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Abstract. This paper considers a non-local initial-boundary value prob-
lem containing a first order partial differential equation with variable co-
efficients. At first, the non-self-adjoint spectral problem is derived. Then

its adjoint problem is calculated. After that, for the adjoint problem the
associated eigenvalues and the subsequent eigenfunctions are determined.
Finally the convergence of series solution and the uniqueness of this so-
lution will be proved.
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1. Introduction

Initial-boundary value problems are usually discussed in classic text books,
when the problems are self-adjoint and the variables of related partial dif-
ferential equations are real and complex constants [7, 17]. These problems
are generally the mathematical models for physics and engineering problems.
When these problems contain partial differential equations with variable coef-
ficients in a non-self-adjoint case, they are often unsolved problems. Some of
these problems, when including variable coefficients as well as Navier-Stokes
system [1, 12] and Benjamin-Ono equation [13] have been solved by authors.
On the other hand, partial differential equations with variable coefficients ap-
pear in the other fields of mathematical physics such as inverse Sturm-Liouville
problems when the potential functions and the other unknowns involve time
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and space variables

(1.1)


∂2A(x, t)

∂x2
− 2p(x)

∂B(x, t)

∂t
− q(x)A(x, t) =

∂2A(x, t)

∂t2

∂2B(x, t)

∂x2
+ 2p(x)

∂A(x, t)

∂t
− q(x)B(x, t) =

∂2B(x, t)

∂t2
.

As is easily observed, theses equations have variable coefficients [8, 9]. The
general form of these equations can be written in the following form when the
unknown functions include two spatial variables and one time variable

(1.2)
∂2u(x1, x2, t)

∂t2
= F (x1, x2)

∂2u(x1, x2, t)

∂x2
2

+G(x1, x2, t)
∂2u(x1, x2, t)

∂x2
1

,

We will consider the equation (1.2) for the case of first order derivative with
respect to time variable and spatial variables. For the second order case, the
problem can be considered as an open problem.

Remark 1.1. It is intended to say that, one can consider and solve the above
mentioned second order case by using the same process applied for the first case
in this paper. we will consider equation (1.2) with separable case of variables.
That is

(1.3)
∂2u(x1, x2, t)

∂t2
= f2(x2)

∂2u(x1, x2, t)

∂x2
2

+ f1(x1)
∂2u(x1, x2, t)

∂x2
1

,

and for the first order:

(1.4)
∂u(x1, x2, t)

∂t
= f2(x2)

∂u(x1, x2, t)

∂x2
+ f1(x1)

∂u(x1, x2, t)

∂x1
,

Remark 1.2. Equation (1.4) with some non-local-boundary conditions and
initial condition has been considered by authors with real and complex con-
stants [14]. These problems have solved by the Fourier method the cases of self
adjoint and non-self-adjoint problems.

It is also worth mentioning that the selfadjoint and non-self-adjoint bound-
ary value problems have appeared in some of physics and engineering problems.
For example A.Burchard et al in [4] reached a non-self-adjoint differential op-
erators that appear as linearization of coating and rimming flows, where a thin
layer of fluid coats a horizontal rotating cylinder. In [5] R.Carlson also applied
the adjoint and self-adjoint differential operators on graphs. He has shown a di-
rected graph with weighted edges can be characterized as a system of ordinary
differential operators.

On the other hand, over the last decades, boundary value problems with non-
local-boundary conditions have an important role in many area of researches.
In these problems the values of the unknown functions on the boundary are
connected to each other some of the values of the given domain, such as the
boundary conditions are called non-local-boundary conditions [2, 3, 6, 10].
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Authors in [11, 15, 16] have considered some complex constants in partial
differential equations in non-classic cases as well as non-self-adjoint problems
with non-local and non-periodic conditions.

2. Mathematical statement of problem

Consider the initial-boundary value problem

(2.1)

∂u(x, t)

∂t
= f2(x2)

∂u(x, t)

∂x2
+ f1(x1)

∂u(x, t)

∂x1
,

x = (x1, x2) ∈ D = {x|xj ∈ (0, 1), j = 1, 2} ⊂ R2, t > 0,

with the non local boundary conditions

(2.2)

 u(0, x2, t) = a1u(1, x2, t), x2 ∈ [0, 1], t ≥ 0,

u(x1, 0, t) = a2u(x1, 1, t), x1 ∈ [0, 1], t ≥ 0,

and initial condition

u(x, 0) = φ(x), x ∈ D,(2.3)

where a1 and a2 are arbitrary complex constants and φ(x) is a known con-
tinuous function with a complex variable. For this problem, we consider the
related spectral problem such that it is not self-adjoint. At first we calculate
its spectral problem. Hence its eigenvalues are not real and the eigenfunctions
do not form an orthogonal basis system.

To construct the solution as infinite series, we will use the eigenfunctions of
the main spectral problem and the related adjoint problem.

3. Spectral problem of the main problem

We assume that the solution of (2.1) is in the form u(x, t) = X(x)T (t) where
X and T are functions of x and t respectively, and they are twice continuously
differentiable functions (see [6]). Therefore

(3.1) f2(x2)
∂X(x)

∂x2
+ f1(x1)

∂X(x)

∂x1
= λX(x), x ∈ D, λ ∈ C,

And

(3.2) T
′
(t) = λT (t), t > 0.

Let L be the operator of equation (3.1), i.e.

L = f2(x2)
∂

∂x2
+ f1(x1)

∂

∂x1
− λ.

Separating the boundary conditions (2.2) yields

(3.3)

 X(0, x2) = a1X(1, x2), x2 ∈ [0, 1],

X(x1, 0) = a2X(x1, 1), x1 ∈ [0, 1].
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By using twice “the method of separation of variables” X(x) = X1(x1)X2(x2)
we have

(3.4) f2(x2)
X ′

2(x2)

X2(x2)
+ f1(x1)

X ′
1(x1)

X1(x1)
= λ,

and the boundary conditions (3.3) will be

X1(0) = a1X1(1), X2(0) = a2X2(1).

If we let

f1(x1)
X ′

1(x1)

X1(x1)
= ρ, f2(x2)

X ′
2(x2)

X2(x2)
= µ,

where λ = µ+ ρ. Then two boundary value problems

(3.5)

 f1(x1)X
′
1(x1) = ρX1(x1), x1 ∈ (0, 1),

X1(0) = a1X1(1),

and

(3.6)

 f2(x2)X
′
2(x2) = µX2(x2), x2 ∈ (0, 1),

X2(0) = a2X2(1),

are obtained to determine X1(x1) and X2(x2). The general solutions of (3.5)
and (3.6) are

X2(x2) = c2e
∫ x2
0

µdx
f2(x) , X1(x1) = c1e

∫ x1
0

ρdx
f1(x) .

In this part we suppose

(3.7) F1(x1) =

∫ x1

0

dx

f1(x)
, F2(x2) =

∫ x2

0

dx

f2(x)
, F1(1), F2(1) ̸= 0.

To satisfy the related boundary condition we must have eρF1(1) = a−1
1 and

eµF2(1) = a−1
2 .Hence the eigenvalues and eigenfunctions are

(3.8)


ρm = 2mπi−log a1

F1(1)
,

m ∈ Z,
X1m(x1) = c1m

e2mπiG1(x1)

a
G1(x1)
1

,

and

(3.9)


µn = 2nπi−log a2

F2(1)
,

n ∈ Z,
X2n(x2) = c2n

e2nπiG2(x2)

a
G2(x2)
2

,
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such that G1(x1) =
F1(x1)
F1(1)

and G2(x2) =
F2(x2)
F2(1)

. From equations (3.8),(3.9) we
get

(3.10)


λmn = ρm + µn = 2mπi−log a1

F1(1)
+ 2nπi−log a2

F2(1)
,

m, n ∈ Z
Xmn(x) = cmna

−G1(x1)
1 a

−G2(x2)
2 e2πi[mG1(x1)+nG2(x2)],

where λmn and Xmn are the eigenvalues and the eigenfunctions of the spectral
problem (3.1) and (3.3) respectively. By considering the general solution of
(3.2) in the form Tmn(t) = eλmnt the general solution of equation (2.1) will be
(3.11)

u(x, t) =
∞∑

m,n=−∞
cmna

−G1− t
F1(1)

1 a
−G2− t

F2(1)

2 e
2πi( m

F1(1)
+ n

F1(2)
)t
e2πi(mG1+nG2).

Since each term of the series satisfies the boundary conditions, these conditions
hold.Therefore, it simply remains to show that the initial condition of (2.3) is
satisfied. Namely,

(3.12) φ(x) =
∞∑

m,n=−∞
cmna

−G1(x1)
1 a

−G2(x2)
2 e2πi[mG1(x1)+nG2(x2)].

The unknown coefficients cmn are calculated in the sequel.

4. The adjoint of operator L

Since the eigenfunctions (3.10) are not orthogonal, then to determine the
constants Cmn we should find the adjoint equation (3.1). For this, we multiply
both sides of equation (3.1) in arbitrary functionZ(x) and integrate on the
interval [0,1] we get∫ 1

0

dx1

∫ 1

0

f2(x2)
∂X(x)

∂x2
Z(x)dx2 +

∫ 1

0

dx2

∫ 1

0

f1(x1)
∂X(x)

∂x1
Z(x)dx1 = λ

∫
D

X(x)Z(x)dx.

Finally we have∫ 1

0

X(x)f2(x2)Z(x)

∣∣∣∣1
x2=0

dx1 +

∫ 1

0

X(x)f1(x1)Z(x)

∣∣∣∣1
x1=0

dx2

−
∫
D

X(x)

[
∂[f2(x2)Z(x)]

∂x2
+

∂[f1(x1)Z(x)]

∂x1
+ λZ(x)

]
dx = 0.

Not that Z(x) denotes the complex conjugate function of Z(x). Therefore

(4.1) B(X,Z) =

∫ 1

0

X(x)f2(x2)Z(x)

∣∣∣∣1
x2=0

dx1+

∫ 1

0

X(x)f1(x1)Z(x)

∣∣∣∣1
x1=0

dx2.

Let L* be the adjoint operator of L, i.e

(4.2) L∗[Z] =
∂[f2(x2)Z(x)]

∂x2
+

∂[f1(x1)Z(x)]

∂x1
+ λZ(x) = 0,
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and therefore [16]

(LX,Z) = B(X,Z) + (X,L∗Z).

Substituting (3.3) in (4.1), we obtain boundary conditions of the adjoint prob-
lem. Namely

B(X,Z) =

∫ 1

0

X(x1, 1)[f2(1)Z(x1, 1)− a2f2(0)Z(x1, 0)]dx1

+

∫ 1

0

X(1, x2)[f1(1)Z(1, x2)− a1f1(0)Z(0, x2)]dx2 = 0.

Therefore, the boundary conditions for the adjoint problem are

(4.3)

 f2(1)Z(x1, 1) = a2f2(0)Z(x1, 0),

f1(1)Z(1, x2) = a1f1(0)Z(0, x2).

Let Z(x) = Z1(x1)Z2(x2) then (4.2) will be

L∗[Z] =

(
∂f2(x2)

∂x2
+ f2(x2)

Z
′

2(x2)

Z2(x2)

)
+

(
∂f1(x1)

∂x1
+ f1(x1)

Z
′

1(x1)

Z1(x1)

)
+ λ = 0.

Suppose

(4.4)
∂f2(x2)

∂x2
+ f2(x2)

Z
′

2(x2)

Z2(x2)
= α,

∂f1(x1)

∂x1
+ f1(x1)

Z
′

1(x1)

Z1(x1)
= β,

where α + β = −λ. (λ and the functions f1, f2 are the complex conjugate λ
and f1,f2 respectively). So boundary conditions will be

(4.5)

 f2(1)Z2(1) = a2f2(0)Z2(0),

f1(1)Z1(1) = a1f1(0)Z1(0).

The general solutions of (4.4)-(4.5) are

(4.6) f2(x2)Z2(x2) = c2e
αF 2(x2), f1(x1)Z1(x1) = c1e

βF 1(x1).

To satisfy the related boundary condition (4.5), we have eαF 2(1) = a2 and

eβF 2(1) = a1. Hence the eigenvalues and eigenfunctions are

(4.7)


αn = 2nπi+log a2

F 2(1)
,

n ∈ Z,
f2(x2)Z2n(x2) = c2ne

2nπiG2(x2)a
G2(x2)
2 ,

and

(4.8)


βm = 2mπi+log a1

F 1(1)
,

m ∈ Z,
f1(x1)Z1m(x1) = c1me2mπiG1(x1)a

G1(x1)
1 .
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From equations (4.7)-(4.8) we get

(4.9)


−λmn = βm + αn = 2mπi+log a1

F 1(1)
+ 2nπi+log a2

F 2(1)
,

m, n ∈ Z,

Zmn(x) =
1

f1f2

e2πi(mG1+nG2)aG1
1 aG2

2 .

Now we prove that functions Xmn and Zmn are orthogonal . Then we will have

(Xmn, Zrs) =

∫
D

Xmn(x)Zrs(x)dx

=

∫
D

a−G1
1 a−G2

2 e2πi(mG1+nG2)
1

f1f2
e−2πi(rG1+sG2)aG1

1 aG2
2 dx1dx2.

Using (3.7) if m = r, n = s then (Xmn, Zrs) = F1(1)F2(1) and if m ̸= r, n ̸= s
then

(Xmn, Zrs) =

(∫ 1

0

F
′

1(x1)e
2πi(m−r)G1(x1)dx1

)(∫ 1

0

F
′

2(x2)e
2πi(n−s)G2(x2)dx2

)
=

F1(1)

2πi(m− r)

(
e2πi(m−r) − 1

) F2(1)

2πi(n− s)

(
e2πi(n−s) − 1

)
= 0.

Therefore

(Xmn, Zrs) =


F1(1)F2(1) for m = r, n = s,

0 otherwise.

Now, for determining coefficients cmn, the function Zrs(x) is multiplied to the
both sides of (3.12) and integrating on D yields
(4.10)

crs =
1

F1(1)F2(1)

∫
D

φ(x)Zrs(x)dx =
1

F1(1)F2(1)

∞∑
m,n=−∞

cmn(Xmn, Zrs).

The solution of the problem (2.1)-(2.2)-(2.3) is therefore given by the series
(3.11) where the coefficients Crs are determined by the formula (4.10). In the
next section we will provide the convergence conditions for the solution (3.11).



Analytic solution for a non-local initial-boundary value problem 322

5. Convergence of solution

For the convergence of solution (3.11) we consider the asymptotic behavior
of the coefficients cmn. Using (3.12) and (4.10) imply

cmn =
1

F1(1)F2(1)

∫
D

φ(x)Zrs(x)dx

=

∫ 1

0

G
′

1a
G1
1 e−2mπiG1

(∫ 1

0

φ(x)aG2
2 G

′

2e
−2nπiG2dx2

)
dx1.

By considering (3.7) the internal integral can be developed by part method as
follows∫ 1

0

φ(x)aG2
2 G

′

2e
−2nπiG2dx2 =− a

G2(x2)
2 φ(x1, x2)e

−2nπiG2(x2)

2nπi

∣∣∣∣1
x2=0

+
1

2nπi

∫ 1

0

∂

∂x2

(
φ(x)aG2

2

)
e−2nπiG2dx2

=− a2φ(x1, 1)− φ(x1, 0)

2nπi

+
1

2nπi

∫ 1

0

∂

∂x2

(
φ(x)aG2

2

)
e−2nπiG2dx2,

such that n ̸= 0. If the function φ(x) satisfies in boundary conditions (2.2)
and its second derivative with respect to x2 exists, then for coefficients cmn we
have the following asymptotic behavior

cmn = O(n−2).

This caused the formal series in (3.11) and (3.12) to uniformly converge with
respect to x2. Similarly if this process applies for φ(x) with respect to x1, we
will have the same asymptotic behavior for cmn, that is

cmn = O(m−2).

6. Uniqueness of solution

To establish the uniqueness of solution, at first we get the Laplace transform
of equation (2.1), i.e∫ ∞

0

e−st ∂u

∂t
dt =

∫ ∞

0

e−stf2(x2)
∂u

∂x2
dt+

∫ ∞

0

e−stf1(x1)
∂u

∂x1
dt,

where s is complex value with positive real part. If ũ is the Laplace transform
of u then

u(x, t)e−st

∣∣∣∣∞
t=0

+

∫ ∞

0

se−stu(x, t)dt = f2(x2)
∂ũ

∂x2
+ f1(x1)

∂ũ

∂x1
,
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and

(6.1) − φ(x) + sũ(x, s) = f2(x2)
∂ũ(x, s)

∂x2
+ f1(x1)

∂ũ(x, s)

∂x1
,

and the boundary conditions will be

(6.2)

 ũ(0, x2, s) = a1ũ(1, x2, s),

ũ(x1, 0, s) = a2ũ(x1, 1, s).

To prove the uniqueness of solution of problem (2.1) we show that the above
associated homogenous problem has only a trivial solution, that is

(6.3) sũ(x, s) = f2(x2)
∂ũ(x, s)

∂x2
+ f1(x1)

∂ũ(x, s)

∂x1
, s ∈ C,

with the boundary conditions of (6.2). If ũ(x, s) ̸= 0 be a solution then by
division both side of the relation (6.3) by f1(x1)f2(x2)ũ(x, s) and integrating
on D, yield∫ 1

0

1

f1
log ũ

∣∣∣∣1
x2=0

dx1 +

∫ 1

0

1

f2
log ũ

∣∣∣∣1
x1=0

dx2 = s

∫ 1

0

∫ 1

0

1

f1

1

f2
dx1dx2,

and∫ 1

0

1

f1(x1)
log

ũ(x1, 1, s)

ũ(x1, 0, s)
dx1 +

∫ 1

0

1

f2(x2)
log

ũ(1, x2, s)

ũ(0, x2, s)
dx2 = sF1(1)F2(1).

By using conditions (6.2) and (3.7) we have

− F1(1) log a2 − F2(1) log a1 = sF1(1)F2(1).

It means that s is a constant value and it is a contradiction. therefore ũ(x, s) =
0 is only a trivial solution of a homogeneous problem (6.3), with the boundary
conditions (6.2). Consequently this completes the uniqueness of the solution.
So we conclude the following theorem.

Theorem 6.1. Assume that the function φ(x) has second derivatives with re-

spect to x1 , x2 and φ(x) satisfies the boundary conditions (3.3) and
1

f1(x1)
,

1

f2(x2)
are integrable on [0, 1]. Then the problem (2.1)-(2.2)-(2.3) has a unique solu-
tion in the form of (3.11).

7. Examples

In the following examples suppose

x = (x1, x2) ∈ D = {x|xj ∈ (0, 1), j = 1, 2} ⊂ R2, i =
√
−1, t > 0.
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Example 7.1. Consider the initial-boundary value problem

(7.1)
∂u(x, t)

∂t
=

∂u(x, t)

∂x2
+

(
1

6x2
1 − 6x1 + 2

)
∂u(x, t)

∂x1
,

with the non-local-boundary conditions u(0, x2, t) = u(1, x2, t), x2 ∈ [0, 1], t ≥ 0,

u(x1, 0, t) = u(x1, 1, t), x1 ∈ [0, 1]], t ≥ 0,

and initial condition

u(x, 0) = φ(x1, x2) =
4x2

2 − 4x2 + 1

1 +
1

2
e2πi(2x

3
1−3x2

1+2x1)

, x ∈ D.

Solution: Using (3.11) and (3.12) the solution is

(7.2) u(x, t) =
∞∑

m=−∞

∞∑
n=−∞

cmne
2πi(m+n)te2πi[m(2x3

1−3x2
1+2x1)+nx2],

and

u(x, 0) = φ(x) =
∞∑

m=−∞

∞∑
n=−∞

cmne
2πi[m(2x3

1−3x2
1+2x1)+nx2].

If we consider the double Fourier series of φ(x1, x2) then (See [17])

φ(x1, x2) =
∞∑

m=0

(
1

3
)
(−1)m

2m
e2πmi(2x3

1−3x2
1+2x1)

+

∞∑
m=0

∞∑
n=−∞,
n ̸=0

(−1)m

2m−1π2n2
e2πi[m(2x3

1−3x2
1+2x1)+nx2].

Therefore

(7.3) cmn =


(
1

3
)
(−1)m

2m
, for n = 0,

(−1)m

2m−1π2n2
, for n ̸= 0,

such that m,n ∈ Z and m ⩾ 0. The solution of the problem (7.1) is given
by the series (7.2), where the coefficients cmn are determined by the formulae
(7.3).

Remark 7.2. Without using the double Fourier series of φ(x1, x2), we can
calculate cmn by relation (4.10).
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Example 7.3. Consider the initial-boundary value problem

∂u(x, t)

∂t
= i(1 + x2)

∂u(x, t)

∂x2
+ (1 + x2

1)
∂u(x, t)

∂x1
,(7.4)

with the non-local-boundary conditions u(0, x2, t) = u(1, x2, t), x2 ∈ [0, 1], t ≥ 0,

u(x1, 0, t) = u(x1, 1, t), x1 ∈ [0, 1]], t ≥ 0,

and initial condition

(7.5) u(x, 0) = φ(x1, x2) = cos2[π(x1 + x2)].

Solution: Using (3.11) the solution is

(7.6) u(x, t) =
∞∑

m=−∞

∞∑
n=0

cmne
2πi( 4m

π + in
log 2 )te2πi[m

4 tan−1 x1
π +n

log(1+x2)
log 2 ].

For determining coefficients cmn, if we use the relations (4.9) , (4.10) and initial
condition of (7.5) then

(7.7) cmn =

∫
D

4

π log 2

cos2[π(x1 + x2)]

(1 + x2)(1 + x2
1)
e−2πi[m

4 tan−1 x1
π +n

log(1+x2)
log 2 ]dx,

such that m,n ∈ Z and n ≥ 0. Numerical approximation of the coefficients cmn

for some values of m and n are given in table 1. Clearly, by means of Theorem
6.1, we can provide more examples.

Table 1. The numerical values of coefficients cmn obtained
by the dblquad built-in Matlab function.

n 0 1 2 3 4
m
-2 -0.0020-0.0026i 0.0002+0.0025i -0.0006-0.0001i -0.0002-0.0001i -0.0001-0.0001i
-1 0.0142-0.0223i 0.0041+0.0005i 0.0004-0.0026i 0.0004-0.0016i 0.0003-0.0010i
0 0.4936 0.0067+0.0284i -0.0034+0.0011i -0.0011+0.0001i -0.0005+0.0000i
1 0.0142+0.0223i 0.1810-0.1621i 0.0192+0.0184i 0.0035+0.0062i 0.0013+0.0028i
2 -0.0020+0.0026i 0.0255+0.0116i -0.0011+0.0029i -0.0005+0.0007i -0.0002+0.0003i
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data, Akad. Nauk Azerbăıdzhan. SSR Dokl. 37 (1981), no. 2, 19–23.

[10] D. G. Gordeziani and G. A. Avalishvili, Time-nonlocal problems for Schrodinger type
equations, II, Results for specific problems, Differ. Equ. 41 (2005), no. 6, 852–859.

[11] M. Jahanshahi and A. Ahmadkhanloo, The wave equation in non-classic cases: non-
self adjoint with non-local and non-periodic boundary conditions, Iran. J. Math. Sci.
Inform. 9 (2014), no. 1, 1–12, 100.

[12] M. Jahanshahi, N. Aliev and S. M. Hosseini, An analytic method for investigation and
solving two-dimensional steady state navier-stokes equations I, Southeast Asian Bull.
Math. 33 (2009), no. 6, 1075–1089.

[13] M. Jahanshahi and N. Aliev, Reduction of linearized Benjamin-Ono equation to the

Schrdinger equation, Int. Math. Forum 2 (2007), no. 11, 543–549,
[14] M. Jahanshahi and M. Darabadi, Existence and uniqueness of solution of a non-self-

adjoint initial-boundary value problem for partial differential equation with non-local
boundary conditions, Vietnam J. Math., Accepted.

[15] M. Jahanshahi and M. Fatehi, Analytic solution for the cauchyriemann equation with
nonlocal boundary conditions in the first quarter, Int. J. Pure Appl. Math. 46 (2008),
no. 2, 245–249,

[16] M. Jahanshahi and M. Sajjadmanesh, A new method for investigation and recognizing

of self-adjoint boundary value problems, Journal of Science (Kharazmi University) 12
(2012), no. 1, 295–304.

[17] T. Myint-U and L. Debnath, Linear partial Differential Equations for Scientists and
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