## Bulletin of the

## Iranian Mathematical Society

Vol. 42 (2016), No. 2, pp. 353-369

Title:
Partial proof of Graham Higman's conjecture related to coset diagrams
Author(s):

Q. Mushtaq and A. Razaq

Published by Iranian Mathematical Society

# PARTIAL PROOF OF GRAHAM HIGMAN'S CONJECTURE RELATED TO COSET DIAGRAMS 

Q. MUSHTAQ AND A. RAZAQ*

(Communicated by Jamshid Moori)


#### Abstract

Higman has defined coset diagrams for $\operatorname{PSL}(2, \mathbb{Z})$. These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. In 1983, Q. Mushtaq has proved that existence of a certain fragment $\gamma$ of a coset diagram in a coset diagram is a polynomial $f$ in $\mathbb{Z}[z]$. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree, there are finite number of such polynomials. In this paper, we consider a family $\digamma$ of fragments such that each fragment in $\digamma$ contains one vertex $v$ fixed by $$
F_{v}\left[\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}},(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}\right]
$$ where $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$, and prove this conjecture for the polynomials obtained from the fragments in $\digamma$. Keywords: Modular group, coset diagrams, projective line over finite field. MSC(2010): Primary: 20G40; Secondary: 05C25.


## 1. Introduction

It is well known that the modular group $\operatorname{PSL}(2, \mathbb{Z})$ [2] has the finite presentation $<x, y: x^{2}=y^{3}=1>$ where $x$ and $y$ are the linear fractional transformations defined by $z \rightarrow \frac{-1}{z}$ and $z \rightarrow \frac{z-1}{z}$ respectively. By adjoining a new element $t: z \rightarrow \frac{1}{z}$ to $x$ and $y$, we obtain a presentation

$$
<x, y, t: x^{2}=y^{3}=t^{2}=(x t)^{2}=(y t)^{2}=1>
$$

of the extended modular group $P G L(2, \mathbb{Z})$.
Let $q$ be a power of a prime $p$. Then by the projective line over the finite field $F_{q}$, denoted by $P L\left(F_{q}\right)$, we mean $F_{q} \cup\{\infty\}$.

The group $P G L(2, q)$ has its customary meaning, as the group of all linear fractional transformations $z \rightarrow \frac{a z+b}{c z+d}$ such that $a, b, c, d$ are in $F_{q}$ and $a d-b c$ is

[^0]non-zero, while $P S L(2, q)$ is its subgroup consisting of all those where $a d-b c$ is a quadratic residue in $F_{q}$.

In 1978, Higman introduced a new type of graph called coset diagrams for the modular group $P S L(2, \mathbb{Z})$, and in 1983 Mushtaq [4] laid its foundation. Since there are only two generators, namely $x$ and $y$, it is possible to avoid using colours as well as the orientation of edges associated with the involution $x$. For $y$, which has order 3 , there is a need to distinguish $y$ from $y^{2}$. The three cycles of $y$ are therefore represented by small triangles, with the convention that $y$ permutes its vertices counter-clockwise, while the fixed points of $x$ and $y$, if any, are denoted by heavy dots. Thus the geometry of the figure makes the distinction between $x$-edges and $y$-edges obvious. For more on coset diagrams, we suggest reading $[1,2,6,7]$ and [9].

Two homomorphisms $\alpha$ and $\beta$ from $P G L(2, \mathbb{Z})$ to $P G L(2, q)$ are called conjugate if $\beta=\alpha \rho$ for some inner automorphism $\rho$ on $P G L(2, q)$. We call $\alpha$ to be non-degenerate if neither of $x, y$ lies in the kernel of $\alpha$. In [5] it has been shown that there is a one to one correspondence between the conjugacy classes of non-degenerate homomorphisms from $\operatorname{PGL}(2, \mathbb{Z})$ to $P G L(2, q)$ and the elements $\theta \neq 0,3$ of $F_{q}$ under the correspondence which maps each class to its parameter $\theta$. As in [5], the coset diagram corresponding to the action of $P G L(2, \mathbb{Z})$ on $P L\left(F_{q}\right)$ via a homomorphism $\alpha$ with parameter $\theta$ is denoted by $D(\theta, q)$.

## 2. Occurrence of fragments in $D(\theta, q)$

By a circuit in a coset diagram for $P G L(2, \mathbb{Z})$, we shall mean a closed path of triangles and edges. Let $k \geq 1$ and $n_{1}, n_{2}, \ldots, n_{2 k}$ be a sequence of positive integers. The circuit which contains a vertex, xed by $w=(x y)^{n_{1}}\left(x y^{-1}\right)^{n_{2}} \ldots . .\left(x y^{-1}\right)^{n_{2 k}}$ $\in \operatorname{PSL}(2, \mathbb{Z})$, we mean the circuit in which $n_{1}$ triangles have one vertex inside the circuit and $n_{2}$ triangles have one vertex outside the circuit and so on.

For a given sequence of positive integers $n_{1}, n_{2}, \ldots, n_{2 k}$ the circuit of the type $\left(n_{1}, n_{2}, \ldots, n_{2 k^{\prime}}, n_{1}, n_{2}, \ldots, n_{2 k^{\prime}}, \ldots, n_{1}, n_{2}, \ldots, n_{2 k^{\prime}}\right)$ where $k^{\prime}$ divides $k$, is said to have a period of length $2 k$. A circuit which is not of this type is called nonperiodic circuit. A circuit is called a simple circuit, if each vertex of the circuit is fixed by a unique word $w$ or its inverse $w^{-1}$. Two circuits $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ and $\left(m_{1}, m_{2}, \ldots, m_{2 k}\right)$ are connected, if they have at least one vertex in common.

Consider two non-periodic and simple circuits $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ and $\left(m_{1}, m_{2}, \ldots, m_{2 k}\right)$. Let $v_{i}$ be any vertex of $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ fixed by a word $w_{i}$ and $v_{j}$ be any vertex of $\left(m_{1}, m_{2}, \ldots, m_{2 k}\right)$ fixed by a word $w_{j}$. In order to connect these two circuits at $v_{i}$ and $v_{j}$, we choose, without loss of generality $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ and apply $w_{j}$ on $v_{i}$ in such a way that $w_{j}$ ends at $v_{i}$. Consequently, we get a fragment, denoted by $\gamma$. As in [8], a pair of words that fixes a vertex $v=v_{i}=v_{j}$ in $\gamma$ is denoted by $F_{v}\left[w_{i}, w_{j}\right]$.

The coset diagram $D(\theta, q)$ is made of fragments. It is therefore necessary to ask, when a fragment exists in $D(\theta, q)$. In [3] this question is answered in the following way.

Theorem 2.1. Given a fragment, there is a polynomial $f$ in $\mathbb{Z}[z]$ such that
(i) if the fragment occurs in $D(\theta, q)$, then $f(\theta)=0$,
(ii) if $f(\theta)=0$ then the fragment, or a homomorphic image of it occurs in $D(\theta, q)$ or in $\overline{P L\left(F_{q}\right)}$.

In [3], the method of calculating a polynomial from a fragment is given. Here we describe this method briefly. Since a fragment is composed of two non-periodic and connected circuits $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ and $\left(m_{1}, m_{2}, \ldots, m_{2 k}\right)$ with a common fixed vertex say $v$, then there is a pair of words $w_{i}=(x y)^{l_{1}}\left(x y^{-1}\right)^{l_{2}}$ $\ldots\left(x y^{-1}\right)^{l_{2 k_{1}}}, w_{j}=(x y)^{m_{1}}\left(x y^{-1}\right)^{m_{2}} \ldots\left(x y^{-1}\right)^{m_{2 k_{2}}}$ such that $(v) w_{i}=v$ and $(v) w_{j}=v$. Let $X$ and $Y$ be the matrices corresponding to $x$ and $y$ of $\operatorname{PGL}(2, q)$. Then $w_{i}$ and $w_{j}$ can be expressed as

$$
\begin{gathered}
W_{i}=(X Y)^{l_{1}}\left(X Y^{-1}\right)^{l_{2}} \ldots\left(X Y^{-1}\right)^{l_{2 k_{1}}} \\
W_{j}=(X Y)^{m_{1}}\left(X Y^{-1}\right)^{m_{2}} \ldots\left(X Y^{-1}\right)^{m_{2 k_{2}}}
\end{gathered}
$$

where $k_{1}, k_{2}>0$. Since $X$ and $Y$ are the matrices with entries from $F_{q}$ and satisfy

$$
\begin{equation*}
X^{2}=Y^{3}=\lambda I \tag{2.1}
\end{equation*}
$$

We can take $X, Y$ to be represented by

$$
X=\left(\begin{array}{cc}
a & k c \\
c & -a
\end{array}\right), \quad Y=\left(\begin{array}{cc}
d & k f \\
f & -d-1
\end{array}\right)
$$

where $a, c, d, f, k$ are elements of $F_{q}$. We shall write

$$
\begin{equation*}
a^{2}+k c^{2}=-\Delta \neq 0 \tag{2.2}
\end{equation*}
$$

and require that

$$
\begin{equation*}
d^{2}+d+k f^{2}+1=0 \tag{2.3}
\end{equation*}
$$

This certainly gives elements satisfying the relations (2.1).
We note that the matrix $M$, representing $x y$, has the trace $r=a(2 d+1)+$ $2 k c f$ and the determinant $\Delta=-\left(a^{2}+k c^{2}\right)$, because $\operatorname{det}(Y)=1$. This means that $\operatorname{det}(X)=\Delta$ and trace $(X)=0$; and so the characteristic equation of $X$ will be

$$
\begin{equation*}
X^{2}+\Delta I=0 \tag{2.4}
\end{equation*}
$$

Similarly, since $\operatorname{det}(Y)=q$ and trace $(Y)=-q$, the characteristic equation of $Y$ will be

$$
\begin{equation*}
Y^{2}+Y+I=0 \tag{2.5}
\end{equation*}
$$

Furthermore, $\operatorname{det}(X Y)=\Delta$ and trace $(X Y)=r$ imply that the characteristic equation of the matrix $X Y$ will be

$$
\begin{equation*}
(X Y)^{2}-r(X Y)+\Delta I=0 \tag{2.6}
\end{equation*}
$$

On recursion, Equation (2.6) yields

$$
\begin{align*}
(X Y)^{n}= & \left\{\binom{n-1}{0} r^{n-1}-\binom{n-2}{1} r^{n-3} \Delta+\ldots\right\} X Y-  \tag{2.7}\\
& \left\{\binom{n-2}{0} r^{n-2} \Delta-\binom{n-3}{1} r^{n-4} \Delta^{2}+\ldots\right\} I
\end{align*}
$$

After suitable manipulation, Equations (2.4), (2.5) and (2.6) give the following equations

$$
\begin{equation*}
X Y X=r X+\Delta I+\Delta Y \tag{2.8}
\end{equation*}
$$

Thus, by making use of Equations (2.4) to (2.11) the matrices $W_{i}$ and $W_{j}$ can be expressed linearly as

$$
\begin{aligned}
& W_{i}=\lambda_{0} I+\lambda_{1} X+\lambda_{2} Y+\lambda_{3} X Y \\
& W_{j}=\mu_{0} I+\mu_{1} X+\mu_{2} Y+\mu_{3} X Y
\end{aligned}
$$

where $\lambda_{i}$ and $\mu_{i}$, for $i=0,1,2,3$ are polynomials in $r$ and $\Delta$. Since $(v) w_{i}=v$ and $(v) w_{j}=v$ the $2 \times 2$ matrices $W_{i}$ and $W_{j}$ have an eigenvector in common. This by Lemma 3.1 of [3] means that the algebra generated by $W_{i}$ and $W_{j}$ has dimension 3. The algebra contains $I, W_{i}, W_{j}, W_{i} W_{j}$ and so these must be linearly dependent. Using Equations (2.4) to (2.11) the matrix $W_{i} W_{j}$ can be expressed as

$$
W_{i} W_{j}=\nu_{0} I+\nu_{1} X+\nu_{2} Y+\nu_{3} X Y
$$

where $v_{i}$, for $i=0,1,2,3$ can be calculated in terms of the $\lambda_{i}$ and $\mu_{i}$, using (2.4) to (2.11). The condition that $I, W_{i}, W_{j}$ and $W_{i} W_{j}$ are linearly dependent, can be expressed as

$$
\left|\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}  \tag{2.12}\\
\mu_{1} & \mu_{2} & \mu_{3} \\
\nu_{1} & \nu_{2} & \nu_{3}
\end{array}\right|=0
$$

If we carry out the calculation of $v_{1}, v_{2}, v_{3}$ in terms of $\lambda_{i}$ and $\mu_{i}$ and substitute, in (2.12), we find that this is equivalent to

$$
\begin{align*}
& \left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)^{2}+\Delta\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)^{2}+\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)^{2}  \tag{2.13}\\
& +r\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)+\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)=0
\end{align*}
$$

This gives a homogeneous equation in $\Delta$ and $r$. In [5], $\theta$ is defined as $\frac{r^{2}}{\Delta}$, so we can substitute $\Delta \theta$ for $r^{2}$ to get a polynomial in $\theta$.

Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree, there are finite number of such polynomials. In this paper, we consider a family $\digamma$ of fragments such that each fragment in $\digamma$ contains one vertex $v$ fixed by

$$
F_{v}\left[\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}},(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}\right]
$$

where $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$, and prove the Higman's conjecture for the polynomials obtained from $\digamma$.

## 3. Main results

The following three theorems have been proved in [8]. Since we use them in this paper frequently, we therefore reproduce their statements here.

Theorem 3.1. Let the fragment $\gamma$ be constructed by joining a vertex $v_{i}$ of $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ with the vertex $v_{j}$ of $\left(m_{1}, m_{2}, \ldots, m_{2 k}\right)$. Then $\gamma$ is obtainable also, if the vertex $\left(v_{i}\right) w$ of $\left(n_{1}, n_{2}, \ldots, n_{2 k}\right)$ is joined with the vertex $\left(v_{j}\right) w$ of $\left(m_{1}, m_{2}, \ldots, m_{2 k}\right)$.

If $w=x y^{\eta_{1}} x y^{\eta_{2}} \ldots x y^{\eta_{n}}(\eta=1$ or -1$)$ is a word, then let $w^{*}=x y^{-\eta_{1}} x y^{-\eta_{2}} \ldots x y^{-\eta_{n}}$.

Theorem 3.2. If the fragment $\gamma$ has one vertex $v$ fixed by $F_{v}\left[w_{i}, w_{j}\right]$, then its mirror image $\gamma^{*}$ has one vertex fixed by $F_{v^{*}}\left[w_{i}^{*}, w_{j}^{*}\right]$.
Theorem 3.3. The polynomials obtained from the fragment $\gamma$ and its mirror image $\gamma^{*}$ are the same.

Consider two circuits $\left(n_{1}, n_{2}\right)$ and $\left(m_{1}, m_{2}\right)$.
$\digamma$ is constructed by joining

$$
\begin{aligned}
& e_{3 i_{1}} \text { with } u_{3 j_{1}+1} \text { and } v_{3 j_{2}+1}, \\
& f_{3 i_{2}} \text { with } u_{3 j_{1}+1} \text { and } v_{3 j_{2}+1} \\
& u_{3 j_{1}} \text { with } e_{3 i_{1}+1} \text { and } f_{3 i_{2}+1},
\end{aligned}
$$



Figure 1.


Figure 2.
$v_{3 j_{1}}$ with $e_{3 i_{1}+1}$ and $f_{3 i_{2}+1}$
where

$$
i_{1}=1,2, \ldots, n_{1}-1, i_{2}=1,2, \ldots, n_{2}-1
$$

and

$$
j_{1}=1,2, \ldots, m_{1}-1, j_{2}=1,2, \ldots, m_{2}-1
$$

Theorem 3.4. Number of triangles in any fragment $\gamma \in \digamma$ is

$$
s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-2
$$

Proof. Let $\gamma$ be any fragment in $\digamma$. Then its one vertex say $v$, is a fixed point of the circuits $\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}}$ and $(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$, where $s_{1}, s_{2}$, $s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$. Diagrammatically, it means:

From the diagram it is clear that, $\gamma \in \digamma$ has $s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-2$ triangles.


Figure 3.
Proposition 3.5. If $w=\left(x y^{-1}\right)^{q_{2}}$ where $q_{2} \in \mathbb{Z}^{+}$. Then the corresponding matrix can be expressed linearly as

$$
\begin{aligned}
\left(X Y^{-1}\right)^{q_{2}}= & (-1)^{q_{2}+1}\left\{\binom{q_{2}-2}{0} r^{q_{2}-2} \Delta-\binom{q_{2}-3}{1} r^{q_{2}-4} \Delta^{2}+\ldots\right\} I+ \\
& (-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\} X+ \\
& (-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\} X Y .
\end{aligned}
$$

The proof is obtained by using mathematical induction.
Total number of triangles in the circuit $(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$ are $q_{1}+q_{2}+q_{3}$, let $q_{1}+q_{2}+q_{3}=\tau_{1}$ and

$$
\begin{aligned}
& \epsilon_{1}=\left\{\begin{array}{ll}
1 & \text { if } q_{1}<q_{3} \\
0 & \text { if } q_{1} \geq q_{3}
\end{array}, \epsilon_{2}= \begin{cases}3 & \text { if } q_{1}<q_{3} \\
1 & \text { if } q_{1} \geq q_{3}\end{cases} \right. \\
& \alpha_{1}=\left\{\begin{array}{ll}
0 & \text { if } q_{3}-q_{1}=1 \\
1 & \text { otherwise }
\end{array}, \alpha_{2}= \begin{cases}0 & \text { if } q_{1}=q_{3} \\
1 & \text { otherwise }\end{cases} \right.
\end{aligned}
$$

Since $(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$ can be expressed linearly as

$$
(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}=\mu_{0} I+\mu_{1} X+\mu_{2} Y+\mu_{3} X Y
$$

where $\mu_{i}$, for $i=0,1,2,3$ is polynomial in $r$ and $\Delta$, we use $\max \left(\mu_{i}\right)$ for the term containing the highest power of $r$, in $\mu_{i}$.
Theorem 3.6. If $w=(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$, where $q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$, then the corresponding matrix can be expressed linearly as $W=\mu_{0} I+\mu_{1} X+\mu_{2} Y+\mu_{3} X Y$, such that

$$
\max \left(\mu_{0}\right)=(-1)^{q_{2}+1} r^{\tau_{1}-2} \Delta
$$

$$
\begin{gathered}
\max \left(\mu_{1}\right)=(-1)^{q_{2}+\epsilon_{1}+2} \alpha_{1} r^{\tau_{1}-2 \min \left(q_{1}, q_{3}\right)-\epsilon_{2}} \Delta^{\min \left(q_{1}, q_{3}\right)+\epsilon_{1}} \\
\max \left(\mu_{2}\right)=(-1)^{q_{2}+\epsilon_{1}+2} \alpha_{2} r^{\tau_{1}-2 \min \left(q_{1}, q_{3}\right)-2} \Delta^{\min \left(q_{1}, q_{3}\right)+1} \\
\max \left(\mu_{3}\right)=(-1)^{q_{2}+2} r^{\tau_{1}-1}
\end{gathered}
$$

Proof. By Proposition 3.5

$$
\begin{aligned}
\left(X Y^{-1}\right)^{q_{2}}= & (-1)^{q_{2}+1}\left\{\binom{q_{2}-2}{0} r^{q_{2}-2} \Delta-\binom{q_{2}-3}{1} r^{q_{2}-4} \Delta^{2}+\ldots\right\} I+ \\
& (-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\} X+ \\
& (-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\} X Y .
\end{aligned}
$$

Now

$$
\begin{gathered}
X Y\left(X Y^{-1}\right)^{q_{2}} X Y \\
= \\
(-1)^{q_{2}+1}\left\{\binom{q_{2}-2}{0} r^{q_{2}-2} \Delta-\binom{q_{2}-3}{1} r^{q_{2}-4} \Delta^{2}+\ldots\right\}(X Y)^{2}+ \\
\\
(-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\} X Y X X Y+ \\
\\
\\
(-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\}(X Y)^{3} .
\end{gathered}
$$

By making use of Equations (2.4) to (2.11), we get

$$
\left.\begin{array}{rl} 
& X Y\left(X Y^{-1}\right)^{q_{2}} X Y \\
= & (-1)^{q_{2}+1}\left\{\begin{array}{c}
\binom{q_{2}-2}{q_{2}-3} r^{q_{2}-2} \Delta- \\
1
\end{array}\right) r^{q_{2}-4} \Delta^{2}+\ldots
\end{array}\right\}(-\Delta I+r X Y)+\quad \begin{aligned}
& \\
&(-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}-1}-\binom{q_{2}-2}{1} r^{q_{2}-3} \Delta+\ldots\right\}(\Delta X+\Delta X Y)+ \\
&(-1)^{q_{2}}\left\{\begin{array}{c}
\binom{q_{2}-1}{0} r^{q_{2}-1}- \\
\left(\begin{array}{c}
q_{2}-2
\end{array}\right) r^{q_{2}-3} \Delta+\ldots \\
1
\end{array}\right\}\left(-r \Delta I+\left(r^{2}-\Delta\right) X Y\right) \\
&=(-1)^{q_{2}+1}\left\{\begin{array}{c}
\binom{q_{2}-1}{0} r^{q_{2}} \Delta- \\
\ldots
\end{array}\right\} I+(-1)^{q_{2}}\left\{\begin{array}{c}
\binom{q_{2}-1}{0} r^{q_{2}-1} \Delta- \\
\ldots
\end{array}\right\} X+ \\
&(-1)^{q_{2}}\left\{\binom{q_{2}-1}{0} r^{q_{2}+1}-\ldots\right\} X Y .
\end{aligned}
$$

Hence the result is true for $X Y\left(X Y^{-1}\right)^{q_{2}} X Y$.
Let it be true for $(X Y)^{k}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k}$, that is

$$
(X Y)^{k}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k}=
$$

$$
\begin{aligned}
& (-1)^{q_{2}+1}\left\{r^{k+q_{2}+k-2} \Delta-\ldots\right\} I+(-1)^{q_{2}+2}\left\{r^{k+q_{2}+k-2 k-1} \Delta^{k}-\ldots\right\} X+ \\
& 0 Y+(-1)^{q_{2}+2}\left\{r^{k+q_{2}+k-1}-\ldots\right\} X Y
\end{aligned}
$$

Now

$$
\begin{gathered}
(X Y)^{k+1}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k+1} \\
=(-1)^{q_{2}+1}\left\{r^{k+q_{2}+k-2} \Delta-\ldots\right\}(X Y)^{2}+ \\
(-1)^{q_{2}+2}\left\{r^{k+q_{2}+k-2 k-1} \Delta^{k}-\ldots\right\} X Y X X Y+ \\
0 Y+(-1)^{q_{2}+2}\left\{r^{k+q_{2}+k-1}-\ldots\right\}(X Y)^{3}
\end{gathered}
$$

By making use of Equations (2.4) to (2.11), we obtain

$$
\begin{aligned}
& (X Y)^{k+1}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k+1} \\
= & (-1)^{q_{2}+1}\left\{r^{k+q_{2}+k-2} \Delta-\ldots\right\}(-\Delta I+r X Y)+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k}-\ldots\right\}(\Delta X+\Delta X Y)+ \\
& (-1)^{q_{2}+2}\left\{r^{k+q_{2}+k-1}-\ldots\right\}\left(-r \Delta I+\left(r^{2}-\Delta\right) X Y\right) \\
= & (-1)^{q_{2}+1}\left\{r^{(k+1)+q_{2}+(k+1)-2} \Delta-\ldots\right\} I+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k+1}-\ldots\right\} X+ \\
& (-1)^{q_{2}+2}\left\{r^{(k+1)+q_{2}+(k+1)-1}-\ldots\right\} X Y .
\end{aligned}
$$

This shows that the result is true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$, where $q_{1}=$ $q_{3}, q_{2} \in \mathbb{Z}^{+}$. So, for $k_{1}=k_{3}$

$$
\begin{gathered}
(X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}} \\
=(-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-2} \Delta-\ldots\right\} I+(-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{3}}-\ldots\right\} X+ \\
(-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}-1}-\ldots\right\} X Y
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& (X Y)^{k_{1}+1}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-2} \Delta-\ldots\right\} X Y I+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{3}}-\ldots\right\} X Y X+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}-1}-\ldots\right\} X Y X Y .
\end{aligned}
$$

By making use of Equations (2.4) to (2.11), we have

$$
(X Y)^{k_{1}+1}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}}
$$

$$
\begin{aligned}
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-2} \Delta-\ldots\right\} X Y+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{3}}-\ldots\right\}(r X+\Delta Y)+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}-1}-\ldots\right\}(-\Delta I+r X Y) \\
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-1} \Delta-\ldots\right\} I+(-1)^{q_{2}+2}\left\{r^{q_{2}} \Delta^{k_{3}}-\ldots\right\} X+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{3}+1}-\ldots\right\} Y+(-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}}-\ldots\right\} X Y
\end{aligned}
$$

Hence the result is true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ such that $q_{1}-q_{3}=1$.
Let it be true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ such that $q_{1}-q_{3}=n$, that is

$$
\begin{aligned}
& (X Y)^{k_{3}+n}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{3}+n+q_{2}+k_{3}-2} \Delta-\ldots\right\} I+ \\
& (-1)^{q_{2}+2}\left\{r^{n+q_{2}-1} \Delta^{k_{3}}-\ldots\right\} X+ \\
& (-1)^{q_{2}+2}\left\{r^{n+q_{2}-2} \Delta^{k_{3}+1}-\ldots\right\} Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{3}+n+q_{2}+k_{3}-1}-\ldots\right\} X Y .
\end{aligned}
$$

Now

$$
\begin{aligned}
& (X Y)^{k_{3}+(n+1)}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{3}+n+q_{2}+k_{3}-2} \Delta-\ldots\right\} X Y I+ \\
& (-1)^{q_{2}+2}\left\{r^{n+q_{2}-1} \Delta^{k_{3}}-\ldots\right\} X Y X+ \\
& (-1)^{q_{2}+2}\left\{r^{n+q_{2}-2} \Delta^{k_{3}+1}-\ldots\right\} X Y Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{3}+n+q_{2}+k_{3}-1}-\ldots\right\} X Y X Y .
\end{aligned}
$$

By making use of Equations (2.4) to (2.11), we have

$$
\begin{aligned}
& (X Y)^{k_{3}+(n+1)}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{3}+n+q_{2}+k_{3}-2} \Delta-\ldots\right\} X Y+ \\
& (-1)^{q_{2}+2}\left\{r^{n+q_{2}-1} \Delta^{k_{3}}-\ldots\right\}(r X+\Delta Y)+ \\
& (-1)^{q_{2}+2}\left\{r^{n+q_{2}-2} \Delta^{k_{3}+1}-\ldots\right\}(-X-X Y)+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{3}+n+q_{2}+k_{3}-1}-\ldots\right\}(-\Delta I+r X Y) \\
= & (-1)^{q_{2}+1}\left\{r^{k_{3}+n+1+q_{2}+k_{3}-2} \Delta-\ldots\right\} I+ \\
& (-1)^{q_{2}+2}\left\{r^{n+1+q_{2}-1} \Delta^{k_{3}}-\ldots\right\} X+ \\
& (-1)^{q_{2}+2}\left\{r^{n+1+q_{2}-2} \Delta^{k_{3}+1}-\ldots\right\} Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{3}+n+1+q_{2}+k_{3}-1}-\ldots\right\} X Y .
\end{aligned}
$$

Hence the result is true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ such that $q_{1}>q_{3}$. Again for $k_{1}=k_{3}$, we have

$$
\begin{gathered}
(X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}} \\
=(-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-2} \Delta-\ldots\right\} I+(-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{1}}-\ldots\right\} X+ \\
(-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}-1}-\ldots\right\} X Y .
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& (X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}+1} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-2} \Delta-\ldots\right\} I X Y+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{1}}-\ldots\right\} X X Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}-1}-\ldots\right\} X Y X Y
\end{aligned}
$$

By making use of Equations (2.4) to (2.11), we have

$$
\begin{aligned}
& (X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{3}+1} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-2} \Delta-\ldots\right\} X Y+ \\
& (-1)^{q_{2}+2}\left\{r^{q_{2}-1} \Delta^{k_{1}}-\ldots\right\}(-\Delta Y)+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}-1}-\ldots\right\}(-\Delta I+r X Y) \\
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{3}-1} \Delta-\ldots\right\} I+0 X+ \\
& (-1)^{q_{2}+1}\left\{r^{q_{2}-1} \Delta^{k_{1}+1}-\ldots\right\} Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{3}}-\ldots\right\} X Y .
\end{aligned}
$$

Hence the result is true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ such that $q_{3}-q_{1}=1$. Let it be true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ such that $q_{3}-q_{1}=n$, that is

$$
\begin{aligned}
& (X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{1}+n} \\
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{1}+n-2} \Delta-\ldots\right\} I+ \\
& (-1)^{q_{2}+3}\left\{r^{q_{2}+n-3} \Delta^{k_{1}+1}-\ldots\right\} X+ \\
& (-1)^{q_{2}+3}\left\{r^{q_{2}+n-2} \Delta^{k_{1}+1}-\ldots\right\} Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{1}+n-1}-\ldots\right\} X Y .
\end{aligned}
$$

Now

$$
(X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{1}+(n+1)}
$$

$$
\begin{aligned}
= & (-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{1}+n-2} \Delta-\ldots\right\} I X Y+ \\
& (-1)^{q_{2}+1+2}\left\{r^{k_{1}+q_{2}+k_{3}+n-2 k_{1}-3} \Delta^{k_{1}+1}-\ldots\right\} X X Y+ \\
& (-1)^{q_{2}+3}\left\{r^{q_{2}+n-2} \Delta^{k_{1}+1}-\ldots\right\} Y X Y+ \\
& (-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{1}+n-1}-\ldots\right\} X Y X Y .
\end{aligned}
$$

By making use of Equations (2.4) to (2.11), we have

$$
\begin{gathered}
(X Y)^{k_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{k_{1}+(n+1)} \\
=(-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{1}+n-2} \Delta-\ldots\right\} X Y+ \\
(-1)^{q_{2}+3}\left\{r^{q_{2}+n-3} \Delta^{k_{1}+1}-\ldots\right\}(-\Delta Y)+ \\
(-1)^{q_{2}+3}\left\{r^{q_{2}+n-2} \Delta^{k_{1}+1}-\ldots\right\}(X+r Y)+ \\
(-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{1}+n-1}-\ldots\right\}(-\Delta I+r X Y) \\
=(-1)^{q_{2}+1}\left\{r^{k_{1}+q_{2}+k_{1}+n-1} \Delta-\ldots\right\} I+ \\
(-1)^{q_{2}+3}\left\{r^{q_{2}+n-2} \Delta^{k_{1}+1}-\ldots\right\} X+ \\
(-1)^{q_{2}+3}\left\{r^{q_{2}+n-1} \Delta^{k_{1}+1}-\ldots\right\} Y+ \\
(-1)^{q_{2}+2}\left\{r^{k_{1}+q_{2}+k_{1}+n}-\ldots\right\} X Y .
\end{gathered}
$$

Hence the result is true for $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ such that $q_{1}<q_{3}$.
Total number of triangles in the circuit $(x y)^{s_{1}}\left(x y^{-1}\right)^{s_{2}}(x y)^{s_{3}}$ are
$s_{1}+s_{2}+s_{3}$, let $s_{1}+s_{2}+s_{3}=\tau_{2}$ and $\beta_{1}=\left\{\begin{array}{ll}0 & \text { if } s_{1}=s_{3} \\ 1 & \text { otherwise }\end{array}\right.$.
Since $\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}}$ can be expressed linearly as

$$
\left(X Y^{-1}\right)^{s_{1}}(X Y)^{s_{2}}\left(X Y^{-1}\right)^{s_{3}}=\lambda_{0} I+\lambda_{1} X+\lambda_{2} Y+\lambda_{3} X Y
$$

where $\lambda_{i}$, for $i=0,1,2,3$ is polynomial in $r$ and $\Delta$, we use $\max \left(\lambda_{i}\right)$ for the term containing the highest power of $r$, in $\lambda_{i}$.

By using mathematical induction, we have the following Theorem.
Theorem 3.7. If $w=\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}}$ where $s_{1}, s_{2}, s_{3} \in \mathbb{Z}^{+}$and $s_{1} \geq$ $s_{3}$, then the corresponding matrix can be expressed linearly as $W=\lambda_{0} I+\lambda_{1} X+$ $\lambda_{2} Y+\lambda_{3} X Y$, such that

$$
\begin{gathered}
\max \left(\lambda_{0}\right)=(-1)^{s_{1}+s_{3}+1} r^{\tau_{2}-2} \Delta \\
\max \left(\lambda_{1}\right)=(-1)^{s_{1}+s_{3}} r^{\tau_{2}-1} \\
\max \left(\lambda_{2}\right)=(-1)^{s_{1}+s_{3}+1} \beta_{1} r^{\tau_{2}-2 s_{3}-2} \Delta^{s_{3}+1} \\
\max \left(\lambda_{3}\right)=(-1)^{s_{1}+s_{3}} r^{\tau_{2}-1}
\end{gathered}
$$

Theorem 3.8. Let $\gamma \in \digamma$ such that $s_{1} \geq s_{3}$. Then degree of the polynomial $f(\theta)$ obtained from $\gamma$ is $s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-2$. Moreover $f(\theta)$ is monic.

Proof. Since $\gamma \in \digamma$ and $s_{1} \geq s_{3}$, therefore its one vertex $v$, is a fixed point of the circuits $\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}}$ and $(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$. The matrices corresponding to $\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}}$ and $(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$ are $\left(X Y^{-1}\right)^{s_{1}}(X Y)^{s_{2}}\left(X Y^{-1}\right)^{s_{3}}$ and $(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}$ respectively, and these can be written as a linear combination of $I, X, Y$ and $X Y$, that is

$$
\left(X Y^{-1}\right)^{s_{1}}(X Y)^{s_{2}}\left(X Y^{-1}\right)^{s_{3}}=\lambda_{0} I+\lambda_{1} X+\lambda_{2} Y+\lambda_{3} X Y
$$

and

$$
(X Y)^{q_{1}}\left(X Y^{-1}\right)^{q_{2}}(X Y)^{q_{3}}=\mu_{0} I+\mu_{1} X+\mu_{2} Y+\mu_{3} X Y
$$

where $\lambda_{i}$ and $\mu_{i}$ for $i=0,1,2,3$ are polynomials in $r$ and $\Delta$. By Theorems 3.6 and 3.7, we have

$$
\begin{gathered}
\max \left(\mu_{1}\right)=(-1)^{q_{2}+\epsilon_{1}+2} \alpha_{1} r^{\tau_{1}-2 \min \left(q_{1}, q_{3}\right)-\epsilon_{2}} \Delta^{\min \left(q_{1}, q_{3}\right)+\epsilon_{1}} \\
\max \left(\mu_{2}\right)=(-1)^{q_{2}+\epsilon_{1}+2} \alpha_{2} r^{\tau_{1}-2 \min \left(q_{1}, q_{3}\right)-2} \Delta^{\min \left(q_{1}, q_{3}\right)+1} \\
\max \left(\mu_{3}\right)=(-1)^{q_{2}+2} r^{\tau_{1}-1} \\
\max \left(\lambda_{1}\right)=(-1)^{s_{1}+s_{3}} r^{\tau_{2}-1} \\
\max \left(\lambda_{2}\right)=(-1)^{s_{1}+s_{3}+1} \beta_{1} r^{\tau_{2}-2 s_{3}-2} \Delta^{s_{3}+1} \\
\max \left(\lambda_{3}\right)=(-1)^{s_{1}+s_{3}} r^{\tau_{2}-1}
\end{gathered}
$$

Now

$$
\max \left(\lambda_{2} \mu_{3}\right)=(-1)^{s_{1}+s_{3}+q_{2}+3} \beta_{1} r^{\tau_{1}+\tau_{2}-2 s_{3}-3} \Delta^{s_{3}+1}
$$

and

$$
\max \left(\lambda_{3} \mu_{2}\right)=(-1)^{s_{1}+s_{3}+q_{2}+\epsilon_{1}+2} \alpha_{2} r^{\tau_{1}+\tau_{2}-2 \min \left(q_{1}, q_{3}\right)-3} \Delta^{\min \left(q_{1}, q_{3}\right)+1}
$$

Let $p=\left\{\begin{array}{ll}s_{1}+s_{3}+q_{2}+3 & \text { if } s_{3}=\min \left(q_{1}, q_{3}, s_{3}\right) \\ s_{1}+s_{3}+q_{2}+\epsilon_{1}+1 & \text { if } \min \left(q_{1}, q_{3}\right)=\min \left(q_{1}, q_{3}, s_{3}\right)\end{array}\right.$, and $g=\min \left(q_{1}, q_{3}, s_{3}\right)$. Then

$$
\begin{equation*}
\max \left(\lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}\right)=(-1)^{p} \beta_{1} r^{\tau_{1}+\tau_{2}-2 g-3} \Delta^{g+1} \tag{3.1}
\end{equation*}
$$

shows that

$$
\begin{equation*}
\max \left(\lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}\right)^{2}=\beta_{1} r^{2\left(\tau_{1}+\tau_{2}-2 g-3\right)} \Delta^{2(g+1)} \tag{3.2}
\end{equation*}
$$

Now

$$
\begin{equation*}
\max \left(\lambda_{3} \mu_{1}\right)=(-1)^{q_{2}+s_{1}+s_{3}+\epsilon_{1}+2} \alpha_{1} r^{\tau_{1}+\tau_{2}-2 \min \left(q_{1}, q_{3}\right)-\epsilon_{2}-1} \Delta^{\min \left(q_{1}, q_{3}\right)+\epsilon_{1}} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left(\lambda_{1} \mu_{3}\right)=(-1)^{s_{1}+s_{3}+q_{2}+2} r^{\tau_{1}+\tau_{2}-2} \tag{3.4}
\end{equation*}
$$

together imply that

$$
\begin{equation*}
\max \left(\lambda_{3} \mu_{1}-\lambda_{1} \mu_{3}\right)=(-1)^{s_{1}+s_{3}+q_{2}+1} r^{\tau_{1}+\tau_{2}-2} \tag{3.5}
\end{equation*}
$$

or

$$
\begin{equation*}
\max \left(\Delta\left(\lambda_{3} \mu_{1}-\lambda_{1} \mu_{3}\right)^{2}\right)=r^{2\left(\tau_{1}+\tau_{2}-2\right)} \Delta \tag{3.6}
\end{equation*}
$$

Now

$$
\begin{equation*}
\max \left(\lambda_{1} \mu_{2}\right)=(-1)^{s_{1}+s_{3}+q_{2}+\epsilon_{1}+2} \alpha_{2} r^{\tau_{1}+\tau_{2}-2 \min \left(q_{1}, q_{3}\right)-3} \Delta^{\min \left(q_{1}, q_{3}\right)+1} \tag{3.7}
\end{equation*}
$$

and

$$
\begin{align*}
\max \left(\lambda_{2} \mu_{1}\right)= & (-1)^{s_{1}+s_{3}+q_{2}+\epsilon_{1}+1} \alpha_{1} \beta_{1}  \tag{3.8}\\
& r^{\tau_{1}+\tau_{2}-2 \min \left(q_{1}, q_{3}\right)-2 s_{3}-2-\epsilon_{2}} \Delta^{s_{3}+\min \left(q_{1}, q_{3}\right)+\epsilon_{1}+1}
\end{align*}
$$

So

$$
\begin{equation*}
\max \left(\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}\right)=(-1)^{s_{1}+s_{3}+q_{2}+\epsilon_{1}+2} \alpha_{2} r^{\tau_{1}+\tau_{2}-2 \min \left(q_{1}, q_{3}\right)-3} \Delta^{\min \left(q_{1}, q_{3}\right)+1} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\max \left(\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}\right)^{2}=\alpha_{2} r^{2\left(\tau_{1}+\tau_{2}-2 \min \left(q_{1}, q_{3}\right)-3\right)} \Delta^{2\left(\min \left(q_{1}, q_{3}\right)+1\right)} \tag{3.10}
\end{equation*}
$$

By using Equations (3.1) and (3.5), we obtain

$$
\begin{equation*}
\max \left(r\left(\lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}\right)\left(\lambda_{3} \mu_{1}-\lambda_{1} \mu_{3}\right)\right)=(-1)^{\epsilon_{1}} r^{2\left(\tau_{1}+\tau_{2}-2-g\right)} \Delta^{g+1} \tag{3.11}
\end{equation*}
$$

Also by using Equations (3.1) and (3.9), we get

$$
\begin{aligned}
\max \left(\left(\lambda_{2} \mu_{3}-\lambda_{3} \mu_{2}\right)\left(\lambda_{1} \mu_{2}-\lambda_{2} \mu_{1}\right)\right)= & (-1)^{s_{1}+s_{3}+q_{2}+\epsilon_{1}+2+p} \alpha_{2} \beta_{1} \\
& r^{2\left(\tau_{1}+\tau_{2}-\min \left(q_{1}, q_{3}\right)-g-3\right)} \\
& \Delta^{\min \left(q_{1}, q_{3}\right)+g+2}
\end{aligned}
$$

The term containing the highest power of $\theta$, in the polynomial equation 2.13 yields degree and leading coefficient of the polynomial obtained from $\gamma$. By using Equations 3.2 to 3.12 , we have

$$
\max \binom{\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)^{2}+\Delta\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)^{2}+\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)^{2}+}{r\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)+\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)}=
$$

Since $r^{2}=\Delta \theta$, therefore

$$
\max \binom{\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)^{2}+\Delta\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)^{2}+\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)^{2}+}{r\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{3} \mu_{1}-\mu_{3} \lambda_{1}\right)+\left(\lambda_{2} \mu_{3}-\mu_{2} \lambda_{3}\right)\left(\lambda_{1} \mu_{2}-\mu_{1} \lambda_{2}\right)}=
$$

We can omit $\Delta^{s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-1}$ as it is square in $F_{q}$. Hence degree of the polynomial obtained from $\gamma$ is $s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-2$. Also this polynomial is monic.

Lemma 3.9. Corresponding to each fragment $\delta$ containing a vertex fixed by

$$
F_{v}\left[\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}},(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}\right]
$$

where $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$and $s_{1}<s_{3}$, there is a fragment $\delta^{*}$ containing a vertex fixed by

$$
F_{u^{*}}\left[\left(x y^{-1}\right)^{s_{3}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{1}},(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}\right]
$$

such that $\delta$ and $\delta^{*}$ have the same polynomial.
Proof. Let the fragment $\delta$ contains a vertex fixed by

$$
F_{v}\left[\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}},(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}\right]
$$

where $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$and $s_{1}<s_{3}$. Clearly $\delta$ is created by joining a vertex $v$ fixed by $\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}}$ of $\left(n_{1}, n_{2}\right)$ with the vertex $v^{\prime}$ fixed by $(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}$ of $\left(m_{1}, m_{2}\right)$. By Theorem 3.1, $\delta$ is obtainable also, if we join the vertex $(v) x$ with the vertex $\left(v^{\prime}\right) x$. This implies that, $\delta$ has also a vertex $u=(v) x=\left(v^{\prime}\right) x$ fixed by

$$
F_{u}\left[(x y)^{s_{3}}\left(x y^{-1}\right)^{s_{2}}(x y)^{s_{1}},\left(x y^{-1}\right)^{q_{3}}(x y)^{q_{2}}\left(x y^{-1}\right)^{q_{1}}\right]
$$

By Theorem 3.2, mirror image of $\delta$ has a vertex fixed by

$$
F_{u^{*}}\left[\left(x y^{-1}\right)^{s_{3}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{1}},(x y)^{q_{3}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{1}}\right]
$$

By Theorem 3.3, the polynomials obtained from $\delta$ and its mirror image $\delta^{*}$ are the same.

Theorem 3.10. Let $\delta \in \digamma$ such that $s_{1}<s_{3}$. Then degree of the polynomial $g(\theta)$ obtained from $\delta$ is $s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-2$. Moreover $g(\theta)$ is monic.
Proof. Since $\delta$ is a fragment in $\digamma$ such that $s_{1}<s_{3}$. Therefore its one vertex is fixed by

$$
F_{v}\left[\left(x y^{-1}\right)^{s_{1}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{3}},(x y)^{q_{1}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{3}}\right]
$$

where $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$and $s_{1}<s_{3}$. Consider a fragment $\eta$ containing a vertex fixed by

$$
F_{u^{*}}\left[\left(x y^{-1}\right)^{s_{3}}(x y)^{s_{2}}\left(x y^{-1}\right)^{s_{1}},(x y)^{q_{3}}\left(x y^{-1}\right)^{q_{2}}(x y)^{q_{1}}\right]
$$

Let $g(\theta)$ and $h(\theta)$ be the polynomials obtained from $\delta$ and $\eta$. Since $s_{3}>s_{1}$, therefore by Theorem 3.8, degree of the polynomial $h(\theta)$ is $s_{1}+s_{2}+s_{3}+q_{1}+$ $q_{2}+q_{3}-2$, and $h(\theta)$ is monic. By Lemma 3.9, the polynomials $h(\theta)$ and $g(\theta)$ are the same.

Theorem 3.11. Degree of the polynomial $f(\theta)$ obtained from any fragment $\gamma \in \digamma$ is $s_{1}+s_{2}+s_{3}+q_{1}+q_{2}+q_{3}-2$, and $f(\theta)$ is monic.

The proof is an immediate consequence of Theorems 3.8 and 3.10.
Theorem 3.12. Let $\gamma \in \digamma$ and $T(\gamma)$ and $\operatorname{Deg}(f)$ denote the number of triangles in $\gamma$ and the degree of the polynomial obtained from $\gamma$ respectively. Then $\operatorname{Deg}(f)=T(\gamma)$.

The proof is an immediate consequence of Theorems 3.4 and 3.11.
Theorem 3.13. No polynomial of degree $n$ such that $n \leq 3$, is obtained from the fragments in $\digamma$.

Proof. Let $f(\theta)$ be any polynomial of degree 3 , obtained from the fragment of $\digamma$. Since the degree of all the polynomials obtained from $\digamma$ is $q_{1}+q_{2}+q_{3}+$ $s_{1}+s_{2}+s_{3}-2$, where $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$, therefore $q_{1}+q_{2}+q_{3}+s_{1}+$ $s_{2}+s_{3}-2=3$ for some $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$. As there is no possibility for $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$such that $q_{1}+q_{2}+q_{3}+s_{1}+s_{2}+s_{3}=5$, therefore, there is no polynomial of degree 3 , obtained from the fragments in $\digamma$.

Similarly, the same result is obtained for $n=2$ and $n=1$.
Theorem 3.14. There are finite number of polynomials of a fixed degree n, obtained from the fragments in $\digamma$.

Proof. By Theorem 3.11, degree of all the polynomials obtained from $\digamma$ is $q_{1}+q_{2}+q_{3}+s_{1}+s_{2}+s_{3}-2$. Since there are a finite number of possibilities for $s_{1}, s_{2}, s_{3}, q_{1}, q_{2}, q_{3} \in \mathbb{Z}^{+}$such that $q_{1}+q_{2}+q_{3}+s_{1}+s_{2}+s_{3}-2=n$, there are only a finite number of polynomials of a fixed degree $n$, obtained from the fragments in $\digamma$.

## Acknowledgment

Dedicated to the memory of Late Professor Graham Higman FRS.

## References

[1] B. Everitt, Alternating quotients of the (3, q, r) triangle groups, Comm. Algebra 26 (1997), no. 6, 1817-1832.
[2] G. Higman and Q. Mushtaq, Coset diagrams and relations for $\operatorname{PSL}(2, \mathbf{Z})$, Arab Gulf J. Sci. Res. 1 (1983), no. 1, 159-164 .
[3] Q. Mushtaq, A condition for the existence of a fragment of a coset diagram, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 153, 81-95.
[4] Q. Mushtaq, Coset diagrams for the modular group, D. Phil. Thesis, University of Oxford, Oxford, 1983.
[5] Q. Mushtaq, Parametrization of all homomorphisms from $\operatorname{PGL}(2, \mathbf{Z})$ into $\operatorname{PGL}(2, q)$, Comm. Algebra 20 (1992), no. 4, 1023-1040.
[6] Q. Mushtaq and G. C. Rota, Alternating groups as quotients of two generator groups, Adv. Math. 96 (1993), no. 1, 113-121.
[7] Q. Mushtaq and H. Servatius, Permutation representation of the symmetry groups of regular hyperbolic tessellations, J. Lond. Math. Soc. (2) 48 (1993), no. 1, 77-86.
[8] Q. Mushtaq and A. Razaq, Equivalent pairs of words and points of connection, Sci. World J. 2014 (2014), Article ID 505496, 8 pages.
[9] A. Torstensson, Coset diagrams in the study of finitely presented groups with an application to quotients of the modular group, J. Commut. Algebra 2 (2010), no. 4, 501-514.
(Qaiser Mushtaq) Vice Chancellor, The Islamia University of Bahawalpur, PakISTAN.

E-mail address: pir_qmushtaq@yahoo.com
(Abdul Razaq) Department of Mathematics, Govt. Post Graduate College Jauharabad, Pakistan.

E-mail address: makenqau@gmail.com


[^0]:    Article electronically published on April 30, 2016.
    Received: 1 December 2013, Accepted: 19 January 2015.

    * Corresponding author.

