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Abstract. Let E be an elliptic curve over Q with the given Weierstrass

equation y2 = x3 + ax + b. If D is a squarefree integer, then let E(D)

denote the D-quadratic twist of E that is given by E(D) : y2 = x3 +
aD2x + bD3. Let E(D)(Q) be the group of Q-rational points of E(D).
It is conjectured by J. Silverman that there are infinitely many primes

p for which E(p)(Q) has positive rank, and there are infinitely many

primes q for which E(q)(Q) has rank 0. In this paper, assuming the
parity conjecture, we show that for infinitely many primes p, the elliptic

curve E
(p)
n : y2 = x3 − np2x has odd rank and for infinitely many primes

p, E
(p)
n (Q) has even rank, where n is a positive integer that can be written

as biquadrates sums in two different ways, i.e., n = u4 + v4 = r4 + s4,

where u, v, r, s are positive integers such that gcd(u, v) = gcd(r, s) = 1.
More precisely, we prove that: if n can be written in two different ways as
biquartic sums and p is prime, then under the assumption of the parity

conjecture E
(p)
n (Q) has odd rank (and so a positive rank) as long as n is

odd and p ≡ 5, 7 (mod 8) or n is even and p ≡ 1 (mod 4). In the end,

we also compute the ranks of some specific values of n and p explicitly.
Keywords: Silverman’s conjecture, elliptic curve, quadratic twist, rank,
parity conjecture.
MSC(2010): Primary: 11G05; Secondary: 14H52.

1. Introduction

An elliptic curve E over the rational field Q is the projective curve associated
to an affine equation of the form

(1.1) y2 = x3 + ax+ b, a, b ∈ Q,

where the cubic polynomial x3 + ax + b has distinct roots. This is called the
Weierastrass normal form. By the Mordell-Weil theorem it is known that the
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set of rational points E(Q) is a finitely generated abelian group, as such it takes
the following decomposition:

(1.2) E(Q) ≃ Zr ⊕ E(Q)tors,

where r is a nonnegative integer called the rank of E and E(Q)tors is the finite
abelian group consisting of all the elements of finite order in E(Q) (see [20, The-
orem 6.7, page 239] for more information).
Let us recall the definition of the quadratic twist of an elliptic curve. If D is
a squarefree integer, then let E(D) denote the D-quadratic twist of E that is
given by E(D) : y2 = x3+aD2x+ bD3. The group of Q-rational points of E(D)

is shown by E(D)(Q).

In [11], the authors considered the family of elliptic curves defined by

(1.3) En : y2 = x3 − nx,

where n is a positive integer that can be written as biquadrates sums in two
different ways, i.e., n = u4 + v4 = r4 + s4 where gcd(u, v) = gcd(r, s) = 1. The
4-tuple (u, v, r, s) with positive integer coordinates satisfying the above condi-
tions is called a primitive solution. In [11, Theorem 1.1] the authors proved
that for such n the elliptic curve y2 = x3 − nx, has rank ≥ 3. If moreover n is
odd and the parity conjecture is true, then it has even rank ≥ 4.

The Diophantine equation

(1.4) n = u4 + v4 = r4 + s4,

was first studied by Euler [7] in 1772 and since then has been considered by
numerous mathematicians. Among quartic Diophantine equations, (1.4) has a
distinct feature for its simple structure, the almost perfect symmetry between
the variables and close relationship with the theory of elliptic functions. The
simplest parametric solution of (1.4) that was constructed by Euler [10, Page
201, (13.7.11)] is:

(1.5)


u = a7 + a5b2 − 2a3b4 + 3a2b5 + ab6,
v = a6b− 3a5b2 − 2a4b3 + a2b5 + b7,
r = a7 + a5b2 − 2a3b4 + 3a2b5 + ab6,
s = a6b+ 3a5b2 − 2a4b3 + a2b5 + b7.

The first known examples of solutions, and among these the solution in least
positive integers, i.e., (u, v, r, s) = (134, 133, 158, 59), were cmputed already
by Euler [7–9]. But this parametric solution does not exhaust all the pos-
sible solutions of the equation (1.4) (see [12, page 21]). Some others were
found by later researchers (see [6, pp. 644-647]), but it was not until the ad-
vent of computers that systematic searches could be conducted. The most
extensive lists published to date are due to Lander and Parkin [13] and Lan-
der, Parkin and Selfridge [14]. Zajta [22], discusses the method for finding
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such solutions and presents a list of 218 numerical solutions in the range
max(u, v, r, s) < 106. Choudhry [3], presents a method of deriving new solu-
tions of equation (1.4) starting from a given solution. According to his method,
by taking (±133,±134,±158,±59) one can obtain:

u v r s
1054067 545991 522059 1057167
10381 10203 12231 2903

1453319 829418 1486969 461882
1137493 654854 60779 1167518
114613 111637 134413 34813
6565526 3687711 6710751 1967986

12178821457 7038985479 783453421 12505169907

2. Silverman’s conjecture and some known results related to it

In this section, we first state Silverman’s conjecture and then we briefly dis-
cuss some known results related to it.

Conjecture 2.1 (Silveman’s Conjecture). ( [16, page250]). If E is an ellip-
tic curve over the rational field Q, then there are infinitely many primes p for
which E(p)(Q), has positive rank, and there are infinitely many primes q for
which E(q)(Q) has rank 0 .

By using 2-descents (see [18, Theorem 3.1, page 229]), one can prove part
of this conjecture for the congruent number elliptic curve

E′ : y2 = x3 − x.

For instance it is known for prime p that if p ≡ 3 (mod 8), then E′(p) has rank
0 and if p ≡ 5 (mod 8), then E′(2p)(Q) has rank 0. Moreover, it is known that
E′(pqr)(Q) has rank 0 if p, q and r are primes satisfying

p ≡ 1 (mod 8), q ≡ 3 (mod 8), r ≡ 3 (mod 8), and

(
p

q

)
= −

(p
r

)
,

where
(

p
q

)
is the Legendre symbol.

On the other hand, for the second part of the conjecture, i.e., the part with
positive rank, Monsky [15, Corollary 5.15, page 66] proved that if p1, p3, p5
and p7 denote primes ≡ 1, 3, 5, 7 (mod 8), then the D-quadratic twist of E

′

has positive rank, where D runs through the following numbers:

p5, p7, 2p7 and 2p3,

p3p7, p3p5, 2p3p5 and 2p5p7,
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p1p5 provided

(
p1
p5

)
= −1, p1p7 and 2p1p7 provided

(
p1
p7

)
= −1,

and

2p1p3 provided

(
p1
p3

)
= −1.

Ono [16, Corollary 3.1, page 349], showed that for some special curves E there
is a set S of primes p with density 1

3 for which if D =
∏

pj is a squarefree

integer where pj ∈ S, then E(D) has rank 0. In particular E(p) has rank 0 for
every p ∈ S.

3. Main results

Our main results are as follows:

Theorem 3.1. Let n be an odd number of the form (1.4). Then under the
assumption of the parity conjecture we have the following:

(i) For any primes p ≡ 5, 7 (mod 8), the rank of E
(p)
n (Q) is odd and

therefore positive. Consequently, the first part of Silverman’s conjecture
is true.

(ii) For any primes p ≡ 1, 3 (mod 8), the rank of E
(p)
n (Q) is even.

Theorem 3.2. Let n be an even number of the form (1.4). Then under the
assumption of the parity conjecture we have the following:

(i) For any primes p ≡ 1 (mod 4), the rank of E
(p)
n (Q) is odd and therefore

positive. Consequently, the first part of Silverman’s conjecture is true.

(ii) For any primes p ≡ 3 (mod 4), the rank of E
(p)
n (Q) is even.

Before giving the proof of these theorems, we state a couple of necessary
facts from the literature.

First of all, the Parity Conjecture which states that an elliptic curve E over
Q with the rank r satisfies

ω(E) = (−1)r,

where ω(E) is the sign of the functional equation of the Hasse-Weil L-function
L(E, s). It is known [1] that for n ̸≡ 0 (mod 4), a fourth power free integer,
the sign of the functional equation, denoted ω(En), for the elliptic curve

En : y2 = x3 − nx,

is given by

(3.1) ω(En) = sgn(−n) · ϵ(n) ·
∏
l2∥n

(
−1

l

)
,

where l ≥ 3 denotes a prime and
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(3.2) ϵ(n) =

 −1, n ≡ 1, 3, 11, 13 (mod 16),

1, n ≡ 2, 5, 6, 7, 9, 10, 14, 15 (mod 16).

(see Ono and Ono [17, Equations (1), (2), and (3)]).

Second, the following proposition and Theorem 3.6 are also useful in the
proof of our main results. Let us recall the following lemma which will be
essential in the proof of Proposition 3.4.

Lemma 3.3. Let n be a nonzero integer, and let p be an odd prime not dividing
n. Then

p | x2 + ny2, gcd(x, y) = 1 ⇐⇒
(
−n

p

)
= 1.

Proof. See ([4, Lemma 1.7, page 13]). □

Proposition 3.4. Let n = u4 + v4 = r4 + s4 be such that gcd(u, v) = 1. If
l | n for an odd prime number l, then l = 8k + 1 for some k ∈ Z.

Proof. Without loss of generality we can assume that n is not divisible by 4.
We use Lemma 3.3. Let l be an odd prime factor of n. One can write

n = u4 + v4 = (u2 − v2)2 + 2(uv)2,

so,

l | (u2 − v2)2 + 2(uv)2.

According to Lemma 3.3, x = u2−v2, y = uv and m = 2. Therefore,
(−2

l

)
= 1

which implies that l = 8k + 1 or l = 8k + 3. On the other hand, n = (u2 +
v2)2 − 2(uv)2, so

l | (u2 + v2)2 − 2(uv)2.

We get
(
2
l

)
= 1 which implies that l = 8k+1 or l = 8k+7. Putting these two

results together we get l = 8k + 1. □

Remark 3.5. By Proposition 3.4, every prime number l dividing n is in the
form 8k + 1 which in turn is in the form 4k + 1 as well. Therefore by the
quadratic reciprocity law (see [21, page153] ), for every prime factor l of n
such that l2∥n we have

(−1
l

)
= 1. This shows that these prime factors can be

ignored in evaluation of ω(En).

Theorem 3.6. (Dirichlet’s Theorem) If n is a positive integer and a and b
have no common divisor except 1, then there are infinitely many primes of the
form an+ b.

Proof. See ([10, Theorem 15, page 13]). □
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By the above facts in our disposal, we are now ready to investigate Silver-
man’s conjecture for the elliptic curve (1.3). To this end, we first take the
p-quadratic twists

(3.3) E(p)
n : y2 = x3 − p2nx,

where n is in the form (1.4) and the primes p satisfying gcd(p, n) = 1, and then

compute the sign of ω(E
(p)
n ) to characterize the parity of the rank for each curve.

It is a well-known fact that every odd prime p can be represented as p ≡ 1
(mod 4), or p ≡ 3 (mod 4). Furthermore one can easily check that square of
every prime p can be written as p2 ≡ 1 (mod 16), or p2 ≡ 9 (mod 16). It is
also clear that for each p and each n we have sgn(−p2n) = −1. Having said
that, we are now ready to prove our results.

Proof of Theorem 3.1 . (i) In this case, u and v have opposite parities.
Without loss of generality, let u ≡ 1 (mod 2) and v ≡ 0 (mod 2), then we
have

n = u4 + v4 ≡ 1 (mod 16).

Next, based on the different choices for the primes p, we get the different results

for ω(E
(p)
n ). We have the following possibilities:

(a): p ≡ 1 (mod 4) and p2 ≡ 9 (mod 16).

Since n ≡ 1 (mod 16), we have p2n ≡ 9 (mod 16) and then from (3.2) we

have ϵ(p2n) = 1 implying that ω(E
(p)
n ) = −1 from (3.1). Therefore, under the

assumption of the parity conjecture the rank is odd and indeed it is positive.
For primes of the form p ≡ 1 (mod 4), we have p = 8k + 1, or p = 8k + 5
for some k ∈ Z. These facts along with p2 ≡ 9 (mod 16) implies that p ≡ 5
(mod 8). By Dirichlet’s theorem, there are infinitely many such primes and
then, the first part of Silverman’s conjecture is true.

(b): p ≡ 3 (mod 4) and p2 ≡ 1 (mod 16).

Similarly for this case from (3.2), we get ϵ(p2n) = −1. Moreover,
(

−1
p

)
=

−1. So by (3.1), ω(E
(p)
n ) = −1 meaning that the rank is odd (under the as-

sumption of the parity conjecture) and indeed it is positive again. If p ≡ 3
(mod 4), then p = 8k + 3 or p = 8k + 7, for some k ∈ Z. From these two
and p2 ≡ 1 (mod 16), we get p = 8k + 7 and by Dirichlet’s theorem, there are
infinitely many such primes. Therefore, in this case the first part of Silverman’s
conjecture is true as well.
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Like the previous case, we have

n ≡ 1 (mod 16),

and so, we can consider two different cases as follows:
(a): p ≡ 1 (mod 4) and p2 ≡ 1 (mod 16).
Since n ≡ 1 (mod 16), so p2n ≡ 1 (mod 16). Thus, (3.2) implies that ϵ(p2n) =

−1. It is clear that
(

−1
p

)
= 1. In this case from (3.1) we have, ω(E

(p)
n ) = 1.

Therefore, the parity conjecture states the rank of the elliptic curve (3.3) is
even.
(b): p ≡ 3 (mod 4) and p2 ≡ 9 (mod 16).
In this case one can easily check that ϵ(p2n) in (3.2) equals to 1. Moreover,(

−1
p

)
= −1, and so from (3.1), ω(E

(p)
n ) = 1. Therefore the rank is even as

well.
□

Proof of Theorem 3.2. (i) In this case, u and v are both odd and then n =
u4 + v4 ≡ 2 (mod 16). Now, as the previous theorem, we consider different
cases for the primes p as follows:
(a): p ≡ 1 (mod 4) and p2 ≡ 9 (mod 16).
It is clear that p2n ≡ 2 (mod 16), and so by (3.2), ϵ(p2n) = 1. Therefore,

(3.1) shows that ω(E
(p)
n ) = −1 and so, under the assumption of the parity

conjecture the rank is positive. We have seen that these primes are in the form
of 8k + 5 and there are infinitely many such primes. It turns out the first part
of Silverman’s conjecture is true.
(b): p ≡ 1 (mod 4) and p2 ≡ 1 (mod 16).

Obviously, p2n ≡ 2 (mod 16) and so from (3.1), ω(E
(p)
n ) = −1. Similar to

the previous cases, based on the parity conjecture one can claim that the rank is
positive. We know that these primes are in the form of 8k+1 and by Dirichlet’s
theorem, there are infinitely many primes of this form. Consequently, the first
part of Silverman’s conjecture is true.

(ii) As we mentioned in the proof of (i), one can easily check that u and v
are both odd and then n = u4+v4 ≡ 2 (mod 16). Now, we consider two cases:
(a): p ≡ 3 (mod 4) and p2 ≡ 1 (mod 16).

In this case,
(

−1
p

)
= −1 and (3.2) shows that ϵ(p2n) = 1 which together with

(3.1), implies ω(E
(p)
n ) = 1. So, under the assumption of the parity conjecture

the rank of E(p)(Q) is an even number.
(b): p ≡ 3 (mod 4) and p2 ≡ 9 (mod 16).

Finally in the latest case, we have
(

−1
p

)
= −1, ϵ(p2n) = 1. Therefore,

ω(Ep
n) = 1, then the rank of E

(p)
n (Q) in this case must be even ( by the parity

conjecture). □



On Silverman’s conjecture for a family of elliptic curves 338

The following examples show computations for some specific values for n and
p. These computations were done by SAGE [19] and Cremona’s MWRANK [5]
softwares.

Remark 3.7. Determining the rank of an elliptic curve is a challenging prob-
lem and in a lot of cases MWRANK program can not compute the rank, in
these cases it gives the upper and lower bounds for the rank.

Example 3.8. By taking n = 635318657 and p < 1000000 in Theorem 3.1 (i),
the maximal rank that we found, was 5 and there are exactly two such elliptic
curves, namely:

y2 = x3 − 886117685355977x,

y2 = x3 − 1608116501388523697x.

The former curve corresponds to p = 1181, where p ≡ 1 (mod 4) and p2 ≡ 9
(mod 16). The latter one corresponds to p = 50311, where p ≡ 3 (mod 16)
and p2 ≡ 1 (mod 16).

Example 3.9. In Tables 1 and 2, we summarized the results for the number
n = 635318657 in Theorem 3.1 (ii). In the former case all primes p ≡ 1 (mod 8)
in the range 1000 have been considered for which there are no curves with rank
0. Table 2 shows the results for primes p ≡ 3 (mod 8) in the range 1000. In
this case we found only 7 curves having rank 0.

Table 1. Primes ≡ 1 (mod 8) and < 1000

p rank

89, 929, 977 0 ≤ rank ≤ 2

137, 881 rank = 2

97, 113, 233, 257, 337, 353, 409, 2 ≤ rank ≤ 4

433, 521, 601, 641, 673, 761, 937, 953

17, 41, 73, 193, 241, 281, 313, 401, 449, 457, 569, 0 ≤ rank ≤ 4

577, 593, 617, 769, 809, 857,

Example 3.10. Let n = 156700232476402. We considered primes p ≡ 3 (mod 4)

in the range the 1000 and among them, for

p = 59, 131, 163, 211, 307, 331, 347, 379, 571, 587, 647, 691, 911,

the rank of E
(p)
n is 0.
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Table 2. Primes ≡ 3 (mod 8) and < 1000

p rank

19, 59, 179, 491, 523, 587, 971 rank = 0

11, 83, 211, 251, 283, 331, 379, 499, 547, 619, rank = 2

659, 683, 811

3, 43, 67, 107, 131, 139, 163, 227,

307, 347, 419, 443, 43, 467, 563, 571, 643 0 ≤ rank ≤ 2

691, 739, 787, 827, 859, 883, 907, 947
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