential equations with variable coefficients ap-
pear in the other fields of mathematical physics such as inverse Sturm-Liouville
problems when the potential functions and the other unknowns involve time
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and space variables

2 X X 2 X
TALY o) 2200 gy, = 50

(1.1)

0?B(z,t) 0A(x,t) 0?B(z,1)
I o) TN oNB(e 1) = L2\
a2 T 2p@)—pg— —a(@)B(z,1) 92
As is easily observed, theses equations have variable coefficients [8,9]. The

general form of these equations can be written in the following form when the
unknown functions include two spatial variables and one time variable
0%u(wy,z2,t) 0%u(wy,2,t) 0%u(x1, 2, 1)

ot? 0x3 ox? ’
We will consider the equation (1.2) for the case of first order derivative with

respect to time variable and spatial variables. For the second order case, the
problem can be considered as an open problem.

(12) :F(Z1,$2) +G(£L’1,£L’2,t)

Remark 1.1. It is intended to say that, one can consider and solve the above
mentioned second order case by using the same process applied for the first case
in this paper. we will consider equation (1.2) with separable case of variables.
That is

0%u(xy, xa,t)

0%u(xy, xo,t) 0%u(xy, xo,t)

(1.3) o2 = fa(z2) 02 +f1(5'31)87x%a
and for the first order:

Ou(xy, T2,1) ou(xy, x2,t) ou(xy,x2,t)
(1.4) — 5 = f2($2)78x2 + f1(961)7ax1 :

Remark 1.2. Equation (1.4) with some non-local-boundary conditions and
initial condition has been considered by authors with real and complex con-
stants [11]. These problems have solved by the Fourier method the cases of self
adjoint and non-self-adjoint problems.

It is also worth mentioning that the selfadjoint and non-self-adjoint bound-
ary value problems have appeared in some of physics and engineering problems.
For example A.Burchard et al in [1] reached a non-self-adjoint differential op-
erators that appear as linearization of coating and rimming flows, where a thin
layer of fluid coats a horizontal rotating cylinder. In [5] R.Carlson also applied
the adjoint and self-adjoint differential operators on graphs. He has shown a di-
rected graph with weighted edges can be characterized as a system of ordinary
differential operators.

On the other hand, over the last decades, boundary value problems with non-
local-boundary conditions have an important role in many area of researches.
In these problems the values of the unknown functions on the boundary are
connected to each other some of the values of the given domain, such as the
boundary conditions are called non-local-boundary conditions [2, 3,6, 10].



317 Jahanshahi and Darabadi

Authors in [11, 15, 16] have considered some complex constants in partial
differential equations in non-classic cases as well as non-self-adjoint problems
with non-local and non-periodic conditions.

2. Mathematical statement of problem

Consider the initial-boundary value problem
Ou(z,t) Ou(z,t) Ou(z,t)
2.1) 9% fa(z2) D0 + fi(x1) Fr
x = (z1,25) € D= {z|lz; € (0,1),j = 1,2} C R?, ¢>0,

with the non local boundary conditions

w(0,22,t) = aju(l, x9,1), x9 € [0,1], t>0,
(2.2)

u(x1707t):a2u(x1717t)7 T € [07 1}, tZOa
and initial condition
(2.3) u(@,0) = ¢(a), zeD,

where a; and ag are arbitrary complex constants and ¢(x) is a known con-
tinuous function with a complex variable. For this problem, we consider the
related spectral problem such that it is not self-adjoint. At first we calculate
its spectral problem. Hence its eigenvalues are not real and the eigenfunctions
do not form an orthogonal basis system.

To construct the solution as infinite series, we will use the eigenfunctions of
the main spectral problem and the related adjoint problem.

3. Spectral problem of the main problem

We assume that the solution of (2.1) is in the form u(x,t) = X (x)T'(t) where
X and T are functions of x and t respectively, and they are twice continuously
differentiable functions (see [6]). Therefore

(3.1) fg(xg)ag(x(:) + f1($1)8‘;{7$(1x) =X (z), z€D, MeC,
And
(3.2) T'(t) = AT(t), t>0.

Let L be the operator of equation (3.1), i.e.
0 0
L= 2z 7
f2(l‘2)ax2 + f1(95‘1)ax1

Separating the boundary conditions (2.2) yields

X(0,22) = a1 X(1,22), w2 €]0,1],
(3.3)

X(ml,O):agX(xl,l), X1 € [0, 1]
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By using twice “the method of separation of variables” X (z) = X3 (x1)X2(22)
we have

(3.4) fola) X5(2)

XQ(ZEQ)

+ fl(x1>§igf§3 = A,

and the boundary conditions (3.3) will be
Xl(O) = (141)(1(1)7 XQ(O) = ang(l).

If we let
Xi (1) X5(x2)
Xl(l'l) XQ(’IQ)

where A = 1+ p. Then two boundary value problems
fi(@)Xi (1) = pXa(z1), =1 €(0,1),

Ji(z1)

=p, Ja(z2)

= 1,

(3.5)

X1(0> = a1X1(1)7
and

f2(22) X5(72) = pXa(z2), z2€(0,1),
(3.6)

XQ(O) = QQXQ(l),

are obtained to determine X;(x1) and Xs(x2). The general solutions of (3.5)
and (3.6) are

2 pdx Ty pdx
X2(£2) = coe’0 f2(@) | X1(CU1) = c1e’0 A@,

In this part we suppose

67 A= - B = [ 2T RA), RO £0

. 1\L1 0 fl (33) ) 2 L2 o f2 ($) ) 1 s £72 .
To satisfy the related boundary condition we must have e?f1(1) = ay
enF2 (1) = ay 1" Hence the eigenvalues and eigenfunctions are

1 and

2mmi—loga;

Pm = Fi (1) )
(3.8) e, MEZ,
Xim(z1) = Clm%7
and
2nmi—loga
Hn = F2(1)g 2,
(3.9) n ez,

2n7miGa(xg)
_ e

Xon(22) = Con" Gpteny

2
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such that Gy (z1) = 2220 and Gy(xs) = 22220 From equations (3.8),(3.9) we

Fi(1) Fa(1)
get
Amn = pim + pi = 2RE0EGL I _ees
(3.10) m,n € Z
X (z) = Cmnal_Gl(ml)az_c2(m2)62ﬂi[m€1(I1)+nG2(:E2)]’

where \,,,,, and X,,,, are the eigenvalues and the eigenfunctions of the spectral
problem (3.1) and (3.3) respectively. By considering the general solution of
(3.2) in the form T, (t) = e* ! the general solution of equation (2.1) will be
(3.11)
i —-G1—+t~ —Go—+t— i(—m 1 _n ;
u(@t) = Y epna, " Pay PO RO TREE ) 2rimGindy),
m,n=—o0

Since each term of the series satisfies the boundary conditions, these conditions
hold.Therefore, it simply remains to show that the initial condition of (2.3) is
satisfied. Namely,

(312) (P(x) _ Z cmnal—Gl(wl)a;Gz’(x’z)eZWi[mG’l(x1)+nG'2(x2)]'

m,n=—o0

The unknown coefficients c¢,,, are calculated in the sequel.

4. The adjoint of operator L

Since the eigenfunctions (3.10) are not orthogonal, then to determine the
constants C,,, we should find the adjoint equation (3.1). For this, we multiply
both sides of equation (3.1) in arbitrary functionZ(x) and integrate on the
interval [0,1] we get

/0 iz /0 }g(mg)agg) Z(x)das + /0 s /O }1(:51)8?;?) Z(2)dzs = A /D X (2)Z(2)ds.

Finally we have

1 1

/0 X(2) falw2)Z(2)

d:L‘Q

dn+ [ X@h@)Z@)|

- [ x| ARG ARGV 3y ) ~ o0

x2=0

Not that Z(z) denotes the complex conjugate function of Z(z). Therefore
1 1

(4.1) B(X,Z):/O X () fo(22)Z () de1+/0 X(2)f1(21)Z ()

Let L* be the adjoint operator of L, i.e

(4.2) L*[7] = 8[f2(g;)22(x)] n 8[f1(g;)12($)] _

dl’g.
11:0
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and therefore [10]

(LX,Z)=B(X,Z)+ (X,L*Z).
Substituting (3.3) in (4.1), we obtain boundary conditions of the adjoint prob-
lem. Namely

1
B(X.Z) = / X (a1, V)[fa(1)Z(1,1) — az fo(0)Z (1, 0))day

1
+/ X(1,2) [ ()Z(1,2) — a1 £1(0)Z(0, x2)]das = 0.
0
Therefore, the boundary conditions for the adjoint problem are

f2(1)Z(21,1) = @2f5(0)Z(21,0),
(4.3)

F1(DZ(1,22) =a1f,(0)Z(0, 22).
Let Z(x) = Z1(x1)Za(22) then (4.2) will be

(2] = <3f2(x2) +f2($2)Zé(a?2)> n <8f1(z1) +f1(x1)Zi(x1)> oo

O Z(x2) Oz Zul)
Suppose
(4.4) 8f329£j2) _~_f2($2)§zg3 =a, 8f(91:1(j1) +f1($61)2g3 = f,

where a + 8 = —\. () and the functions f,, f5 are the complex conjugate A
and f1,fa respectively). So boundary conditions will be

f2(1)Z2(1) = @2£,(0)22(0),
(4.5) B B
f1(1)Z21(1) = a1 £,1(0)21(0).

The general solutions of (4.4)-(4.5) are
(46)  Talwo)Za(ws) = 2™, T (21) Zu(r) = eae” T,

afz(l)

To satisfy the related boundary condition (4.5), we have e = ay and

efF2(1) = G,. Hence the eigenvalues and eigenfunctions are

_ 2nmitlogas
Qp = (1)
(4.7) B n € 2,
Fo(@2) Zon(z2) = C2n62"”i62(z2)5§2(zz),
and
_ 2mmitloga;
Bm = (1) )
(4.8) m € Z,

?1 (1) Z1m(x1) = C1m82mmal(ml)ﬁfl(m).
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From equations (4.7)-(4.8) we get

Y _ _ 2mmitloga; 2nmi+log az
Amn = Bm +an = 6 O
(4.9) m,n € 7,

1 P T = A=
Zmn(-r) - esz(mGl—&-nGg)afﬁagz.

fifs

Now we prove that functions X,,,, and Z,,, are orthogonal . Then we will have

(XHWUZT‘S) :/Dan(JC)ZTS(I)dl’

_ / a7 G g5 G2 2mi(mGi4nG) i672wi(rG1+sG2)a1G1agzdzldIQ.

fifa

Using (3.7) if m = r,n = s then (X,npn, Zps) = F1(1)F2(1) and if m £ r,n # s
then

1 1
(s Ze) = [ Fltan@rnneeiga, ) ([ paeni-eei, )
0 0
_ Fl(l) (627ri(m—7') _ 1) FQ(l) (e2m(n—s) _ 1)
) )

2mi(m —r 2mi(n — s
= 0.
Therefore
Fi(1)Fy(1) for m=r, n=s,
(XTV”MZTS) =

0 otherwise.

Now, for determining coefficients ¢, the function Z,4(z) is multiplied to the
both sides of (3.12) and integrating on D yields
(4.10)

1 — 1
Crs = W /D (p(IE)ng(l‘)dllE = W Z Cmn(ana er)-

m,n=—o0

The solution of the problem (2.1)-(2.2)-(2.3) is therefore given by the series
(3.11) where the coefficients C,5 are determined by the formula (4.10). In the
next section we will provide the convergence conditions for the solution (3.11).
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5. Convergence of solution

For the convergence of solution (3.11) we consider the asymptotic behavior
of the coeflicients ¢y,y,. Using (3.12) and (4.10) imply

1 _
o = TR /D (@) o (@) da

1 1

’ . / .

/ GlalGl e72m7mG1 (/ (,O(.I)CLQGz G2e72n7mG2 dl‘z) dml.
0 0

By considering (3.7) the internal integral can be developed by part method as
follows

Gz(

1 , , a “)go(xl x9)e !
/ sD(x)agv'QC;2e—2n'rr1G2dx2 ) )
0

—27LTriG2 (1‘2)

2nmi

:EQ:O

I 1 /18 SD(x)aGQ e—QnWiszxQ
2nmi Jy Ozo 2

_ (e, 1) = p(21,0)
2nmi

I 1 /16 sD(x)a(;z ef2nﬂ'iG2d$2
2nmi J, Oxa 2 ’

such that n # 0. If the function ¢(z) satisfies in boundary conditions (2.2)
and its second derivative with respect to x5 exists, then for coefficients ¢,,, we
have the following asymptotic behavior

Comn = O(n™2).

This caused the formal series in (3.11) and (3.12) to uniformly converge with
respect to xo. Similarly if this process applies for p(z) with respect to x1, we
will have the same asymptotic behavior for ¢,,,, that is

Cmn = O(m™2).

6. Uniqueness of solution

To establish the uniqueness of solution, at first we get the Laplace transform
of equation (2.1), i.e

o ou e ou o ou
—st — —st —st
/0 e o dt /0 e fg(xg)—axth+/o e fl(xl)—axldt,

where s is complex value with positive real part. If o is the Laplace transform
of u then

uete |+ [ se e e = falea) 5+ i) 5
t=0 0 L1

3332
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and

ou(z, s)

(6.1) — p(x) + st(z,s) = fo(za) Dy + fl(;vl)aa(x’ )

6$1 ’

and the boundary conditions will be

(0, x2, 8) = aru(1, x2, s),
(6.2)
ﬂ(xl, 07 3) = a2a(x17 17 S)

To prove the uniqueness of solution of problem (2.1) we show that the above
associated homogenous problem has only a trivial solution, that is

ou(z, s) ou(zx, s)
81‘2 81‘1 ’

with the boundary conditions of (6.2). If u(z,

5)
division both side of the relation (6.3) by fi(z1)f2 (x,s) and integrating
on D, yield

1ol
— log @ x :s/ / — —dx1dzs,
/ g 2 o Jo Tl 14T2

1'1, » S ’L~L 1 3;‘278)
/ fl 331 361 O S X1 +/ f2 1‘2 ﬂ s S)dﬁljg = SFl(].)FQ(].)

By using conditions (6.2) and (3.7) we have

(6.3) st(z,s) = fa(w2) + fi(z1) s €C,

# 0 be a solution then by
(z2)u

1 1
dxl—i—/ — logu
o [f2

— Fi(1)logas — F5(1)loga; = sF1(1)F5(1).

It means that s is a constant value and it is a contradiction. therefore @(z,s) =
0 is only a trivial solution of a homogeneous problem (6.3), with the boundary
conditions (6.2). Consequently this completes the uniqueness of the solution.
So we conclude the following theorem.

Theorem 6.1. Assume that the function p(x) has second derivatives with re-
1

fl( 1)’ fa(x2)
are integrable on [0,1]. Then the problem (2.1)-(2.2)-(2.3) has a unique solu-
tion in the form of (3.11).

spect to x1 , xo and p(x) satisfies the boundary conditions (3.3) and ——

7. Examples

In the following examples suppose

x = (r1,22) € D= {x|lz; € (0,1),j =1,2} C R?, i =+/~1,t > 0.
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Example 7.1. Consider the initial-boundary value problem

Qu(x,1) _ dux,) ( 1 ) du(z,t)

7.1 =
(7.1) ot Oxs 627 — 6x1 + 2 oxy

with the non-local-boundary conditions

U(O,.’EQ,t) = u(]-vaat)v T2 € [07 1]7 > 07
u(z1,0,t) = u(xy, 1,1), x1 € 10,1]], t>0,
and initial condition
a2 — 4 1 _
w(z,0) = p(a1,m0) = — 22X e

14+ le2ﬂi(2m? —3x3+2m)
2

Solution: Using (3.11) and (3.12) the solution is

(72) u(sc,t) — Z Z CmneZ‘n’i(m-{-n)teQﬂ'i[m(Qx“;’—33c%+23:1)+na:2]’
m=—00 n=—00
and
oo (oo} ) 3 R
U(JZ, 0) — cp(x) _ Z Z Cmn627m[m(2:cl73m1+211)+nm2].
If we consider the double Fourier series of ¢(z1,22) then (See [17])
(oo}
_ 1 (_1)m 27mi(2a3 —3x3 +2x1)
p(x1,2) —mZ::O(?)) o ©
+ i i (71)m eZ'fri[m(?z:l}meijle)jang]
— 2771—1772”2 )
T n0
Therefore
1. (=)™
(5)( 273 , forn =0,
(_1)771
W, for n # O7

such that m,n € Z and m > 0. The solution of the problem (7.1) is given

by the series (7.2), where the coefficients ¢,,,, are determined by the formulae
(7.3).

Remark 7.2. Without using the double Fourier series of ¢(z1,22), we can
calculate ¢, by relation (4.10).
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Example 7.3. Consider the initial-boundary value problem

Ou(z,t) . ou(z,t) 9y Ou(z, t)
(7.4) o = i1+ x2)78x2 + (14 ml)i@xl ,

with the non-local-boundary conditions
u(0,z2,t) = u(l,z2,t),  22€[0,1], t>0,

u(z1,0,t) = u(x,1,t), x1 € 10,1]], t>0,
and initial condition
(7.5) u(z,0) = p(21,29) = cos?[w(x1 + x2)].
Solution: Using (3.11) the solution is
10 wnh 3 3 metri i b

m=—oo n=0

For determining coefficients ¢y, if we use the relations (4.9) , (4.10) and initial
condition of (7.5) then

2 an71 x o x
Cmn = / L x22)} —2milm M ]
p wlog2 (14 z2)(1 + %)
such that m,n € Z and n > 0. Numerical approximation of the coefficients ¢,

for some values of m and n are given in table 1. Clearly, by means of Theorem
6.1, we can provide more examples.

(7.7)

TABLE 1. The numerical values of coefficients ¢,,,, obtained
by the dblquad built-in Matlab function.

n 0 1 2 3 4
m
-2 -0.0020-0.00261 0.0002+4-0.0025i -0.0006-0.00011 -0.0002-0.0001i -0.0001-0.0001i
-1 0.0142-0.0223i 0.0041+4-0.0005i 0.0004-0.0026i 0.0004-0.00161 0.0003-0.0010i
0 0.4936 0.0067+4-0.0284i  -0.0034+0.0011i  -0.00114-0.0001i  -0.0005+0.0000i
1 0.0142+4-0.0223i 0.1810-0.1621i 0.0192+4-0.0184i 0.0035+4-0.0062i 0.0013+-0.0028i
2 -0.0020+0.0026i  0.02554-0.0116i -0.00114-0.0029i  -0.00054-0.0007i  -0.0002+-0.0003i
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