
...

Bulletin of the

.

Iranian Mathematical Society

.

ISSN: 1017-060X (Print)

.

ISSN: 1735-8515 (Online)

.

Vol. 42 (2016), No. 2, pp. 353–369

.

Title:

.

Partial proof of Graham Higman’s conjecture related to coset diagrams

.

Author(s):

.

Q. Mushtaq and A. Razaq

.

Published by Iranian Mathematical Society

.

http://bims.ims.ir



Bull. Iranian Math. Soc.
Vol. 42 (2016), No. 2, pp. 353–369
Online ISSN: 1735-8515
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RELATED TO COSET DIAGRAMS
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(Communicated by Jamshid Moori)

Abstract. Higman has defined coset diagrams for PSL(2,Z). These
diagrams are composed of fragments, and the fragments are further com-
posed of two or more circuits. In 1983, Q. Mushtaq has proved that

existence of a certain fragment γ of a coset diagram in a coset diagram
is a polynomial f in Z[z]. Higman has conjectured that, the polynomials
related to the fragments are monic and for a fixed degree, there are finite
number of such polynomials. In this paper, we consider a family 𝟋 of

fragments such that each fragment in 𝟋 contains one vertex v fixed by

Fv
[(
xy−1

)s1 (xy)s2
(
xy−1

)s3 , (xy)q1
(
xy−1

)q2 (xy)q3
]

where s1, s2, s3, q1, q2, q3 ∈ Z+, and prove this conjecture for the polyno-
mials obtained from the fragments in 𝟋.

Keywords: Modular group, coset diagrams, projective line over finite
field.
MSC(2010): Primary: 20G40; Secondary: 05C25.

1. Introduction

It is well known that the modular group PSL(2,Z) [2] has the finite pre-
sentation < x, y : x2 = y3 = 1 > where x and y are the linear fractional
transformations defined by z → −1

z and z → z−1
z respectively. By adjoining a

new element t : z → 1
z to x and y, we obtain a presentation

< x, y, t : x2 = y3 = t2 = (xt)
2
= (yt)

2
= 1 >

of the extended modular group PGL(2,Z).
Let q be a power of a prime p. Then by the projective line over the finite

field Fq, denoted by PL (Fq) , we mean Fq ∪ {∞}.
The group PGL(2, q) has its customary meaning, as the group of all linear

fractional transformations z → az+b
cz+d such that a, b, c, d are in Fq and ad− bc is
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non-zero, while PSL(2, q) is its subgroup consisting of all those where ad− bc
is a quadratic residue in Fq.

In 1978, Higman introduced a new type of graph called coset diagrams for
the modular group PSL(2,Z), and in 1983 Mushtaq [4] laid its foundation.
Since there are only two generators, namely x and y, it is possible to avoid
using colours as well as the orientation of edges associated with the involution
x. For y, which has order 3, there is a need to distinguish y from y2. The three
cycles of y are therefore represented by small triangles, with the convention
that y permutes its vertices counter-clockwise, while the fixed points of x and
y, if any, are denoted by heavy dots. Thus the geometry of the figure makes the
distinction between x-edges and y-edges obvious. For more on coset diagrams,
we suggest reading [1, 2, 6, 7] and [9].

Two homomorphisms α and β from PGL(2,Z) to PGL(2, q) are called con-
jugate if β = αρ for some inner automorphism ρ on PGL(2, q). We call α
to be non-degenerate if neither of x, y lies in the kernel of α. In [5] it has
been shown that there is a one to one correspondence between the conjugacy
classes of non-degenerate homomorphisms from PGL(2,Z) to PGL(2, q) and
the elements θ ̸= 0, 3 of Fq under the correspondence which maps each class
to its parameter θ. As in [5], the coset diagram corresponding to the action of
PGL(2,Z) on PL(Fq) via a homomorphism α with parameter θ is denoted by
D (θ, q).

2. Occurrence of fragments in D (θ, q)

By a circuit in a coset diagram for PGL(2,Z), we shall mean a closed path of
triangles and edges. Let k ≥ 1 and n1, n2, ..., n2k be a sequence of positive inte-
gers. The circuit which contains a vertex, xed by w = (xy)n1(xy−1)n2 .....(xy−1)n2k

∈ PSL(2,Z), we mean the circuit in which n1 triangles have one vertex inside
the circuit and n2 triangles have one vertex outside the circuit and so on.

For a given sequence of positive integers n1, n2, ..., n2k the circuit of the type
(n1, n2, ..., n2k′ , n1, n2, ..., n2k′ , ..., n1, n2, ..., n2k′ ) where k

′
divides k, is said to

have a period of length 2k
′
. A circuit which is not of this type is called non-

periodic circuit. A circuit is called a simple circuit, if each vertex of the circuit
is fixed by a unique word w or its inverse w−1. Two circuits (n1, n2, ..., n2k) and
(m1,m2, ...,m2k) are connected, if they have at least one vertex in common.

Consider two non-periodic and simple circuits (n1, n2, ..., n2k) and
(m1,m2, ...,m2k). Let vi be any vertex of (n1, n2, ..., n2k) fixed by a word wi

and vj be any vertex of (m1,m2, ...,m2k) fixed by a word wj . In order to
connect these two circuits at vi and vj , we choose, without loss of general-
ity (n1, n2, ..., n2k) and apply wj on vi in such a way that wj ends at vi.
Consequently, we get a fragment, denoted by γ. As in [8], a pair of words
that fixes a vertex v = vi = vj in γ is denoted by Fv [wi, wj ] .
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The coset diagram D(θ, q) is made of fragments. It is therefore necessary to
ask, when a fragment exists in D(θ, q). In [3] this question is answered in the
following way.

Theorem 2.1. Given a fragment, there is a polynomial f in Z[z] such that
(i) if the fragment occurs in D(θ, q), then f(θ) = 0,
(ii) if f(θ) = 0 then the fragment, or a homomorphic image of it occurs in

D(θ, q) or in PL(Fq).

In [3], the method of calculating a polynomial from a fragment is given.
Here we describe this method briefly. Since a fragment is composed of two
non-periodic and connected circuits (n1, n2, ..., n2k) and (m1,m2, ...,m2k) with

a common fixed vertex say v, then there is a pair of words wi = (xy)
l1
(
xy−1

)l2
...

(
xy−1

)l2k1 , wj = (xy)
m1

(
xy−1

)m2
...
(
xy−1

)m2k2 such that (v)wi = v and
(v)wj = v. LetX and Y be the matrices corresponding to x and y of PGL(2, q).
Then wi and wj can be expressed as

Wi = (XY )
l1
(
XY −1

)l2
...
(
XY −1

)l2k1

Wj = (XY )
m1

(
XY −1

)m2
...

(
XY −1

)m2k2

where k1, k2 > 0. Since X and Y are the matrices with entries from Fq and
satisfy

(2.1) X2 = Y 3 = λI.

We can take X, Y to be represented by

X =

(
a kc
c −a

)
, Y =

(
d kf
f −d− 1

)
where a, c, d, f , k are elements of Fq. We shall write

(2.2) a2 + kc2 = −∆ ̸= 0

and require that

(2.3) d2 + d+ kf2 + 1 = 0

This certainly gives elements satisfying the relations (2.1).
We note that the matrix M , representing xy, has the trace r = a(2d+ 1) +

2kcf and the determinant ∆ = −(a2 + kc2), because det (Y ) = 1. This means
that det (X) = ∆ and trace (X) = 0; and so the characteristic equation of X
will be

(2.4) X2 +∆I = 0.
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Similarly, since det (Y ) = q and trace (Y ) = −q , the characteristic equation
of Y will be

(2.5) Y 2 + Y + I = 0.

Furthermore, det (XY ) = ∆ and trace (XY ) = r imply that the characteristic
equation of the matrix XY will be

(2.6) (XY )2 − r(XY ) + ∆I = 0.

On recursion, Equation (2.6) yields

(XY )
n

=

{(
n− 1

0

)
rn−1 −

(
n− 2

1

)
rn−3∆+ ...

}
XY −(2.7) {(

n− 2

0

)
rn−2∆−

(
n− 3

1

)
rn−4∆2 + ...

}
I.

After suitable manipulation, Equations (2.4), (2.5) and (2.6) give the following
equations

(2.8) XYX = rX +∆I +∆Y.

(2.9) XY Y = −X −XY

(2.10) Y XY = rY +X.

(2.11) Y X = rI −X −XY.

Thus, by making use of Equations (2.4) to (2.11) the matrices Wi and Wj can
be expressed linearly as

Wi = λ0I + λ1X + λ2Y + λ3XY

Wj = µ0I + µ1X + µ2Y + µ3XY

where λi and µi, for i = 0, 1, 2, 3 are polynomials in r and ∆. Since (v)wi = v
and (v)wj = v the 2× 2 matrices Wi and Wj have an eigenvector in common.
This by Lemma 3.1 of [3] means that the algebra generated by Wi and Wj has
dimension 3. The algebra contains I, Wi, Wj , WiWj and so these must be
linearly dependent. Using Equations (2.4) to (2.11) the matrix WiWj can be
expressed as

WiWj = ν0I + ν1X + ν2Y + ν3XY

where vi, for i = 0, 1, 2, 3 can be calculated in terms of the λi and µi, using (2.4)
to (2.11). The condition that I, Wi, Wj and WiWj are linearly dependent, can
be expressed as
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(2.12)

∣∣∣∣∣∣
λ1 λ2 λ3

µ1 µ2 µ3

ν1 ν2 ν3

∣∣∣∣∣∣ = 0.

If we carry out the calculation of v1, v2, v3 in terms of λi and µi and substitute,
in (2.12), we find that this is equivalent to

(λ2µ3 − µ2λ3)
2
+∆(λ3µ1 − µ3λ1)

2
+ (λ1µ2 − µ1λ2)

2
(2.13)

+r (λ2µ3 − µ2λ3) (λ3µ1 − µ3λ1) + (λ2µ3 − µ2λ3) (λ1µ2 − µ1λ2) = 0.

This gives a homogeneous equation in ∆ and r. In [5], θ is defined as r2

∆ , so we

can substitute ∆θ for r2 to get a polynomial in θ.
Higman has conjectured that, the polynomials related to the fragments are

monic and for a fixed degree, there are finite number of such polynomials. In
this paper, we consider a family 𝟋 of fragments such that each fragment in 𝟋
contains one vertex v fixed by

Fv

[(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
, (xy)

q1
(
xy−1

)q2
(xy)

q3
]

where s1, s2, s3, q1, q2, q3 ∈ Z+, and prove the Higman’s conjecture for the poly-
nomials obtained from 𝟋.

3. Main results

The following three theorems have been proved in [8]. Since we use them in
this paper frequently, we therefore reproduce their statements here.

Theorem 3.1. Let the fragment γ be constructed by joining a vertex vi of
(n1, n2, ..., n2k) with the vertex vj of (m1,m2, ...,m2k). Then γ is obtainable
also, if the vertex (vi)w of (n1, n2, ..., n2k) is joined with the vertex (vj)w of
(m1,m2, ...,m2k).

If w = xyη1xyη2 ...xyηn (η = 1 or −1) is a word, then let
w

∗
= xy−η1xy−η2 ...xy−ηn .

Theorem 3.2. If the fragment γ has one vertex v fixed by Fv [wi, wj ] , then its
mirror image γ∗ has one vertex fixed by Fv∗

[
w∗

i , w
∗
j

]
.

Theorem 3.3. The polynomials obtained from the fragment γ and its mirror
image γ∗ are the same.

Consider two circuits (n1, n2) and (m1,m2) .
𝟋 is constructed by joining

e3i1 with u3j1+1 and v3j2+1,

f3i2 with u3j1+1 and v3j2+1

u3j1 with e3i1+1 and f3i2+1,
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Figure 1.

Figure 2.

v3j1 with e3i1+1 and f3i2+1

where

i1 = 1, 2, ..., n1 − 1, i2 = 1, 2, ..., n2 − 1

and

j1 = 1, 2, ...,m1 − 1, j2 = 1, 2, ...,m2 − 1.

Theorem 3.4. Number of triangles in any fragment γ ∈ 𝟋 is

s1 + s2 + s3 + q1 + q2 + q3 − 2.

Proof. Let γ be any fragment in 𝟋. Then its one vertex say v, is a fixed point of
the circuits

(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
and (xy)

q1
(
xy−1

)q2
(xy)

q3 , where s1, s2,
s3, q1, q2, q3 ∈ Z+. Diagrammatically, it means:

From the diagram it is clear that, γ ∈ 𝟋 has s1 + s2 + s3 + q1 + q2 + q3 − 2
triangles. □
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Figure 3.

Proposition 3.5. If w = (x y−1)q2 where q2 ∈ Z+. Then the corresponding
matrix can be expressed linearly as

(
XY −1)q2 = (−1)q2+1

{(
q2 − 2

0

)
rq2−2∆−

(
q2 − 3

1

)
rq2−4∆2 + ...

}
I +

(−1)q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
X +

(−1)q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
XY.

The proof is obtained by using mathematical induction.
Total number of triangles in the circuit (x y)q1(xy−1)q2(x y)q3 are

q1 + q2 + q3, let q1 + q2 + q3 = τ1 and

ϵ1 =

{
1 if q1 < q3
0 if q1 ≥ q3

, ϵ2 =

{
3 if q1 < q3
1 if q1 ≥ q3

,

α1 =

{
0 if q3 − q1 = 1
1 otherwise

, α2 =

{
0 if q1 = q3
1 otherwise

.

Since (x y)q1(xy−1)q2(x y)q3 can be expressed linearly as

(XY )q1(XY −1)q2(XY )q3 = µ0I + µ1X + µ2Y + µ3XY

where µi, for i = 0, 1, 2, 3 is polynomial in r and ∆, we use max (µi) for the
term containing the highest power of r, in µi.

Theorem 3.6. If w = (x y)q1(xy−1)q2(x y)q3 , where q1, q2, q3 ∈ Z+, then the
corresponding matrix can be expressed linearly as W = µ0I+µ1X+µ2Y+µ3XY,
such that

max (µ0) = (−1)q2+1 rτ1−2∆,
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max (µ1) = (−1)q2+ϵ1+2 α1r
τ1−2min(q1,q3)−ϵ2∆min(q1,q3)+ϵ1 ,

max (µ2) = (−1)q2+ϵ1+2 α2r
τ1−2min(q1,q3)−2∆min(q1,q3)+1,

max (µ3) = (−1)q2+2 rτ1−1.

Proof. By Proposition 3.5

(
XY −1)q2 = (−1)q2+1

{(
q2 − 2

0

)
rq2−2∆−

(
q2 − 3

1

)
rq2−4∆2 + ...

}
I +

(−1)q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
X +

(−1)q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
XY.

Now

XY
(
XY −1

)q2
XY

= (−1)
q2+1

{(
q2 − 2

0

)
rq2−2∆−

(
q2 − 3

1

)
rq2−4∆2 + ...

}
(XY )

2
+

(−1)
q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
XYXXY +

(−1)
q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
(XY )

3
.

By making use of Equations (2.4) to (2.11), we get

XY
(
XY −1)q2 XY

= (−1)q2+1

{ (
q2−2

0

)
rq2−2∆−(

q2−3
1

)
rq2−4∆2 + ...

}
(−∆I + rXY ) +

(−1)q2

{(
q2 − 1

0

)
rq2−1 −

(
q2 − 2

1

)
rq2−3∆+ ...

}
(∆X +∆XY ) +

(−1)q2
{ (

q2−1
0

)
rq2−1−(

q2−2
1

)
rq2−3∆+ ...

}(
−r∆I + (r2 −∆)XY

)
= (−1)q2+1

{ (
q2−1

0

)
rq2∆−
...

}
I + (−1)q2

{ (
q2−1

0

)
rq2−1∆−
...

}
X +

(−1)q2

{(
q2 − 1

0

)
rq2+1 − ...

}
XY.

Hence the result is true for XY
(
XY −1

)q2
XY.

Let it be true for (XY )
k (

XY −1
)q2

(XY )
k
, that is

(XY )
k (

XY −1
)q2

(XY )
k
=
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(−1)
q2+1 {

rk+q2+k−2∆− ...
}
I + (−1)

q2+2 {
rk+q2+k−2k−1∆k − ...

}
X +

0Y + (−1)
q2+2 {

rk+q2+k−1 − ...
}
XY.

Now

(XY )
k+1 (

XY −1
)q2

(XY )
k+1

= (−1)
q2+1 {

rk+q2+k−2∆− ...
}
(XY )

2
+

(−1)
q2+2 {

rk+q2+k−2k−1∆k − ...
}
XYXXY +

0Y + (−1)
q2+2 {

rk+q2+k−1 − ...
}
(XY )

3
.

By making use of Equations (2.4) to (2.11), we obtain

(XY )
k+1 (

XY −1
)q2

(XY )
k+1

= (−1)
q2+1 {

rk+q2+k−2∆− ...
}
(−∆I + rXY ) +

(−1)
q2+2 {

rq2−1∆k − ...
}
(∆X +∆XY ) +

(−1)
q2+2 {

rk+q2+k−1 − ...
} (

−r∆I + (r2 −∆)XY
)

= (−1)
q2+1

{
r(k+1)+q2+(k+1)−2∆− ...

}
I +

(−1)
q2+2 {

rq2−1∆k+1 − ...
}
X +

(−1)
q2+2

{
r(k+1)+q2+(k+1)−1 − ...

}
XY.

This shows that the result is true for (XY )
q1
(
XY −1

)q2
(XY )

q3 , where q1 =
q3, q2 ∈ Z+. So, for k1 = k3

(XY )
k1

(
XY −1

)q2
(XY )

k3

= (−1)
q2+1 {

rk1+q2+k3−2∆− ...
}
I + (−1)

q2+2 {
rq2−1∆k3 − ...

}
X +

(−1)
q2+2 {

rk1+q2+k3−1 − ...
}
XY.

Therefore

(XY )
k1+1 (

XY −1
)q2

(XY )
k3

= (−1)
q2+1 {

rk1+q2+k3−2∆− ...
}
XY I +

(−1)
q2+2 {

rq2−1∆k3 − ...
}
XYX +

(−1)
q2+2 {

rk1+q2+k3−1 − ...
}
XYXY.

By making use of Equations (2.4) to (2.11), we have

(XY )
k1+1 (

XY −1
)q2

(XY )
k3
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= (−1)
q2+1 {

rk1+q2+k3−2∆− ...
}
XY +

(−1)
q2+2 {

rq2−1∆k3 − ...
}
(rX +∆Y ) +

(−1)
q2+2 {

rk1+q2+k3−1 − ...
}
(−∆I + rXY )

= (−1)
q2+1 {

rk1+q2+k3−1∆− ...
}
I + (−1)

q2+2 {
rq2∆k3 − ...

}
X +

(−1)
q2+2 {

rq2−1∆k3+1 − ...
}
Y + (−1)

q2+2 {
rk1+q2+k3 − ...

}
XY.

Hence the result is true for (XY )
q1
(
XY −1

)q2
(XY )

q3 such that q1 − q3 = 1.

Let it be true for (XY )
q1
(
XY −1

)q2
(XY )

q3 such that q1 − q3 = n, that is

(XY )
k3+n (

XY −1
)q2

(XY )
k3

= (−1)
q2+1 {

rk3+n+q2+k3−2∆− ...
}
I +

(−1)
q2+2 {

rn+q2−1∆k3 − ...
}
X +

(−1)
q2+2 {

rn+q2−2∆k3+1 − ...
}
Y +

(−1)
q2+2 {

rk3+n+q2+k3−1 − ...
}
XY.

Now

(XY )
k3+(n+1) (

XY −1
)q2

(XY )
k3

= (−1)
q2+1 {

rk3+n+q2+k3−2∆− ...
}
XY I +

(−1)
q2+2 {

rn+q2−1∆k3 − ...
}
XYX +

(−1)
q2+2 {

rn+q2−2∆k3+1 − ...
}
XY Y +

(−1)
q2+2 {

rk3+n+q2+k3−1 − ...
}
XYXY.

By making use of Equations (2.4) to (2.11), we have

(XY )
k3+(n+1) (

XY −1
)q2

(XY )
k3

= (−1)
q2+1 {

rk3+n+q2+k3−2∆− ...
}
XY +

(−1)
q2+2 {

rn+q2−1∆k3 − ...
}
(rX +∆Y ) +

(−1)
q2+2 {

rn+q2−2∆k3+1 − ...
}
(−X −XY ) +

(−1)
q2+2 {

rk3+n+q2+k3−1 − ...
}
(−∆I + rXY )

= (−1)
q2+1 {

rk3+n+1+q2+k3−2∆− ...
}
I +

(−1)
q2+2 {

rn+1+q2−1∆k3 − ...
}
X +

(−1)
q2+2 {

rn+1+q2−2∆k3+1 − ...
}
Y +

(−1)
q2+2 {

rk3+n+1+q2+k3−1 − ...
}
XY.
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Hence the result is true for (XY )
q1
(
XY −1

)q2
(XY )

q3 such that q1 > q3.
Again for k1 = k3, we have

(XY )
k1

(
XY −1

)q2
(XY )

k3

= (−1)
q2+1 {

rk1+q2+k3−2∆− ...
}
I + (−1)

q2+2 {
rq2−1∆k1 − ...

}
X +

(−1)
q2+2 {

rk1+q2+k3−1 − ...
}
XY.

Therefore

(XY )
k1

(
XY −1

)q2
(XY )

k3+1

= (−1)
q2+1 {

rk1+q2+k3−2∆− ...
}
IXY +

(−1)
q2+2 {

rq2−1∆k1 − ...
}
XXY +

(−1)
q2+2 {

rk1+q2+k3−1 − ...
}
XYXY

By making use of Equations (2.4) to (2.11), we have

(XY )
k1

(
XY −1

)q2
(XY )

k3+1

= (−1)
q2+1 {

rk1+q2+k3−2∆− ...
}
XY +

(−1)
q2+2 {

rq2−1∆k1 − ...
}
(−∆Y ) +

(−1)
q2+2 {

rk1+q2+k3−1 − ...
}
(−∆I + rXY )

= (−1)
q2+1 {

rk1+q2+k3−1∆− ...
}
I + 0X +

(−1)
q2+1 {

rq2−1∆k1+1 − ...
}
Y +

(−1)
q2+2 {

rk1+q2+k3 − ...
}
XY.

Hence the result is true for (XY )
q1
(
XY −1

)q2
(XY )

q3 such that q3 − q1 = 1.

Let it be true for (XY )
q1
(
XY −1

)q2
(XY )

q3 such that q3 − q1 = n, that is

(XY )
k1

(
XY −1

)q2
(XY )

k1+n

= (−1)
q2+1 {

rk1+q2+k1+n−2∆− ...
}
I +

(−1)
q2+3 {

rq2+n−3∆k1+1 − ...
}
X +

(−1)
q2+3 {

rq2+n−2∆k1+1 − ...
}
Y +

(−1)
q2+2 {

rk1+q2+k1+n−1 − ...
}
XY.

Now

(XY )
k1

(
XY −1

)q2
(XY )

k1+(n+1)
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= (−1)
q2+1 {

rk1+q2+k1+n−2∆− ...
}
IXY +

(−1)
q2+1+2 {

rk1+q2+k3+n−2k1−3∆k1+1 − ...
}
XXY +

(−1)
q2+3 {

rq2+n−2∆k1+1 − ...
}
Y XY +

(−1)
q2+2 {

rk1+q2+k1+n−1 − ...
}
XYXY.

By making use of Equations (2.4) to (2.11), we have

(XY )
k1

(
XY −1

)q2
(XY )

k1+(n+1)

= (−1)
q2+1 {

rk1+q2+k1+n−2∆− ...
}
XY +

(−1)
q2+3 {

rq2+n−3∆k1+1 − ...
}
(−∆Y ) +

(−1)
q2+3 {

rq2+n−2∆k1+1 − ...
}
(X + rY ) +

(−1)
q2+2 {

rk1+q2+k1+n−1 − ...
}
(−∆I + rXY )

= (−1)
q2+1 {

rk1+q2+k1+n−1∆− ...
}
I +

(−1)
q2+3 {

rq2+n−2∆k1+1 − ...
}
X +

(−1)
q2+3 {

rq2+n−1∆k1+1 − ...
}
Y +

(−1)
q2+2 {

rk1+q2+k1+n − ...
}
XY.

Hence the result is true for (XY )
q1
(
XY −1

)q2
(XY )

q3 such that q1 < q3. □

Total number of triangles in the circuit (x y)s1(xy−1)s2(x y)s3 are

s1 + s2 + s3, let s1 + s2 + s3 = τ2 and β1 =

{
0 if s1 = s3
1 otherwise

.

Since (xy−1)s1(xy)s2(xy−1)s3 can be expressed linearly as

(XY −1)s1(XY )s2(XY −1)s3 = λ0I + λ1X + λ2Y + λ3XY

where λi, for i = 0, 1, 2, 3 is polynomial in r and ∆, we use max (λi) for the
term containing the highest power of r, in λi.

By using mathematical induction, we have the following Theorem.

Theorem 3.7. If w = (xy−1)s1(xy)s2(xy−1)s3 where s1, s2, s3 ∈ Z+ and s1 ≥
s3, then the corresponding matrix can be expressed linearly as W = λ0I+λ1X+
λ2Y + λ3XY, such that

max (λ0) = (−1)
s1+s3+1

rτ2−2∆,

max (λ1) = (−1)
s1+s3 rτ2−1,

max (λ2) = (−1)
s1+s3+1

β1r
τ2−2s3−2∆s3+1,

max (λ3) = (−1)
s1+s3 rτ2−1.

Theorem 3.8. Let γ ∈ 𝟋 such that s1 ≥ s3. Then degree of the polynomial
f (θ) obtained from γ is s1+s2+s3+ q1+ q2+ q3−2. Moreover f (θ) is monic.
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Proof. Since γ ∈ 𝟋 and s1 ≥ s3, therefore its one vertex v, is a fixed point
of the circuits

(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
and (xy)

q1
(
xy−1

)q2
(xy)

q3 . The ma-

trices corresponding to (xy−1)s1 (xy)
s2
(
xy−1

)s3
and (xy)

q1
(
xy−1

)q2
(xy)

q3 are

(XY −1)s1 (XY )
s2
(
XY −1

)s3
and (XY )

q1
(
XY −1

)q2
(XY )

q3 respectively, and
these can be written as a linear combination of I,X, Y and XY , that is

(XY −1)s1 (XY )
s2
(
XY −1

)s3
= λ0I + λ1X + λ2Y + λ3XY

and

(XY )
q1
(
XY −1

)q2
(XY )

q3 = µ0I + µ1X + µ2Y + µ3XY

where λi and µi for i = 0, 1, 2, 3 are polynomials in r and ∆. By Theorems 3.6
and 3.7, we have

max (µ1) = (−1)
q2+ϵ1+2

α1r
τ1−2min(q1,q3)−ϵ2∆min(q1,q3)+ϵ1 .

max (µ2) = (−1)
q2+ϵ1+2

α2r
τ1−2min(q1,q3)−2∆min(q1,q3)+1.

max (µ3) = (−1)
q2+2

rτ1−1.

max (λ1) = (−1)
s1+s3 rτ2−1.

max (λ2) = (−1)
s1+s3+1

β1r
τ2−2s3−2∆s3+1.

max (λ3) = (−1)
s1+s3 rτ2−1.

Now

max (λ2µ3) = (−1)
s1+s3+q2+3

β1r
τ1+τ2−2s3−3∆s3+1

and

max (λ3µ2) = (−1)
s1+s3+q2+ϵ1+2

α2r
τ1+τ2−2min(q1,q3)−3∆min(q1,q3)+1.

Let p =

{
s1 + s3 + q2 + 3 if s3 = min(q1, q3, s3)
s1 + s3 + q2 + ϵ1 + 1 if min(q1, q3) = min(q1, q3, s3)

, and

g = min(q1, q3, s3). Then

(3.1) max (λ2µ3 − λ3µ2) = (−1)
p
β1r

τ1+τ2−2g−3∆g+1

shows that

(3.2) max (λ2µ3 − λ3µ2)
2
= β1r

2(τ1+τ2−2g−3)∆2(g+1).

Now
(3.3)

max (λ3µ1) = (−1)
q2+s1+s3+ϵ1+2

α1r
τ1+τ2−2min(q1,q3)−ϵ2−1∆min(q1,q3)+ϵ1

and

(3.4) max (λ1µ3) = (−1)
s1+s3+q2+2

rτ1+τ2−2

together imply that

(3.5) max (λ3µ1 − λ1µ3) = (−1)
s1+s3+q2+1

rτ1+τ2−2
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or

(3.6) max
(
∆(λ3µ1 − λ1µ3)

2
)
= r2(τ1+τ2−2)∆.

Now

(3.7) max (λ1µ2) = (−1)
s1+s3+q2+ϵ1+2

α2r
τ1+τ2−2min(q1,q3)−3∆min(q1,q3)+1

and

max (λ2µ1) = (−1)
s1+s3+q2+ϵ1+1

α1β1(3.8)

rτ1+τ2−2min(q1,q3)−2s3−2−ϵ2∆s3+min(q1,q3)+ϵ1+1.

So
(3.9)

max (λ1µ2 − λ2µ1) = (−1)
s1+s3+q2+ϵ1+2

α2r
τ1+τ2−2min(q1,q3)−3∆min(q1,q3)+1.

and

(3.10) max (λ1µ2 − λ2µ1)
2
= α2r

2(τ1+τ2−2min(q1,q3)−3)∆2(min(q1,q3)+1).

By using Equations (3.1) and (3.5), we obtain

(3.11) max (r (λ2µ3 − λ3µ2) (λ3µ1 − λ1µ3)) = (−1)
ϵ1 r2(τ1+τ2−2−g)∆g+1.

Also by using Equations (3.1) and (3.9), we get

max ((λ2µ3 − λ3µ2) (λ1µ2 − λ2µ1)) = (−1)
s1+s3+q2+ϵ1+2+p

α2β1

r2(τ1+τ2−min(q1,q3)−g−3)

∆min(q1,q3)+g+2.(3.12)

The term containing the highest power of θ, in the polynomial equation 2.13
yields degree and leading coefficient of the polynomial obtained from γ. By
using Equations 3.2 to 3.12, we have

max

(
(λ2µ3 − µ2λ3)

2
+∆(λ3µ1 − µ3λ1)

2
+ (λ1µ2 − µ1λ2)

2
+

r (λ2µ3 − µ2λ3) (λ3µ1 − µ3λ1) + (λ2µ3 − µ2λ3) (λ1µ2 − µ1λ2)

)
=

r2(τ1+τ2−2)∆.

Since r2 = ∆θ, therefore

max

(
(λ2µ3 − µ2λ3)

2
+∆(λ3µ1 − µ3λ1)

2
+ (λ1µ2 − µ1λ2)

2
+

r (λ2µ3 − µ2λ3) (λ3µ1 − µ3λ1) + (λ2µ3 − µ2λ3) (λ1µ2 − µ1λ2)

)
=

θτ1+τ2−2∆τ1+τ2−1.

We can omit ∆s1+s2+s3+q1+q2+q3−1 as it is square in Fq. Hence degree of the
polynomial obtained from γ is s1+s2+s3+q1+q2+q3−2. Also this polynomial
is monic. □
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Lemma 3.9. Corresponding to each fragment δ containing a vertex fixed by

Fv

[(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
, (xy)

q1
(
xy−1

)q2
(xy)

q3
]

where s1, s2, s3, q1, q2, q3 ∈ Z+ and s1 < s3, there is a fragment δ∗ containing
a vertex fixed by

Fu∗

[(
xy−1

)s3
(xy)

s2
(
xy−1

)s1
, (xy)

q1
(
xy−1

)q2
(xy)

q3
]

such that δ and δ∗ have the same polynomial.

Proof. Let the fragment δ contains a vertex fixed by

Fv

[(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
, (xy)

q1
(
xy−1

)q2
(xy)

q3
]

where s1, s2, s3, q1, q2, q3 ∈ Z+ and s1 < s3. Clearly δ is created by joining a
vertex v fixed by

(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
of (n1, n2) with the vertex v

′
fixed

by (xy)
q1
(
xy−1

)q2
(xy)

q3 of (m1,m2) . By Theorem 3.1, δ is obtainable also, if

we join the vertex (v)x with the vertex
(
v

′
)
x. This implies that, δ has also a

vertex u = (v)x =
(
v

′
)
x fixed by

Fu

[
(xy)

s3
(
xy−1

)s2
(xy)

s1 ,
(
xy−1

)q3
(xy)

q2
(
xy−1

)q1]
.

By Theorem 3.2, mirror image of δ has a vertex fixed by

Fu∗

[(
xy−1

)s3
(xy)

s2
(
xy−1

)s1
, (xy)

q3
(
xy−1

)q2
(xy)

q1
]
.

By Theorem 3.3, the polynomials obtained from δ and its mirror image δ∗

are the same. □

Theorem 3.10. Let δ ∈ 𝟋 such that s1 < s3. Then degree of the polynomial
g (θ) obtained from δ is s1+ s2+ s3+ q1+ q2+ q3− 2. Moreover g (θ) is monic.

Proof. Since δ is a fragment in 𝟋 such that s1 < s3. Therefore its one vertex
is fixed by

Fv

[(
xy−1

)s1
(xy)

s2
(
xy−1

)s3
, (xy)

q1
(
xy−1

)q2
(xy)

q3
]

where s1, s2, s3, q1, q2, q3 ∈ Z+ and s1 < s3. Consider a fragment η containing
a vertex fixed by

Fu∗

[(
xy−1

)s3
(xy)

s2
(
xy−1

)s1
, (xy)

q3
(
xy−1

)q2
(xy)

q1
]
.

Let g (θ) and h (θ) be the polynomials obtained from δ and η. Since s3 > s1,
therefore by Theorem 3.8, degree of the polynomial h (θ) is s1 + s2 + s3 + q1 +
q2 + q3 − 2, and h (θ) is monic. By Lemma 3.9, the polynomials h (θ) and g (θ)
are the same. □
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Theorem 3.11. Degree of the polynomial f (θ) obtained from any fragment
γ ∈ 𝟋 is s1 + s2 + s3 + q1 + q2 + q3 − 2, and f (θ) is monic.

The proof is an immediate consequence of Theorems 3.8 and 3.10.

Theorem 3.12. Let γ ∈ 𝟋 and T (γ) and Deg(f) denote the number of trian-
gles in γ and the degree of the polynomial obtained from γ respectively. Then
Deg(f) = T (γ) .

The proof is an immediate consequence of Theorems 3.4 and 3.11.

Theorem 3.13. No polynomial of degree n such that n ≤ 3, is obtained from
the fragments in 𝟋.

Proof. Let f (θ) be any polynomial of degree 3, obtained from the fragment of
𝟋. Since the degree of all the polynomials obtained from 𝟋 is q1 + q2 + q3 +
s1 + s2 + s3 − 2, where s1, s2, s3, q1, q2, q3 ∈ Z+, therefore q1 + q2 + q3 + s1 +
s2 + s3 − 2 = 3 for some s1, s2, s3, q1, q2, q3 ∈ Z+. As there is no possibility for
s1, s2, s3, q1, q2, q3 ∈ Z+ such that q1 + q2 + q3 + s1 + s2 + s3 = 5, therefore,
there is no polynomial of degree 3, obtained from the fragments in 𝟋.

Similarly, the same result is obtained for n = 2 and n = 1. □

Theorem 3.14. There are finite number of polynomials of a fixed degree n,
obtained from the fragments in 𝟋.

Proof. By Theorem 3.11, degree of all the polynomials obtained from 𝟋 is
q1 + q2 + q3 + s1 + s2 + s3 − 2. Since there are a finite number of possibilities
for s1, s2, s3, q1, q2, q3 ∈ Z+ such that q1 + q2 + q3 + s1 + s2 + s3 − 2 = n, there
are only a finite number of polynomials of a fixed degree n, obtained from the
fragments in 𝟋. □
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