Bulletin of the

Iranian Mathematical Society

Vol. 42 (2016), No. 2, pp. 371-405

Title:
Toroidalization of locally toroidal morphisms of 3-folds
Author(s):

R. Ahmadian

TOROIDALIZATION OF LOCALLY TOROIDAL MORPHISMS OF 3-FOLDS

R. AHMADIAN
(Communicated by Rahim Zaare-Nahandi)

Abstract

A toroidalization of a dominant morphism $\varphi: X \rightarrow Y$ of algebraic varieties over a field of characteristic zero is a toroidal lifting of φ obtained by performing sequences of blow ups of nonsingular subvarieties above X and Y. We give a proof of toroidalization of locally toroidal morphisms of 3 -folds. Keywords: Toroidalization, resolution of morphisms, principalization. MSC(2010): Primary: 14M99; Secondary: 14B25, 14B05.

1. Introduction

The problem of toroidalization is to obtain, for a dominant morphism φ : $X \rightarrow Y$ of varieties over an algebraically closed field \mathfrak{k} of characteristic zero, a morphism $\tilde{\varphi}: \widetilde{X} \rightarrow \widetilde{Y}$ such that there exists a commutative diagram

where $\lambda: \widetilde{X} \rightarrow X$ and $\pi: \widetilde{Y} \rightarrow Y$ are sequences of monoidal transforms, i.e., blow ups with nonsingular centers, \widetilde{X} and \widetilde{Y} are nonsingular, and there exist simple normal crossing (SNC) divisors $D_{\widetilde{Y}}$ and $D_{\widetilde{X}}=\tilde{\varphi}^{*}\left(D_{\widetilde{Y}}\right)_{\text {red }}$ on \widetilde{Y} and \widetilde{X} respectively, such that $\tilde{\varphi}$ is toroidal with respect to $D_{\widetilde{X}}$ and $D_{\widetilde{Y}}$, i.e., $\tilde{\varphi}$ is locally given by monomials in appropriate étale local parameters on \widetilde{X} with respect to $D_{\widetilde{X}}$ and $D_{\widetilde{Y}}$. The toroidal morphism $\tilde{\varphi}$ is called a toroidalization of φ.

The precise definitions of toroidal varieties and their morphisms are in [17], and more recently, in [8, Definition 4.3]. In the case of a nonsingular variety

[^0]X, the choice of a SNC divisor on X makes it into a toroidal variety - see [7], or Section 2 of this paper for definition of SNC divisor.

The idea of toroidalization, which is fundamental in studying the structure of birational morphisms, is first proposed in [1, Problem 6.2.1]. This problem does not have a positive answer in positive characteristic $p>0$, even for maps of curves, for instance, $y=x^{p}+x^{p+1}[7]$.

The existence of toroidalization has been proven completely when Y is a curve, or when X and Y are of dimension $\leqslant 3$. When Y is a curve, toroidalization follows from embedded resolution of hypersurface singularities [16], or from any of the simplified proofs including [3, 4, 14].

In the case when X and Y are surfaces, several proofs of toroidalization have been constructed - see, for instance, Corollary 6.2 .3 [1], or [13], which includes the case when only tame ramification occurs in positive characteristic.

In [6], and with a simpler proof in [9], toroidalization has been solved for morphisms from 3 -folds to surfaces by S. D. Cutkosky, where he introduced the concept of strongly prepared morphism. Toroidalization of a strongly prepared morphism from an n-fold to a surface has also been proven by Cutkosky and Kascheyeva in [11]. In [8], Cutkosky proves toroidalization for dominant morphisms of 3 -folds.

Toroidalization, locally along a fixed valuation, has been proven in all dimensions by Cutkosky in [5]. This led up to the notion of locally toroidal morphism.

Suppose that $\varphi: X \rightarrow Y$ is a dominant morphism of nonsingular varieties over an algebraically closed field of characteristic zero. Let J be a finite set. The morphism φ is locally toroidal if there exist open covers $\left\{U_{j}\right\}_{j \in J}$ of X and $\left\{V_{j}\right\}_{j \in J}$ of Y, and SNC divisors D_{j} on U_{j} and E_{j} on V_{j} such that for all $j \in J$, $\varphi_{j}:=\left.\varphi\right|_{U_{j}}: U_{j} \rightarrow V_{j}, \varphi_{j}^{*}\left(E_{j}\right)_{\text {red }}=D_{j}, \varphi_{j}: U_{j} \backslash D_{j} \rightarrow V_{j} \backslash E_{j}$ is smooth, and $\varphi_{j}: U_{j} \rightarrow V_{j}$ is toroidal with respect to E_{j} and D_{j}. We will say that φ is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$ if these conditions hold - also, see Definition 1.3 [15].

Patching problems for locally toroidal morphisms which are local resolutions of singularities along a valuation appear in [19] and [18].

The following question of existence of toroidalization for locally toroidal morphisms, proposed by S. D. Cutkosky, has been considered by Hanumanthu in [15] where he provided a positive answer to the question in the case of a locally toroidal morphism from an n-fold to a surface.

Question 1.1. [Cutkosky, Question 1.4 [15]] Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular varieties which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Does there exist a commutative diagram

such that $\lambda: \widetilde{X} \rightarrow X$ and $\pi: \widetilde{Y} \rightarrow Y$ are sequences of monoidal transforms, \widetilde{X} and \widetilde{Y} are nonsingular, and there exist SNC divisors \widetilde{E} and $\widetilde{D}=\tilde{\varphi}^{*}(\widetilde{E})_{\text {red }}$ on \widetilde{Y} and \widetilde{X} respectively, such that $\tilde{\varphi}$ is toroidal with respect to \widetilde{E} and \widetilde{D} ?

In this paper, we prove toroidalization for locally toroidal morphisms of 3 -folds.

Theorem 1.2 (Main Theorem). Suppose $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3-folds which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Then there exists a commutative diagram

such that $\lambda: \widetilde{X} \rightarrow X$ and $\pi: \widetilde{Y} \rightarrow Y$ are sequences of monoidal transforms, \widetilde{X} and \widetilde{Y} are nonsingular, and there exist SNC divisors \widetilde{E} and $\widetilde{D}=\tilde{\varphi}^{*}(\widetilde{E})_{\mathrm{red}}$ on \widetilde{Y} and \widetilde{X} respectively, such that $\tilde{\varphi}$ is toroidal with respect to \widetilde{E} and \widetilde{D}.

This theorem is proven in subsection 4.2. It is expected that the methods of this paper can be extended to give a positive answer to Question 1.1.

2. Notations, Definitions, and Main Ideas

Throughout this paper, \mathfrak{k} is an algebraically closed field of characteristic zero. A variety is a quasi projective variety over \mathfrak{k}. A curve, surface or 3-fold is a variety of respective dimension 1,2 or 3 . If $D=\sum d_{i} D_{i}$ is an effective divisor with $d_{i} \in \mathbb{Z}_{>0}$ and D_{i} prime divisors, then $\left(\sum d_{i} D_{i}\right)_{\text {red }}:=\sum D_{i}$.

An effective divisor D on a nonsingular variety X is simple normal crossing $(S N C)$ if at each $p \in X$ there exist regular parameters $\left(x_{1}, \ldots, x_{n}\right)$ in $\mathcal{O}_{X, p}$ and natural numbers a_{1}, \ldots, a_{n} such that $\mathcal{I}_{D, p}=x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \mathcal{O}_{X, p}$ where $\mathcal{I}_{D} \subset \mathcal{O}_{X}$ is the ideal sheaf of D.
2.1. Locally Toroidal Morphisms of $\mathbf{3}$-folds. In this subsection, we provide a necessary and sufficient condition for a morphism of 3 -folds to be locally toroidal using the list of toroidal forms for a dominant morphism of 3-folds ([8] pages 21-22).

Definition 2.1 ([8] page 19). Suppose that V is a nonsingular three dimensional variety over an algebraically closed field of characteristic zero and F is a reduced SNC divisor on V. Suppose that $q \in V$ is a closed point. q is called an n-point for F if q lies in exactly n irreducible components of F. We have that $0 \leq n \leq 3$. We say that u, v, w are (formal) permissible parameters at q (for F) if u, v, w are regular parameters in $\hat{\mathcal{O}}_{V, q}$ and

1) $u=0$ is a (formal) local equation of F if q is a 1-point,
2) $u v=0$ is a (formal) local equation of F at q if q is a 2-point and
3) $u v w=0$ is a (formal) local equation of F at q if q is a 3-point.

We say that permissible parameters u, v, w are algebraic permissible parameters if $u, v, w \in \mathcal{O}_{X, q}$.

Proposition 2.2 ([8] pages 21-22). Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3-folds and $\left\{U_{j}\right\}_{J},\left\{V_{j}\right\}_{J}$ are open covers of X and Y respectively and D_{j} is a $S N C$ divisor on U_{j}, E_{j} is a $S N C$ divisor on V_{j} such that for all $j \in J, \varphi_{j}: U_{j} \rightarrow V_{j}, \varphi_{j}^{*}\left(E_{j}\right)_{\mathrm{red}}=D_{j}$ and $U_{j} \backslash D_{j} \rightarrow V_{j} \backslash E_{j}$ is smooth.

Then $\varphi: X \rightarrow Y$ is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$ if and only if the following condition holds for all $j \in J$ and $p \in D_{j}$.

Let $q=\varphi(p)=\varphi_{j}(p) \in E_{j}$. Then there exist (algebraic) permissible parameters u, v, w at q for E_{j} and (formal) permissible parameters x, y, z at p for D_{j} such that one of the following forms holds:
(T1) p is a 3-point of D_{j} and q is a 3-point of E_{j},

$$
u=x^{a} y^{b} z^{c}, v=x^{d} y^{e} z^{f}, w=x^{g} y^{h} z^{i}
$$

where $a, b, c, d, e, f, g, h, i \in \mathbb{N}$ and

$$
\operatorname{det}\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \neq 0
$$

(T2) p is a 2-point of D_{j} and q is a 3-point of E_{j},

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=x^{g} y^{h}(z+\alpha)
$$

with $0 \neq \alpha \in \mathfrak{k}$ and $a, b, d, e, f, g, h \in \mathbb{N}$ satisfy $a e-b d \neq 0$ and $(g, h) \neq$ $(0,0)$.
(T3) p is a 1-point of D_{j} and q is a 3-point of E_{j},

$$
u=x^{a}, v=x^{d}(y+\alpha), w=x^{g}(z+\beta)
$$

with $0 \neq \alpha, 0 \neq \beta \in \mathfrak{k}$ and $a, d, g>0$.
(T4) p is a 2-point of D_{j} and q is a 2-point of E_{j},

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=z
$$

with $a e-b d \neq 0$.
(T5) p is a 1-point of D_{j} and q is a 2-point of E_{j},

$$
u=x^{a}, v=x^{d}(y+\alpha), w=z
$$

with $0 \neq \alpha \in \mathfrak{k}$ and $a, d>0$.
(T6) p is a 1-point of D_{j} and q is a 1-point of E_{j},

$$
u=x^{a}, v=y, w=z
$$

with $a>0$.

2.2. Embedded Resolution of Surface Singularities and Its Properties.

 In order to have a SNC divisor (a toroidal structure) on Y containing all E_{j}, we construct the reduced divisor $\tilde{E}_{0}=\left(\sum_{j \in J} \bar{E}_{j}\right)_{\text {red }}$ on Y where \bar{E}_{j} is the Zariski closure of E_{j} in Y. However \tilde{E}_{0} is not necessarily SNC and we need to apply the algorithm of embedded resolution of surface singularities. Theorem 2.4 below, follows from this algorithm and its proof, starting with the resolution datum $\mathcal{R}=\left(\emptyset, \emptyset, \tilde{E}_{0}, Y\right)$ (Theorem $5.19[7]$).Due to the fact that all centers in the algorithm are permissible (Definition 5.21 [7]), we establish further properties of the centers (conclusions 1), 2) of Theorem 2.4) which are basic to the procedure for proving our main result.
Definition 2.3. Suppose that D is a SNC divisor on a nonsingular variety X, Z is a nonsingular subvariety of X, and $p \in X$. We say that Z makes SNCs with D at p if there exist regular parameters x_{1}, \ldots, x_{d} at $p, r \geq 0$ and $m_{1}, \ldots, m_{d} \geq 0$ such that $x_{1}^{m_{1}} x_{2}^{m_{2}} \cdots x_{d}^{m_{d}}=0$ is a local equation of D at p and $x_{1}=\cdots=x_{r}=0$ are local equations of Z at p. (If $p \notin Z$ then take $r=0$ and if $p \notin D$ then take $m_{i}=0$ for all i.

Theorem 2.4. Suppose that Y is a nonsingular projective three dimensional variety over an algebraically closed field of characteristic zero. Let J be a finite set. Suppose that $\left\{V_{j}\right\}_{j \in J}$ is an open cover of Y and E_{j} for $j \in J$ are reduced $S N C$ divisors on V_{j}. Let \bar{E}_{j} be the Zariski closure of E_{j} in Y, and let $\tilde{E}_{0}=\left(\sum_{j \in J} \bar{E}_{j}\right)_{\mathrm{red}}$. Then there exists a proper birational morphism $\pi: \tilde{Y} \rightarrow Y$ such that \tilde{Y} is nonsingular, $\pi^{*}\left(\tilde{E}_{0}\right)_{\mathrm{red}}$ is a SNC divisor on \tilde{Y}, and π has a factorization

$$
\tilde{Y}=Y_{n} \xrightarrow{\pi_{n}} Y_{n-1} \rightarrow \cdots \rightarrow Y_{i} \xrightarrow{\pi_{i}} Y_{i-1} \rightarrow \cdots \xrightarrow{\pi_{7}} Y_{0}=Y
$$

such that each π_{i} is the blowup of a nonsingular center $Z_{i-1} \subset Y_{i-1}$ which is either a point or a curve. Let $\Pi_{i}=\pi_{1} \circ \cdots \circ \pi_{i}: Y_{i} \rightarrow Y$. For $j \in J$, let $V_{i, j}=\Pi_{i}^{-1}\left(V_{j}\right), \pi_{i, j}=\left(\left.\pi_{i}\right|_{V_{i, j}}\right): V_{i, j} \rightarrow V_{i-1, j}, \Pi_{i, j}=\left(\left.\Pi_{i}\right|_{V_{i, j}}\right): V_{i, j} \rightarrow V_{j}$, $E_{i, j}=\Pi_{\tilde{E}, j}^{*}\left(E_{j}\right)_{\mathrm{red}}$ and $\bar{E}_{i, j}$ be the Zariski closure of $E_{i, j}$ in Y_{i}.

Let $\tilde{E}_{i}=\left(\sum_{j \in J} \bar{E}_{i, j}\right)_{\text {red }}$, a divisor on Y_{i}. We further have that

1) $E_{i, j}$ is a $S N C$ divisor on $V_{i, j}$ for all i, j, and $Z_{i} \cap V_{i j}$ makes $S N C s$ with $E_{i j}$ on $V_{i j}$ for all i, j. (Although possibly $Z_{i} \cap E_{i j} \neq \emptyset$ but $Z_{i} \cap V_{i j} \not \subset$ $\left.E_{i j}\right)$.
2) $\tilde{E}_{i} \subseteq \Pi_{i}^{*}\left(\tilde{E}_{0}\right)_{\text {red }}$ for all i.

The remainder of this subsection is devoted to the proof of Theorem 2.4. At the end, we will provide all possible local equations of a nonsingular curve $C \subset Y$ such that for all $j \in J, C \cap V_{j}$ makes SNCs with E_{j} (Remark-Definition 2.8).

Example 2.5. This example shows that the inclusion of 2) of the conclusions of Theorem 2.4 will not in general be an equality. Let Y be a nonsingular 3-fold. Suppose that $S \subset Y$ is a singular surface and Z is the singular locus of S.

Let $\left\{V_{1}=Y \backslash Z, V_{2}=Y\right\}$ which is clearly an open cover of Y and consider the SNC divisors $E_{1}=S \backslash Z$ on V_{1} and $E_{2}=0$ on V_{2}. Then $\widetilde{E}_{0}=S$. Embedded resolution of singularities $\pi_{1}: Y_{1} \rightarrow Y$ of S has an exceptional locus F which appears in $\pi_{1}^{*}\left(\widetilde{E}_{0}\right)$. However, $V_{1,1} \cap F=\emptyset$ and $E_{1,2}=0$ on $V_{1,2}$. So, F is not contained in $\bar{E}_{1,1}+\bar{E}_{1,2}$.

Lemma 2.6. Suppose that A is the strict transform on Y_{i} of an irreducible component of \tilde{E}_{0}. If $Z_{i} \cap A \neq \emptyset$ then $Z_{i} \subset A$.
Proof. Let D be the strict transform of \tilde{E}_{0} on Y_{i}. Let r be the maximum multiplicity of points of D on Y_{i}. Since Z_{i} is permissible for the resolution algorithm, $Z_{i} \subset D$ and D has order r at all points of D. Let B_{1}, \ldots, B_{r} be the irreducible components of D containing Z_{i} and let A, C_{1}, \ldots, C_{s} be the irreducible components of D which contain q but do not contain Z_{i}. Let Q be the generic point of Z_{i}. Then the multiplicity satisfies

$$
\begin{aligned}
r & =\nu_{q}(D)=\nu_{q}(A)+\sum \nu_{q}\left(C_{i}\right)+\sum \nu_{q}\left(B_{i}\right) \\
& >\sum \nu_{q}\left(B_{i}\right) \\
& \geq \sum \nu_{Q}\left(B_{i}\right) \text { by upper semicontinuity of multiplicity (Appendix A. } 19 \\
& =\nu_{Q}(D)=r
\end{aligned}
$$

giving a contradiction.
Lemma 2.7. Suppose that X is a nonsingular variety and $D=A+B$ is a $S N C$ divisor on X where A and B have no irreducible components in common. Suppose that Z is a nonsingular subvariety of X such that Z makes SNCs with A and if C is an irreducible component of B then either $Z \subset C$ or $Z \cap C=\emptyset$. Then Z makes SNCs with D.
Proof. Suppose that $q \in Z \cap \operatorname{Supp}(D)$. Let $R=\mathcal{O}_{X, q}$ and $P=\mathcal{I}_{Z, q}$. Let \mathfrak{m} be the maximal ideal of R and let \mathfrak{m}^{\prime} be the maximal ideal of $R / P=\mathcal{O}_{Z, q}$. We have a short exact sequence of $L=R / \mathfrak{m}$ vector spaces

$$
0 \rightarrow P / P \cap \mathfrak{m}^{2} \cong\left(P+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2} \rightarrow \mathfrak{m} / \mathfrak{m}^{2} \rightarrow \mathfrak{m}^{\prime} /\left(\mathfrak{m}^{\prime}\right)^{2} \rightarrow 0
$$

Let $x_{t}=0$ for $1 \leq t \leq r$ be local equations at q of the irreducible components of A which contain q and let $x_{t}=0$ for $r+1 \leq t \leq s$ be local equations at q of the irreducible components of B which contain q. Since $A+B$ is a SNC divisor,
(2.1) the classes $\bar{x}_{1}, \ldots, \bar{x}_{s}$ of x_{1}, \ldots, x_{s} in $\mathfrak{m} / \mathfrak{m}^{2}$ are linearly independent.

After possibly reindexing the x_{i}, we may assume that $x_{1}, \ldots, x_{c} \notin P$ and $x_{c+1}, \ldots, x_{r} \in P$. By assumption, we have that $x_{r+1}, \ldots, x_{s} \in P$. Since A makes SNCs with Z, x_{1}, \ldots, x_{r} can be extended to a regular system of parameters

$$
x_{c+1}, \ldots, x_{r}, y_{1}, \ldots, y_{a}, x_{1}, \ldots, x_{c}, z_{1}, \ldots, z_{b}
$$

of R such that $\left\{\bar{x}_{c+1}, \ldots, \bar{y}_{a}\right\}$ is a basis of $P+\mathfrak{m}^{2} / \mathfrak{m}^{2}$ and $\left\{\bar{x}_{c+1}, \ldots, \bar{z}_{b}\right\}$ is a basis of $\mathfrak{m} / \mathfrak{m}^{2}$. In particular,

$$
\begin{equation*}
\operatorname{Span}\left(\bar{x}_{1}, \ldots, \bar{x}_{c}\right) \cap\left(P+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2}=\{0\} \tag{2.2}
\end{equation*}
$$

By (2.1), $\bar{x}_{c+1}, \ldots, \bar{x}_{s}$ are linearly independent, so they can be extended to a basis $\left\{\bar{x}_{c+1}, \ldots, \bar{x}_{s}, \sigma_{1}, \ldots, \sigma_{d}\right\}$ of $\left(P+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2}$. By (2.2),

$$
\bar{x}_{c+1}, \ldots, \bar{x}_{s}, \sigma_{1}, \ldots, \sigma_{d}, \bar{x}_{1}, \ldots, \bar{x}_{c}
$$

are linearly independent in $\mathfrak{m} / \mathfrak{m}^{2}$, so we can extend them to a basis

$$
\left\{\bar{x}_{c+1}, \ldots, \bar{x}_{s}, \sigma_{1}, \ldots, \sigma_{d}, \bar{x}_{1}, \ldots, \bar{x}_{c}, \tau_{1}, \ldots, \tau_{e}\right\}
$$

of $\mathfrak{m} / \mathfrak{m}^{2}$. Let $u_{1}, \ldots, u_{d} \in P$ be such that the class of \bar{u}_{i} in $P / P \cap \mathfrak{m}^{2} \cong$ $\left(P+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2}$ is σ_{i} for $1 \leq i \leq d$ and let $v_{1}, \ldots, v_{e} \in \mathfrak{m}$ be such that $\bar{v}_{i}=\tau_{i}$ for $1 \leq i \leq e$. Then (by definition)

$$
\begin{equation*}
x_{c+1}, \ldots, x_{s}, u_{1}, \ldots, u_{d}, x_{1}, \ldots, x_{c}, v_{1}, \ldots, v_{e} \tag{2.3}
\end{equation*}
$$

is a regular system of parameters in R. Let I be the ideal

$$
I=\left(x_{c+1}, \ldots, x_{s}, u_{1}, \ldots, u_{d}\right)
$$

We have that

$$
\begin{equation*}
s-c+d=\operatorname{dim} R-\operatorname{dim} R / I \tag{2.4}
\end{equation*}
$$

by Proposition A. 4 [2]. Let \mathfrak{n} be the maximal ideal of R / I. From the exact sequence

$$
0 \rightarrow\left(I+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2} \rightarrow \mathfrak{m} / \mathfrak{m}^{2} \rightarrow \mathfrak{n} / \mathfrak{n}^{2} \rightarrow 0
$$

of L-vector spaces, we see that

$$
\begin{aligned}
\operatorname{dim} \mathfrak{n} / \mathfrak{n}^{2} & =\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}-\operatorname{dim}\left(I+\mathfrak{m}^{2}\right) / \mathfrak{m}^{2} \\
& =\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}-(s-c+d) \\
& =\operatorname{dim} \mathfrak{m} / \mathfrak{m}^{2}-(\operatorname{dim} R-\operatorname{dim} R / I) \text { by }(2.4) \\
& =\operatorname{dim} R / I
\end{aligned}
$$

since R is a regular local ring. Thus R / I is a regular local ring; in particular, I is a prime ideal. Since I and P have the same height, $I=P$. Thus by (2.3), Z makes SNCs with $D=A+B$ at q.

Now we give the proof of Theorem 2.4.
Proof of Theorem 2.4. We first prove 1). We will establish 1) by induction on i that $E_{i, j}$ is a SNC divisor on $V_{i, j}$ and $Z_{i} \cap V_{i, j}$ makes SNCs with $E_{i, j}$ at all points of $Z_{i} \cap V_{i, j}$. Since $E_{i+1, j}$ will be a SNC divisor if $Z_{i} \cap V_{i, j}$ makes SNCs with $E_{i, j}$, we may assume by induction that $E_{i, j}$ is a SNC divisor. Let $Z=Z_{i} \cap V_{i, j}$. We must show that Z makes SNCs with $E_{i, j}$. We decompose $E_{i, j}=A+B$ where B is the strict transform of E_{j} on V_{j} to $V_{i, j}$ and A is the sum of exceptional components of $\Pi_{i, j}$. Since Z_{i} is permissible for the resolution datum of the algorithm, Z_{i} makes SNCs with A. By Lemmas 2.6 and 2.7, we conclude that Z makes SNCs with $E_{i, j}$.

And clearly, 2) follows since $Z_{i} \subseteq \Pi_{i}^{*}\left(\tilde{E}_{0}\right)_{\text {red }}$ for all i, as Z_{i} is a permissible center for the algorithm (Definition 5.21 [7]).

Remark-Definition 2.8. Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3-folds, which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$ and $C \subset Y$ is a nonsingular curve such that for all $j \in J, C \cap V_{j}$ makes SNCs with E_{j}. If $q \in E_{j} \cap C$ for some j, then there exist algebraic permissible parameters u, v, w at q for E_{j} such that one of the following holds.

1) q is a 3 -point of E_{j} (which has local equation $u v w=0$ at q) and $u=v=0$ are local equations of C at q and, C is called a 2^{+}-curve for E_{j} at q.
2) q is a 2-point of E_{j} (which has local equation $u v=0$ at q) and $u=v=0$ are local equations of C at q and, C is called a 2-curve for E_{j} at q.
3) q is a 2-point of E_{j} (which has local equation $u v=0$ at q) and $u=$ $w=0$ are local equations of C at q and, C is called a $\mathbf{1}^{+}$-curve for E_{j} at q.
4) q is a 1-point of E_{j} (which has local equation $u=0$ at q) and $u=v=0$ are local equations of C at q and, C is called a 1-curve for E_{j} at q.
5) q is a 1-point of E_{j} (which has local equation $u=0$ at q) and $v=w=0$ are local equations of C at q and, C is called a $\mathbf{0}^{+}$-curve for E_{j} at q.
If $q \in\left(C \cap V_{j}\right) \backslash E_{j}$, i.e., q is a 0 -point for E_{j}, there exist regular parameters u, v, w at q such that $u=v=0$ are local equations of C at q and C is called a 0 -curve for E_{j} at q.
2.3. Extended Strategy for the Proof. Suppose that $\varphi: X \rightarrow Y$ is a locally toroidal morphism of nonsingular 3 -folds with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$ and $\pi_{1}: Y_{1} \rightarrow Y$ is the blow up of a permissible center $Z \subset Y$ satisfying the conclusions 1), 2) of the Theorem 2.4. Then we will obtain

The locus of indeterminant points of the rational map $\pi_{1}^{-1} \circ \varphi$ is the set $W_{Z}(X)$ defined in Definition 2.9 below. Due to the toroidal forms of Proposition 2.2, we will describe $W_{Z}(X)$ explicitly in Proposition 2.10.

To resolve the indeterminancy of the rational map $X \rightarrow Y_{1}$, we will provide a careful algorithm for principalization of monomial ideals in Definition 2.11 so that the resulting morphism, after resolution of indeterminancy, is again locally toroidal. We must be very careful about how we principalize, as most resolutions of indeterminancy will not have this property - see Example 2.14.

Definition 2.9. Suppose that $\varphi: X \rightarrow Y$ is a dominant morphism of nonsingular varieties and $Z \subset Y$ is a nonsingular subvariety. Define

$$
\mathbf{W}_{\mathbf{Z}}(\mathbf{X})=\left\{\mathbf{p} \in \mathbf{X} \mid \mathcal{I}_{\mathbf{Z}} \mathcal{O}_{\mathbf{X}, \mathbf{p}} \text { is not invertible }\right\}
$$

where \mathcal{I}_{Z} is the ideal sheaf of Z in \mathcal{O}_{Y}.

Suppose that X is a 3 -fold. We will say that $W_{Z}(X)$ is SNC if the reduced ideal sheaf $\mathcal{I}_{W_{Z}(X)}$ has the property that for every close point $p \in W_{Z}(X)$, there are regular parameters x, y, z in $\mathcal{O}_{X, p}$ such that one of the following forms hold:
(N.1) $\mathcal{I}_{W_{Z}(X), p}=(x, y) \cap(x, z) \cap(y, z)$,
(N.2) $\mathcal{I}_{W_{Z}(X), p}=(x, z) \cap(y, z)$,
(N.3) $\mathcal{I}_{W_{Z}(X), p}=(x, z)$,
(N.4) $\mathcal{I}_{W_{Z}(X), p}=(x, y, z)$.

Proposition 2.10. Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3folds which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Let $Z \subset Y$ be a point q or a nonsingular curve C such that for all $j \in J, C \cap V_{j}$ makes SNCs with E_{j}. Then $W_{Z}(X)$ is SNC.

Proof. First, suppose that Z is a point $q \in Y$ and \mathcal{I}_{q} is the ideal sheaf of q in \mathcal{O}_{Y}. Since X is nonsingular we have the factorization $\mathcal{I}_{q} \mathcal{O}_{X}=\mathcal{J} \mathcal{K}$ where \mathcal{J} is an invertible ideal sheaf and $\operatorname{dim} \mathcal{O}_{X} / \mathcal{K}<\operatorname{dim} X-1$ (Lemma 15.8 [10]). Then $\sqrt{\mathcal{K}}=\mathcal{I}_{W_{q}(X)}$ and $\operatorname{Supp}\left(\mathcal{O}_{X} / \mathcal{K}\right)=W_{q}(X)$.

Let $p \in W_{q}(X)$ which is obviously contained in $\varphi^{-1}(q)$. Suppose that $p \in U_{j}$ for some $j \in J$.

If $q \notin E_{j}$, then φ is smooth at p since φ is locally toroidal. So there exist regular parameters x, y, z in $\mathcal{O}_{X, p}$ and regular parameters u, v, w in $\mathcal{O}_{Y, q}$ such that $u=x, v=y$ and $w=z$. Thus

$$
\mathcal{I}_{q} \mathcal{O}_{X, p}=(u, v, w) \mathcal{O}_{X, p}=(x, y, z)=\mathcal{K}_{p}
$$

and $\mathcal{I}_{W_{q}(X), p}=\sqrt{\mathcal{K}_{p}}=(x, y, z)$. So, (N.4) holds for p.
If $q \in E_{j}$ for some $j \in J$, then p must lie in $D_{j} \subset U_{j}$ and, since $\varphi_{j}: U_{j} \rightarrow V_{j}$ is toroidal with respect to E_{j} and D_{j}, by Proposition 2.2, one of the toroidal forms (T1) through (T6) holds.

Suppose that (T1) holds for $q \in E_{j}$ and $p \in W_{q}(X) \subseteq \varphi^{-1}(q) \subset D_{j}$, then there exist algebraic permissible parameters u, v, w at q for E_{j} and (formal) permissible parameters x, y, z at p for D_{j} such that p is a 3 -point of D_{j} with local equation $x y z=0, q$ is a 3-point for E_{j} with local equation $u v w=0$, and

$$
\begin{aligned}
u & =x^{a} y^{b} z^{c} \\
v & =x^{d} y^{e} z^{f} \\
w & =x^{g} y^{h} z^{i}
\end{aligned}
$$

where $a, b, c, d, e, f, g, h, i \in \mathbb{N}$ and $\operatorname{det}\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right) \neq 0$.
In addition, D_{j} is a SNC divisor on U_{j} and there exist regular parameters $\bar{x}, \bar{y}, \bar{z}$ in $\mathcal{O}_{X, p}$ such that $\bar{x} \bar{y} \bar{z}=0$ is a local equation of D_{j}. So there exists unit series $\delta_{x}, \delta_{y}, \delta_{z} \in \hat{\mathcal{O}}_{X, p}$ such that, after possibly interchanging the variables, $x=\delta_{x} \bar{x}, y=\delta_{y} \bar{y}$ and $z=\delta_{z} \bar{z}$.

Set $\delta_{u}=\delta_{x}^{a} \delta_{y}^{b} \delta_{z}^{c}, \delta_{v}=\delta_{x}^{d} \delta_{y}^{e} \delta_{z}^{f}$ and $\delta_{w}=\delta_{x}^{g} \delta_{y}^{h} \delta_{z}^{i}$. Then we have

$$
\begin{aligned}
u & =\delta_{u} \bar{x}^{a} \bar{y}^{b} \bar{z}^{c} \\
v & =\delta_{v} \bar{x}^{d} \bar{y}^{e} \bar{z}^{f} \\
w & =\delta_{w} \bar{x}^{g} \bar{y}^{h} \bar{z}^{i}
\end{aligned}
$$

In fact, δ_{u}, δ_{v} and δ_{w} are units in $\mathcal{O}_{X, p}$ since, for instance,

$$
\delta_{u}=\frac{u}{\bar{x}^{a} \bar{y}^{b} \bar{z}^{c}} \in Q F\left(\mathcal{O}_{X, p}\right) \cap \widehat{\mathcal{O}}_{X, p}=\mathcal{O}_{X, p}
$$

by Lemma 2.1 [5]. So, $\bar{u}=\delta_{u}^{-1} u, \bar{v}=\delta_{v}^{-1} v$ and $\bar{w}=\delta_{w}^{-1} w$ are regular algebraic permissible parameters at q and we have

$$
\mathcal{I}_{q} \mathcal{O}_{X, p}=(\bar{u}, \bar{v}, \bar{w}) \mathcal{O}_{X, p}=\left(\bar{x}^{a} \bar{y}^{b} \bar{z}^{c}, \bar{x}^{d} \bar{y}^{e} \bar{z}^{f}, \bar{x}^{g} \bar{y}^{h} \bar{z}^{i}\right)
$$

Let $d_{x}=\min \{a, d, g\}, d_{y}=\min \{b, e, h\}$ and $d_{z}=\min \{c, f, i\}$, then

$$
\mathcal{I}_{q} \mathcal{O}_{X, p}=\left(\bar{x}^{d_{x}} \bar{y}^{d_{y}} \bar{z}^{d_{z}}\right) \mathcal{K}_{p}
$$

Since $\mathcal{I}_{q} \mathcal{O}_{X, p}$ is a monomial ideal, so are \mathcal{K}_{p} and $\mathcal{I}_{W_{q}(X), p}=\sqrt{\mathcal{K}_{p}}$. Therefore, $\mathcal{I}_{W_{q}(X), p}$ must be one of the ideals in (N.1) through (N.4). Geometrically, there exists an affine neighborhood U_{p} of p such that $U_{p} \cap W_{q}(X)$ is a finite union of coordinate subspaces, i.e., vector subspaces of \mathfrak{k}^{n} defined by setting some subset of variables $\bar{x}, \bar{y}, \bar{z}$ equal to zero (page 440, Proposition 1. [12]).

The proof is similar when one of the forms (T2) through (T6) holds, also when Z is a nonsingular curve $C \subset Y$ such that, for all $j \in J, C \cap V_{j}$ makes SNCs with E_{j}.

Definition 2.11. Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3 -folds, which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Let $Z \subset Y$ be a point or a nonsingular curve C such that for all $j \in J, C \cap V_{j}$ makes SNCs with E_{j}. A principalization sequence of Z is a sequence

$$
\cdots \rightarrow X_{n} \xrightarrow{\lambda_{n}} X_{n-1} \rightarrow \cdots \rightarrow X_{i} \xrightarrow{\lambda_{i}} X_{i-1} \rightarrow \cdots X_{1} \xrightarrow{\lambda_{1}} X
$$

such that each $\lambda_{i}: X_{i} \rightarrow X_{i-1}$ is the blow up of a nonsingular curve or point in $W_{Z}\left(X_{i-1}\right)$ satisfying the following conditions.

1) $W_{Z}\left(X_{i}\right)$ is SNC for all i.
2) Since X is nonsingular, we have a factorization $\mathcal{I}_{Z} \mathcal{O}_{X}=\mathcal{J I}_{0}$ where \mathcal{I}_{Z} is the ideal sheaf of Z in $\mathcal{O}_{Y}, \mathcal{J}$ is an invertible ideal sheaf and $\operatorname{dim} \mathcal{O}_{X} / \mathcal{I}_{0}<\operatorname{dim} X-1$ (Lemma 15.8 [10]). Thus $\operatorname{Supp}\left(\mathcal{O}_{X} / \mathcal{I}_{0}\right)=$ $W_{Z}(X)$. Let \mathcal{I}_{i} be the weak transform of \mathcal{I}_{0} (page 65 [7]), so that $\operatorname{Supp}\left(\mathcal{O}_{X} / \mathcal{I}_{i}\right)=W_{Z}\left(X_{i}\right)$. Let

$$
r_{i}=\max \left\{\nu_{p}\left(\mathcal{I}_{i}\right) \mid p \in X_{i}\right\}
$$

where $\nu_{p}\left(\mathcal{I}_{i}\right)$ is the order of $\left(\mathcal{I}_{i}\right)_{p}$ in $\mathcal{O}_{X_{i}, p_{i}}$ (Definition A. 17 [7]). Then for all i, Z_{i} is an irreducible component of maximal dimension of

$$
\operatorname{Max}_{Z}\left(X_{i}\right)=\left\{p \in X_{i} \mid \nu_{p}\left(\mathcal{I}_{i}\right)=r_{i}\right\}
$$

Example 2.14 shows that we have to be careful in our construction of a principalization of an ideal sheaf in order to obtain a locally toroidal morphism. This is the reason for the condition 2) in the statement of Definition 2.11.

Definition 2.12. The composition of a principalization sequence and a toroidal form is called a quasi-toroidal form.

In Section 3, we will apply this algorithm to resolve the indeterminancy of the rational map $\pi_{1}^{-1} \circ \varphi: X \rightarrow Y_{1}$ considering Z to be different types of points (Definition 2.1) and different types of permissible curves (Remark-Definition 2.8). Meanwhile we will provide a thorough list of quasi-toroidal forms. We will see that any principalization sequence λ of Z which is actually a resolution of indeterminancy of $X \rightarrow Y_{1}$ is finite.

Then we will prove, in Section 4, that the induced morphism $\phi_{1}: X_{1} \rightarrow Y_{1}$ which gives the commutative diagram

is locally toroidal with respect to the modified local toroidal structure.
Iterative use of this process results in Theorem 2.13 below, which is proven in subsection 4.2. Finally, in the proof of our main result Theorem 1.2, we will prove that $\tilde{\varphi}$ constructed in Theorem 2.13 is actually our desired toroidal morphism.
Theorem 2.13. Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3folds which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Let \bar{E}_{j} be the Zariski closure of E_{j} in Y, and let $\tilde{E}_{0}=\left(\sum_{j \in J} \bar{E}_{j}\right)_{\text {red }}$. Then there exist proper birational morphisms $\pi: \widetilde{Y} \rightarrow Y$ and $\lambda: \widetilde{X} \rightarrow X$ such that \widetilde{Y} and \widetilde{X} are nonsingular, $\pi^{*}\left(\tilde{E}_{0}\right)_{\text {red }}$ is a SNC divisor on \widetilde{Y} and, $\tilde{\varphi}: \widetilde{X} \rightarrow \widetilde{Y}$ is locally toroidal with respect to $\widetilde{\mathcal{L}}=\left\{\tilde{U}_{j}, \tilde{D}_{j}, \tilde{V}_{j}, \tilde{E}_{j}\right\}_{J}$ where $\tilde{U}_{j}=\lambda^{-1}\left(U_{j}\right)$, $\tilde{V}_{j}=\pi^{-1}\left(V_{j}\right), \tilde{D}_{j}=\left(\left.\lambda\right|_{\tilde{U}_{j}}\right)^{*}\left(D_{j}\right)_{\text {red }}$ and $\tilde{E}_{j}=\left(\left.\pi\right|_{\tilde{V}_{j}}\right)^{*}\left(E_{j}\right)_{\text {red }}$. Furthermore, there exists a commutative diagram

such that each π_{i} is the blow up of a nonsingular center $Z_{i-1} \subset Y_{i-1}$ which is either a point or a curve, and each λ_{i} is a principalization sequence of Z_{i-1} with $W_{Z_{i-1}}\left(X_{i}\right)=\emptyset$.

Let $\Pi_{i}=\pi_{1} \circ \cdots \circ \pi_{i}: Y_{i} \rightarrow Y$ and $\Lambda_{i}=\lambda_{1} \circ \cdots \circ \lambda_{i}: X_{i} \rightarrow X$. For $j \in J$, let $V_{i, j}=\Pi_{i}^{-1}\left(V_{j}\right), \Pi_{i, j}=\left(\left.\Pi_{i}\right|_{V_{i, j}}\right): V_{i, j} \rightarrow V_{j}, E_{i, j}=\Pi_{i, j}^{*}\left(E_{j}\right)_{\text {red }}$, and let
$U_{i, j}=\Lambda_{i}^{-1}\left(U_{j}\right), \Lambda_{i, j}=\left(\left.\Lambda_{i}\right|_{U_{i, j}}\right): U_{i, j} \rightarrow U_{j}, D_{i, j}=\Lambda_{i, j}^{*}\left(D_{j}\right)_{\mathrm{red}}$. We further have that, for all i, j,

1) $D_{i, j}$ is a $S N C$ divisor on $U_{i, j}$ and $E_{i, j}$ is a $S N C$ divisor on $V_{i, j}$.
2) $\phi_{i}: X_{i} \rightarrow Y_{i}$ is locally toroidal w.r.t. $\mathcal{L}_{i}=\left\{U_{i, j}, D_{i, j}, V_{i, j}, E_{i, j}\right\}_{J}$.

Example 2.14. This example shows that if $\varphi: X \rightarrow Y$ is locally toroidal and $Z \subset Y$ is a nonsingular curve such that $C \cap V_{j}$ makes SNCs with E_{i} for all j, then most sequences of blow ups of points and nonsingular curves which principalize $\mathcal{I}_{Z} \mathcal{O}_{X}$ will not lead to a resolution of indeterminacy $\phi_{1}: X_{1} \rightarrow Y_{1}$ (where Y_{1} is the blow up of Z) such that ϕ_{1} is locally toroidal. This is why we need the restriction 2) of Definition 2.11. For our example, we consider the following germ of a locally toroidal map $\varphi: X \rightarrow Y$.

Suppose that C is a 2-curve at the point $q \in Y$ which is a 2-point of E_{j}. So, there exist algebraic permissible parameters u, v, w at q for E_{j} such that $u v=0$ is a local equation of E_{j} at q and $u=v=0$ are local equations of C at q. We consider $p \in \varphi^{-1}(q)$ to be a 2-point of D_{j} and that there exist (formal) permissible parameters x, y, z at p such that $x y=0$ is a local equation of D_{j} at p and

$$
u=x^{2} y, v=x y^{3}, w=z
$$

Suppose that $\pi: Y_{1} \rightarrow Y$ is the blow up of C, and we want to resolve the indeterminancy. We note that

$$
(u, v) \hat{\mathcal{O}}_{X, p}=\left(x^{2} y, x y^{3}\right)=(x y)\left(x, y^{2}\right)
$$

So, $W_{C}(X) \cap U_{j}$ contains the curve $x=y=0$. Now, the point p which has local equations $x=y=z=0$ makes SNCs with $W_{C}(X)$. If we blow it up to get $\lambda_{1}: X_{1} \rightarrow X$, we also have that $D_{1, j}=\left(\left.\lambda_{1}\right|_{U_{j}}\right)^{*}\left(D_{j}\right)_{\text {red }}$ is a SNC divisor on U_{j}.

Consider the point $p_{1} \in \lambda_{1}^{-1}(p)$ which has regular parameters x_{1}, y_{1}, z_{1} defined by

$$
x=x_{1}, y=x_{1} y_{1}, z=x_{1} z_{1}
$$

Then $D_{1, j}$ has the local equation $x_{1} y_{1}=0$ at p_{1}, so x_{1}, y_{1}, z_{1} are permissible parameters at p_{1}. Substituting into u, v, w, we obtain

$$
u=x_{1}^{3} y_{1}, v=x_{1}^{4} y_{1}^{3}, w=x_{1} z_{1}
$$

Thus the rational map $\phi_{1, j}: U_{1, j} \rightarrow V_{1, j}$ is a morphism at p_{1}, and $q_{1}=\phi_{1, j}\left(p_{1}\right)$ has regular parameters $u_{1}=u, v_{1}=\frac{v}{u}, w_{1}=w$. These are permissible parameters at q_{1} for $E_{1, j}=\left(\left.\pi\right|_{V_{j}}\right)^{*}\left(E_{j}\right)_{\text {red }}$ and $u_{1} v_{1}=0$ is a local equation of $E_{1, j}$ at q_{1}. However, local equations of $\phi_{1, j}$ at p_{1} are

$$
u_{1}=x_{1}^{3} y_{1}, v_{1}=x_{1} y_{1}^{2}, w_{1}=x_{1} z_{1}
$$

which is not toroidal with respect to $D_{1, j}$ and $E_{1, j}$.

3. Principalization

This Section is devoted to proving that any principalization sequence (Definition 2.11) of a permissible center Z in the resolution algorithm is finite. That is Theorem 3.3 and the proof is based on a detailed analysis of the principalization sequences of all types of permissible centers.

Suppose that $\varphi: X \rightarrow Y$ is a locally toroidal morphism of nonsingular 3 -folds with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Let

$$
\begin{equation*}
\cdots \rightarrow X_{n} \xrightarrow{\lambda_{n}} X_{n-1} \rightarrow \cdots \rightarrow X_{i} \xrightarrow{\lambda_{i}} X_{i-1} \rightarrow \cdots X_{1} \xrightarrow{\lambda_{1}} X \tag{P}
\end{equation*}
$$

be a principalization sequence of a point $q \in Y$ or a nonsingular curve $C \subset Y$ such that $C \cap V_{j}$ makes SNCs with E_{j} for all $j \in J$, and let $\Lambda_{i}=\lambda_{1} \circ \cdots \lambda_{i}$.
3.1. Analysis of Principalization Sequences of Points. In the following Lemma, we study the sequence (\mathcal{P}) for all possibilities of a center that is a point $q \in Y$ (Definition 2.1).

Lemma 3.1. Suppose $j \in J$ and $q \in V_{j}$. There exist algebraic permissible parameters u, v, w at q for E_{j} such that for all i, if $p \in\left(\varphi \circ \Lambda_{i}\right)^{-1}(q) \cap \Lambda_{i}^{-1}\left(U_{j}\right)$, then
I. $D_{i, j}=\left(\left.\Lambda_{i}\right|_{U_{j}}\right)^{*}\left(D_{j}\right)_{\text {red }}$ is a SNC divisor in a neighborhood of p, and there exist formal permissible parameters x, y, z at p for $D_{i, j}$ such that
(i) If q is a 3-point for E_{j}, and uvw $=0$ is a local equation of E_{j} at q, one of the following forms holds at p.
(qtı) p is a 3-point for $D_{i, j}, x y z=0$ is a local equation of $D_{i, j}$ at p and (T1) holds.
(qt2) p is a 2-point for $D_{i, j}, x y=0$ is a local equation of $D_{i, j}$ at p and (T2) holds.
(qt3) p is a 1-point for $D_{i, j}, x=0$ is a local equation of $D_{i, j}$ at p and (T3) holds.
(ii) If q is a 2-point for E_{j}, and $u v=0$ is a local equation of E_{j} at q, one of the following forms holds at p.
($\mathfrak{q t} 4$) p is a 2-point and $x y=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=x^{g} y^{h}(z+\alpha)
$$

with $a e-b d \neq 0, g \leqslant \min \{a, d\}, h \leqslant \min \{b, e\}$, and $\alpha \in \mathfrak{k}$.
$\left(\mathfrak{q} \mathfrak{t}_{5}\right) p$ is a 3-point and xyz=0 is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} y^{b} z^{c}, v=x^{d} y^{e} z^{f}, w=x^{g} y^{h} z^{i}
$$

where $g=\min \{a, d, g\}, h=\min \{b, e, h\}$ and $i=\min \{c, f, i\}$, and

$$
\operatorname{det}\left(\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right) \neq 0
$$

(qt6) p is a 1-point and $x=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a}, v=x^{d}(y+\alpha), w=x^{g}(z+\beta)
$$

with $a, d>0, \alpha, \beta \in \mathfrak{k}, \alpha \neq 0$ and $g \leqslant \min \{a, d\}$.
$(\mathfrak{q} 77) p$ is a 2-point and $x z=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} z^{a}, v=x^{d} z^{d}(y+\alpha), w=x^{g} z^{g+1}
$$

with $a, d>0,0 \neq \alpha \in \mathfrak{k}$ and $g+1 \leqslant \min \{a, d\}$.
(iii) If q is a 1-point for E_{j}, and $u=0$ is a local equation of E_{j} at q, one of the following forms holds at p.
$(\mathfrak{q t 8}) p$ is a 1-point and $x=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a}, v=x^{a^{\prime}}(y+\alpha), w=x^{a^{\prime}}(z+\beta)
$$

where $a, a^{\prime} \in \mathbb{N}$ satisfy $a>0$ and $a^{\prime} \leqslant a$, and $\alpha, \beta \in \mathfrak{k}$.
(qtg) p is a 2-point and $x y=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} y^{a}, v=x^{a^{\prime}} y^{a^{\prime}+1}, w=x^{a^{\prime}} y^{a^{\prime}+1}(z+\alpha)
$$

with $\alpha \in \mathfrak{k}$ and $a, a^{\prime} \in \mathbb{N}$ satisfy $a>0$ and $a^{\prime}+1 \leqslant a$.
$\left(\mathfrak{q t ı 0)} p\right.$ is a 2-point and $x z=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} z^{a}, v=x^{a^{\prime}} y z^{a^{\prime}+1}, w=x^{a^{\prime}} z^{a^{\prime}+1}
$$

where $a, a^{\prime} \in \mathbb{N}$ satisfy $a>0$ and $a^{\prime}+1 \leqslant a$.
(iv) If q is a 0-point for E_{j}, i.e., $q \in V_{j} \backslash E_{j}$, one of the following forms holds at p.
$(\mathfrak{q t ı l}) p$ is a 0-point for $D_{i, j}$, and $u=x, v=y, w=z$.
(qtı2) p is a 0-point for $D_{i, j}$, and

$$
u=x, v=x(y+\alpha), w=x(z+\beta) \text { with } \alpha, \beta \in \mathfrak{k}
$$

$\left(\mathfrak{q t 1 3)} p\right.$ is a 0-point for $D_{i, j}$, and

$$
u=x y, v=y, w=y(z+\alpha) \text { with } \alpha \in \mathfrak{k} .
$$

$\left(\mathfrak{q t 1 4)} p\right.$ is a 0-point for $D_{i, j}$, and $u=x z, v=y z, w=z$.
II. $W_{q}\left(X_{i}\right)$ is SNC for all i. Precisely, if $p \in W_{q}\left(X_{i}\right)$, then there exist (formal) permissible parameters x, y, z at p for $D_{i, j}$ such that one of the following possibilities holds. The weak transform of \mathcal{I}_{0} defined by 2) of Definition 2.11 on X_{i} is denoted by \mathcal{I}_{i} which satisfies $\sqrt{\mathcal{I}_{i}}=\mathcal{I}_{W_{q}\left(X_{i}\right)}$.
(qtı.np) We are in the case (qtı) and $\hat{\mathcal{I}}_{W_{q}\left(X_{i}\right), p}$ is one of the ideals (N.1) through (N.4).
(qt2.np) We are in the case (qt2) and $\hat{\mathcal{I}}_{W_{q}\left(X_{i}\right), p}=(x, y)$.
$(\mathfrak{q t} 4 . \mathfrak{n p})$ We are in the case (qt4) with equations

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=x^{g} y^{h} z
$$

where $a e-b d \neq 0$, and

$$
g<\min \{a, d\} \text { or } h<\min \{b, e\} \text { or }(a-d)(b-e)<0 .
$$

Then \mathcal{I}_{i} satisfies

$$
\hat{\mathcal{I}}_{i, p}=\left(x^{\min \{a-g, d-g\}}, z\right) \cap\left(x^{\max \{a-g, d-g\}}, y^{\max \{b-h, e-h\}}, z\right) \cap\left(y^{\min \{b-h, e-h\}}, z\right)
$$

In particular, if $g=\min \{a, d\}, h=\min \{b, e\}$,

$$
\hat{\mathcal{I}}_{i, p}=\left(x^{\max \{a-g, d-g\}}, y^{\max \{b-h, e-h\}}, z\right)
$$

Hence $\hat{\mathcal{I}}_{W_{q}\left(X_{i}\right), p}$ is one of the ideals (N.2), (N.3) or (N.4).
(qt6.np) We are in the case (qt6) with equations

$$
u=x^{a}, v=x^{d}(y+\alpha), w=x^{g} z
$$

where $0 \neq \alpha \in \mathfrak{k}$ and $g<\min \{a, d\}$. In addition, $\hat{\mathcal{I}}_{W_{q}\left(X_{i}\right), p}=(x, z)$.
(qt8.np) We are in the case (qt8) with equations

$$
u=x^{a}, v=x^{a^{\prime}} y, w=x^{a^{\prime}} z \text { and } a^{\prime}<a .
$$

Further, \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=\left(x^{a-a^{\prime}}, y, z\right)$ with $a-a^{\prime}>0$. Thus $\hat{\mathcal{I}}_{W_{q}\left(X_{i}\right), p}=$ (x, y, z).
(qtıl.np) We are in the case (qtıl), and \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=(x, y, z)=\hat{\mathcal{I}}_{W_{q}\left(X_{i}\right), p}$.
Proof. By Proposition 2.2 and Proposition 2.10, X satisfies the conclusions of the lemma. If we prove conclusion I, then, by an argument similar to that of Proposition 2.10, we will obtain conclusion II. So, it remains to show that conclusion I holds. Inductively, we assume that the conclusions hold for Λ_{i-1} and we prove them for Λ_{i}.

Suppose that $p \in\left(\varphi \circ \Lambda_{i}\right)^{-1}(q) \cap \Lambda_{i}^{-1}\left(U_{j}\right)=\lambda_{i}^{-1}\left(\left(\varphi \circ \Lambda_{i-1}\right)^{-1}(q) \cap \Lambda_{i-1}^{-1}\left(U_{j}\right)\right)$ and let $T_{i-1} \subseteq W_{q}\left(X_{i-1}\right)$ be the center of λ_{i}.

We can assume that $p \in \lambda_{i}^{-1}\left(T_{i-1}\right)$ since λ_{i} is an isomorphism out of the center, i.e., at points $p \in X_{i} \backslash \lambda_{i}^{-1}\left(T_{i-1}\right)$. Let $\bar{p}=\lambda_{i}(p) \in T_{i-1}$.

By the induction hypothesis, there exist formal permissible parameters $\bar{x}, \bar{y}, \bar{z}$ at \bar{p} for $D_{i-1, j}$ such that one of the cases ($\mathfrak{q t ı} \mathfrak{n p}$) through ($\mathfrak{q t ı n . n p}$) of the conclusion II of the lemma holds. All of the cases are similar. We will work out in detail the case when ($\mathfrak{q t 4}$.np) holds for \bar{p} (so $q \in V_{j}$ is a 2-point for E_{j}, \bar{p} is a 2-point for $D_{i-1, j}$, and we are in the case $\left.(\mathfrak{q t} 4)\right)$.

Suppose that $\left(\mathfrak{q t}_{4} \cdot \mathfrak{n p}\right)$ holds for \bar{p}, then, by the induction hypothesis, the weak transform \mathcal{I}_{i-1} of \mathcal{I}_{0} on X_{i-1} satisfies
$\hat{\mathcal{I}}_{i-1, \bar{p}}=\left(\bar{x}^{\min \{a-g, d-g\}}, \bar{z}\right) \cap\left(\bar{x}^{\max \{a-g, d-g\}}, \bar{y}^{\max \{b-h, e-h\}}, \bar{z}\right) \cap\left(\bar{y}^{\min \{b-h, e-h\}}, \bar{z}\right)$
where $a e-b d \neq 0$, and

$$
g<\min \{a, d\} \text { or } h<\min \{b, e\} \text { or }(a-d)(b-e)<0
$$

We note that $\hat{\mathcal{I}}_{i-1, \bar{p}}$ has order $r_{i-1}=1$ at \bar{p}. The center T_{i-1} is the point \bar{p} if and only if $\min \{a-g, d-g\}=\min \{b-h, e-h\}=0$, and then $\hat{\mathcal{I}}_{i-1, \bar{p}}=$ $\left(\bar{x}^{\max \{a-g, d-g\}}, \bar{y}^{\max \{b-h, e-h\}}, \bar{z}\right)$. In this case, $\bar{x}=\bar{y}=\bar{z}=0$ are clearly formal local equations of T_{i-1} at \bar{p}. Hence there exist permissible parameters x, y, z at $p \in \lambda_{i}^{-1}(\bar{p})$ for $D_{i, j}$ such that one of the following equations holds.
$(\mathfrak{p b ı})$

$$
\bar{x}=x, \bar{y}=x(y+\alpha), \bar{z}=x(z+\beta), \alpha, \beta \in \mathfrak{k} \text { or, }
$$

($\mathfrak{p b}_{2}$)

$$
\begin{gathered}
\bar{x}=x y, \bar{y}=y, \bar{z}=y(z+\alpha), \alpha \in \mathfrak{k} \text { or, } \\
\bar{x}=x z, \bar{y}=y z, \bar{z}=z
\end{gathered}
$$

However, if $g<\min \{a, d\}$, i.e., $\min \{a-g, d-g\}>0, r_{i-1}$ is 1 at all points of the curve with local equations $\bar{x}=\bar{z}=0$ at \bar{p}, or if $\min \{b-h, e-h\}>0$, this order is 1 at all points of the curve which has local equations $\bar{y}=\bar{z}=0$ at \bar{p}. Since T_{i-1} is an irreducible component of maximal dimension of $\operatorname{Max} W_{q}\left(X_{i-1}\right)$ due to condition 2) of Definition 2.11, and $W_{q}\left(X_{i-1}\right)$ is SNC, if $g<\min \{a, d\}$ or $h<\min \{b, e\}$, we have that T_{i-1} is a curve and either $\bar{x}=\bar{z}=0$, or $\bar{y}=\bar{z}=0$ are formal local equations of T_{i-1} at \bar{p}.

After possibly permuting \bar{x}, \bar{y}, we can assume that $g<\min \{a, d\}$ and $\bar{x}=$ $\bar{z}=0$ are local equations of T_{i-1} at \bar{p}. Thus there exist permissible parameters x, y, z at $p \in \lambda_{i}^{-1}(\bar{p})$ for $D_{i, j}$ such that one of the following equations holds.

$$
\begin{equation*}
\bar{x}=x, \bar{y}=y, \bar{z}=x(z+\alpha), \alpha \in \mathfrak{k} \text { or }, \tag{3}
\end{equation*}
$$

$\left(\mathfrak{c b}_{4}\right)$

$$
\bar{x}=x z, \bar{y}=y, \bar{z}=z
$$

Since T_{i-1} makes SNCs with $D_{i-1, j}$, we have that $D_{i, j}=\left(\left.\lambda_{i}\right|_{U_{i, j}}\right)^{*}\left(D_{i-1, j}\right)_{\mathrm{red}}$ is a SNC divisor.

Suppose that T_{i-1} is a point. This case only happen if $\min \{a-g, d-g\}=0$ and $\min \{b-h, e-h\}=0$, so that $g=\min \{a, d\}$ and $h=\min \{b, e\}$. In this case, since ($\mathfrak{q t} 4 . \mathfrak{n p})$ holds for \bar{p}, we must have $(a-d)(b-e)<0$. Then, after possibly interchanging \bar{x} and \bar{y} (as $\bar{y} \bar{x}=\bar{x} \bar{y}=0$ is a local equation of $D_{i-1, j}$ at \bar{p}, we must have $g=a=\min \{a, d\}, h=e=\min \{b, e\}, g<d$ and $h<b$ and so

$$
\begin{equation*}
g+h+1 \leq \min \{a+b, d+e\} . \tag{3.1}
\end{equation*}
$$

($\mathfrak{q t} 4 . \mathfrak{n p} .1)$ Suppose that $\left(\mathfrak{p b}_{1}\right)$ holds with $\alpha=\beta=0$. Then p is a 2-point of $D_{i, j}$ with local equation $x y=0$, and

$$
\begin{aligned}
u & =x^{a+b} y^{b} \\
v & =x^{d+e} y^{e} \\
w & =x^{g+h+1} y^{h} z
\end{aligned}
$$

where

$$
\operatorname{det}\left(\begin{array}{cc}
a+b & b \\
d+e & e
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
a & b \\
d & e
\end{array}\right) \neq 0
$$

So, we are in the case ($\mathfrak{q t}_{4}$) since (3.1) holds. (Similarly, if ($\mathfrak{p b}_{1}$) holds with $\alpha=0, \beta \neq 0$ or, $\left(\mathfrak{p b}_{2}\right)$ holds, we are in the case $\left(\mathfrak{q t}_{4}\right)$).
($\mathfrak{q t} 4 . \mathfrak{n p . 2)}$ If ($\mathfrak{p b}_{1}$) holds with $\alpha \neq 0, \beta=0$, then $x^{2}(y+\alpha)=0$ is a local equation of divisor whose support is $D_{i, j}$ and this implies that $x=0$ is a local equation of $D_{i, j}$ and p is a 1-point of $D_{i, j}$. In addition,

$$
\begin{aligned}
u & =x^{a+b}(y+\alpha)^{b} \\
v & =x^{d+e}(y+\alpha)^{e} \\
w & =x^{g+h+1}(y+\alpha)^{h} z
\end{aligned}
$$

where $a+b, d+e>0$ since $a e-b d \neq 0$. Hence

$$
\operatorname{det}\left(\begin{array}{cc}
a+b & 0 \\
g+h+1 & 1
\end{array}\right)=a+b>0
$$

and so, there exist (unique) $\gamma_{1}, \gamma_{2} \in \mathbb{Q}$ such that

$$
\left(\begin{array}{cc}
a+b & 0 \tag{3.2}\\
g+h+1 & 1
\end{array}\right)\binom{\gamma_{1}}{\gamma_{2}}=\binom{b}{h} .
$$

Then we can set

$$
\begin{aligned}
\tilde{x} & =x(y+\alpha)^{\gamma_{1}} \\
\tilde{z} & =z(y+\alpha)^{\gamma_{2}} \\
\tilde{\alpha} & =\alpha^{e-\gamma_{1}(d+e)} \\
\tilde{y} & =(y+\alpha)^{e-\gamma_{1}(d+e)}-\tilde{\alpha}
\end{aligned}
$$

which satisfy

$$
\begin{aligned}
\left|\begin{array}{lll}
\frac{\partial \tilde{x}}{\partial x} & \frac{\partial \tilde{x}}{\partial y} & \frac{\partial \tilde{x}}{\partial z} \\
\frac{\partial \tilde{y}}{\partial x} & \frac{\partial \tilde{y}}{\partial y} & \frac{\partial \tilde{y}}{\partial z} \\
\frac{\partial \tilde{z}}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial \tilde{z}}{\partial z}
\end{array}\right|_{(0,0,0)} & =\left|\begin{array}{ccc}
\alpha^{\gamma_{1}} & 0 & 0 \\
0 & \left(e-\gamma_{1}(d+e)\right) \alpha^{e-\gamma_{1}(d+e)-1} & 0 \\
0 & 0 & \alpha^{\gamma_{2}}
\end{array}\right| \\
& =\left(e-\gamma_{1}(d+e)\right) \alpha^{\gamma_{1}+\gamma_{2}+e-\gamma_{1}(d+e)-1} \neq 0
\end{aligned}
$$

since $\alpha \neq 0$ and $e-\gamma_{1}(d+e) \neq 0$. (Otherwise, if $e-\gamma_{1}(d+e)=0$, due to the first equation in (3.2), we have that

$$
\left(\begin{array}{cc}
a+b & b \\
d+e & e
\end{array}\right)\binom{\gamma_{1}}{-1}=\binom{0}{0}
$$

which contradicts $a e-b d \neq 0$).
So, we obtain permissible parameters $\tilde{x}, \tilde{y}, \tilde{z}$ at p for $D_{i, j}$ such that $\tilde{x}=0$ is a local equation of $D_{i, j}$ at p and

$$
\begin{aligned}
u & =\tilde{x}^{a+b} \\
v & =\tilde{x}^{d+e}(\tilde{y}+\tilde{\alpha}) \\
w & =\tilde{x}^{g+h+1} \tilde{z}
\end{aligned}
$$

with $a+b, d+e>0$ since $a e-b d \neq 0, \tilde{\alpha} \neq 0$ since $\alpha \neq 0$ and, $g+h+1 \leq$ $\min \{a+b, d+e\}$ due to (3.1). So, we are in the case (qt6).
($\mathfrak{q t} 4 . \mathfrak{n p} .3)$ If $(\mathfrak{p b ı})$ holds and both α, β are nonzero, then $x^{3}(y+\alpha)(z+\beta)=0$ is a local equation of a divisor whose support is $D_{i, j}$ which implies that $x=0$ is a local equation of $D_{i, j}$ at p and p is a 1-point of $D_{i, j}$. Further,

$$
\begin{aligned}
u & =x^{a+b}(y+\alpha)^{b} \\
v & =x^{d+e}(y+\alpha)^{e} \\
w & =x^{g+h+1}(y+\alpha)^{h}(z+\beta)
\end{aligned}
$$

where $a+b, d+e>0$ since $a e-b d \neq 0$. So, we can set

$$
\begin{aligned}
& \tilde{x}=x(y+\alpha)^{\frac{b}{a+b}} \\
& \tilde{\alpha}=\alpha^{-\left(\frac{b}{a+b}\right)(d+e)+e}=\alpha^{\frac{a e-b d}{a+b}} \\
& \tilde{y}=(y+\alpha)^{\frac{a e-b d}{a+b}}-\tilde{\alpha} \\
& \tilde{\beta}=\alpha^{-\left(\frac{b}{a+b}\right)(g+h+1)+h} \beta=\alpha^{\frac{(a h-b g)-b}{a+b}} \beta \\
& \tilde{z}=(y+\alpha)^{\frac{(a h-b g)-b}{a+b}}(z+\beta)-\tilde{\beta}
\end{aligned}
$$

which satisfy

$$
\begin{aligned}
\left|\begin{array}{lll}
\frac{\partial \tilde{x}}{\partial x} & \frac{\partial \tilde{x}}{\partial y} & \frac{\partial \tilde{x}}{\partial z} \\
\frac{\partial \tilde{z}}{\partial x} & \frac{\partial \tilde{y}}{\partial y} & \frac{\partial \tilde{\tilde{y}}}{\partial z} \\
\frac{\partial \tilde{z}}{\partial x} & \frac{\partial z}{\partial y} & \frac{\partial \tilde{z}}{\partial z}
\end{array}\right|_{(0,0,0)} & =\left|\begin{array}{ccc}
\alpha^{\frac{b}{a+b}} & 0 & 0 \\
0 & \left(\frac{a e-b d}{a+b}\right) \alpha^{\frac{a e-b d}{a+b}-1} & 0 \\
0 & \left(\frac{a h-b g-b}{a+b}\right) \alpha^{\frac{a h-b g-b}{a+b}-1} \beta & \alpha^{\frac{a h-b g-b}{a+b}}
\end{array}\right| \\
& =\left(\frac{a e-b d}{a+b}\right) \alpha^{\frac{a e-b d+a h-b g}{a+b}-1} \neq 0
\end{aligned}
$$

since $\alpha \neq 0$ and $a e-b d \neq 0$.
Therefore, we obtain permissible parameters $\tilde{x}, \tilde{y}, \tilde{z}$ at p for $D_{i, j}$ such that $\tilde{x}=0$ is a local equation of $D_{i, j}$ at p and

$$
\begin{aligned}
u & =\tilde{x}^{a+b} \\
v & =\tilde{x}^{d+e}(\tilde{y}+\tilde{\alpha}) \\
w & =\tilde{x}^{g+h+1}(\tilde{z}+\tilde{\beta})
\end{aligned}
$$

with $a+b, d+e>0$ since $a e-b d \neq 0, \tilde{\alpha}, \tilde{\beta} \neq 0$ since $\alpha, \beta \neq 0$ and, $g+h+1 \leq$ $\min \{a+b, d+e\}$ due to (3.1). So, we are in the case (qt6).
($\left.\mathfrak{q t}_{4} \cdot \mathfrak{n p} .4\right)$ If $\left(\mathfrak{p b}_{3}\right)$ holds, then p is a 3 -point of $D_{i, j}$ with local equation $x y z=0$ and,

$$
\begin{aligned}
u & =x^{a} y^{b} z^{a+b} \\
v & =x^{d} y^{e} z^{d+e} \\
w & =x^{g} y^{h} z^{g+h+1}
\end{aligned}
$$

where

$$
\operatorname{det}\left(\begin{array}{ccc}
a & b & a+b \\
d & e & d+e \\
g & h & g+h+1
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
g & h & 1
\end{array}\right)=a e-b d \neq 0
$$

$g \leq \min \{a, d\}$ and $h \leq \min \{b, e\}$ since ($\mathfrak{q t} 4 \cdot \mathfrak{n p}$) holds for \bar{p}, and $g+h+1 \leq$ $\min \{a+b, d+e\}$ due to (3.1). So, we are in the case (qt5).

Now, suppose that T_{i-1} is the curve with local equations $\bar{x}=\bar{z}=0$ at \bar{p} (so that $g<\min \{a, d\})$. Then one of the equations $\left(\mathfrak{c b}_{3}\right)$, or ($\mathfrak{c b}_{4}$) holds.
($\mathfrak{q t} 4 . \mathfrak{n p . 5}$) Suppose that $\left(\mathfrak{c b}_{3}\right)$ holds, then p is a 2 -point of $D_{i, j}$ with local equation $x y=0$ and,

$$
\begin{aligned}
u & =x^{a} y^{b} \\
v & =x^{d} y^{e} \\
w & =x^{g+1} y^{h}(z+\alpha)
\end{aligned}
$$

where $a e-b d \neq 0, g+1 \leq \min \{a, d\}$ since $g<\min \{a, d\}, h \leq \min \{b, e\}$ and $\alpha \in \mathfrak{k}$. So, we are in the case ($\mathfrak{q t}_{4}$).
(qt4.np.6) If ($\mathfrak{c b}_{4}$) holds, then p is a 3 -point of $D_{i, j}$ with local equation $x y z=0$ and,

$$
\begin{aligned}
u & =x^{a} y^{b} z^{a} \\
v & =x^{d} y^{e} z^{d} \\
w & =x^{g} y^{h} z^{g+1}
\end{aligned}
$$

where $g \leq \min \{a, d\}, h \leq \min \{b, e\}$, and $g+1 \leq \min \{a, d\}$ since $g<\min \{a, d\}$. So, we are in the case ($\mathfrak{q t 5 \text {). }}$

Therefore, in the case when ($\mathfrak{q t} 4 . \mathfrak{n p})$ holds for \bar{p}, and similarly, in other cases, the conclusion I of the lemma holds for all i. In all the cases, we have that $W_{q}\left(X_{i}\right)$ is SNC, by an argument similar to that of Proposition 2.10.
3.2. Analysis of Principalization Sequences of Curves. In the following Lemma, we study the sequence (\mathcal{P}) for all possibilities of a permissible center that is a nonsingular curve $C \subset Y$ - see Remark-Definition 2.8.

Lemma 3.2. Suppose that $j \in J$ and $q \in C \cap V_{j}$. There exist algebraic permissible parameters u, v, w at q for E_{j} such that for all i, if p lies in $(\varphi \circ$ $\left.\Lambda_{i}\right)^{-1}(q) \cap \Lambda_{i}^{-1}\left(U_{j}\right)$, then
I. $D_{i, j}=\left(\left.\Lambda_{i}\right|_{U_{j}}\right)^{*}\left(D_{j}\right)_{\text {red }}$ is a SNC divisor in a neighborhood of p, and there exist formal permissible parameters x, y, z at p for $D_{i, j}$ such that
(i) If q is a 3-point for E_{j} and $u v w=0$ is a local equation of E_{j} at q, and C is a 2^{+}-curve for E_{j} at q such that $u=v=0$ are local equations of C at q, then one of the quasi-toroidal forms ($\mathfrak{q} \mathfrak{t}_{1}$), ($\mathfrak{q t 2)}$ or ($\mathfrak{q} \mathfrak{t}_{3}$) of Lemma 3.1 holds at p.
(ii) If q is a 2-point for E_{j} and $u v=0$ is a local equation of E_{j} at q, and C is a 2-curve for E_{j} at q such that $u=v=0$ are local equations of C at q, then one of the following forms holds at p.
(qtı5) p is a 2-point and $x y=0$ is a local equation of $D_{i, j}$ at p and (T4) holds.
$\left(\mathfrak{q t ı 6)} p\right.$ is a 1-point and $x=0$ is a local equation of $D_{i, j}$ at p and (T5) holds.
(iii) If q is a 2-point for E_{j} and $u v=0$ is a local equation of E_{j} at q, and C is a 1^{+}-curve for E_{j} at q such that $u=w=0$ are local equations of C at q, then one of the following forms holds at p.
(qtı7) p is a 2-point and $x y=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=x^{g} y^{h}(z+\alpha)
$$

with $a e-b d \neq 0$ and $g \leqslant a, h \leqslant b$ and, $\alpha \in \mathfrak{k}$.
(qtı8) p is a 3-point and xyz $=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} y^{b} z^{c}, v=x^{d} y^{e} z^{f}, w=x^{g} y^{h} z^{i}
$$

where $g \leqslant a, h \leqslant b$ and $i \leqslant c$ and $\operatorname{det}\left(\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right) \neq 0$.
(qt19) p is a 1-point and $x=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a}, v=x^{d}(y+\alpha), w=x^{g}(z+\beta)
$$

where $a, d>0, \alpha, \beta \in \mathfrak{k}, \alpha \neq 0$ and $g \leqslant a$.
$\left(\mathfrak{q t 2 0)} p\right.$ is a 2-point and $x z=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} z^{a}, v=x^{d} z^{d}(y+\alpha), w=x^{g} z^{g+1}
$$

with $a, d>0,0 \neq \alpha \in \mathfrak{k}$ and $g+1 \leqslant a$.
(iv) If q is a 1-point for E_{j} and $u=0$ is a local equation of E_{j} at q, and C is a 1-curve for E_{j} at q such that $u=v=0$ are local equations of C at q, then one of the following forms holds at p.
$(\mathfrak{q t 2 1}) p$ is a 1-point and $x=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a}, v=x^{a^{\prime}}(y+\alpha), w=z
$$

where $a, a^{\prime} \in \mathbb{N}$ satisfy $a>0$ and $a^{\prime} \leqslant a$, and $\alpha \in \mathfrak{k}$.
(qt22) p is a 2-point and $x y=0$ is a local equation of $D_{i, j}$ at p, and

$$
u=x^{a} y^{a}, v=x^{a^{\prime}} y^{a^{\prime}+1}, w=z
$$

where $a, a^{\prime} \in \mathbb{N}$ satisfy $a>0$ and $a^{\prime}+1 \leqslant a$.
(v) If q is a 1-point for E_{j} and $u=0$ is a local equation of E_{j} at q, and C is a 0^{+}-curve for E_{j} at q such that $v=w=0$ are local equations of C at q, then one of the following forms holds at p.
(qt23) p is a 1-point for $D_{i, j}, x=0$ is a local equation of $D_{i, j}$ at p and (T6) holds.
(qt24) p is a 1-point for $D_{i, j}, x=0$ is a local equation of $D_{i, j}$ at p and,

$$
u=x^{a}, v=y, w=y(z+\alpha) \text { with } a>0 \text { and } \alpha \in \mathfrak{k} .
$$

$\left(\mathfrak{q t 2 5)} p\right.$ is a 1-point for $D_{i, j}, x=0$ is a local equation of $D_{i, j}$ at p and,

$$
u=x^{a}, v=y z, w=z \text { with } a>0
$$

(vi) If q is a 0-point for E_{j}, i.e., $q \in\left(C \cap V_{j}\right) \backslash E_{j}$, and C is a 0-curve for E_{j} at q such that $u=v=0$ are local equations of C at q, then (qtil) or one of the following forms holds at p.
(qt26) p is a 0-point for $D_{i, j}$ and $u=x, v=x(y+\alpha), w=z$ with $\alpha \in \mathfrak{k}$.
(qt27) p is a 0-point for $D_{i, j}$ and $u=x y, v=y, w=z$.
II. $W_{C}\left(X_{i}\right)$ is SNC for all i. Precisely, if $p \in W_{C}\left(X_{i}\right)$, then there exist (formal) permissible parameters x, y, z at p (for $D_{i, j}$) such that one of the following possibilities holds. The weak transform of \mathcal{I}_{0} defined by 2) of Definition 2.11 on X_{i} is denoted by \mathcal{I}_{i} which satisfies $\sqrt{\mathcal{I}_{i}}=\mathcal{I}_{W_{C}\left(X_{i}\right)}$.
$(\mathfrak{q t u} . \mathfrak{c n p})$ We are in the case (a.1) with $(a-d)(b-e)<0$ or, $(a-d)(c-f)<0$ or, $(b-e)(c-f)<0$. Further, at most two of these three conditions can hold and, after possibly permuting the parameters x, y, z, we can assume $(a-d)(b-e)<0$ and $(a-d)(c-f) \leqslant 0$. Then \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=\left(x^{|a-d|}, y^{|b-e|} z^{|c-f|}\right)=\left(x^{|a-d|}, y^{|b-e|}\right) \cap\left(x^{|a-d|}, z^{|c-f|}\right)$.
$(\mathfrak{q t 2 . c n p})$ We are in the case (a.2) with $(a-d)(b-e)<0$, and \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=\left(x^{|a-d|}, y^{|b-e|}\right)$.
(qti5.np) We are in the case (b.1) with equations

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=z
$$

where $(a-d)(b-e)<0$. Further, \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=\left(x^{|a-d|}, y^{|b-e|}\right)$.
(qtı7.np) We are in the case (c.1) with equations

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, w=x^{g} y^{h} z
$$

where $g<a$ or $h<b$ and, $a e-b d \neq 0$. So, \mathcal{I}_{i} satisfies

$$
\hat{\mathcal{I}}_{i, p}=\left(x^{a-g}, z\right) \cap\left(y^{b-h}, z\right)
$$

with $a-g>0$ or $b-h>0$.
(qtı9.np) We are in the case (c.3) with equations

$$
u=x^{a}, v=x^{d}(y+\alpha), w=x^{g} z
$$

where $a, d>0,0 \neq \alpha \in \mathfrak{k}, g<a$, and \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=\left(x^{a-g}, z\right)$ with $a-g>0$.
(qt2l.np) We are in the case (d.1) with equations

$$
u=x^{a}, v=x^{a^{\prime}} y, w=z
$$

and $a^{\prime}<a$. In addition, \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=\left(x^{a-a^{\prime}}, y\right)$ with $a-a^{\prime}>0$.
(qt23.np) We are in the case (e.1), and \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=(y, z)$.
(qtıl.cnp) We are in the case (f.1), and \mathcal{I}_{i} satisfies $\hat{\mathcal{I}}_{i, p}=(x, y)$.
Proof. The proof is completely similar to that of Lemma 3.1. By Proposition 2.2 , after changing the parameters u, v, w, if necessary, X satisfies the conclusion I of the lemma. Conclusion II also holds for X by Proposition 2.10. If we prove conclusion I, then, by an argument similar to that of Proposition 2.10, we will obtain conclusion II. So, it remains to show that conclusion I holds. Inductively, we assume that the conclusions hold for Λ_{i-1} and we prove them for Λ_{i}.

Suppose that $p \in\left(\varphi \circ \Lambda_{i}\right)^{-1}(q) \cap \Lambda_{i}^{-1}\left(U_{j}\right)=\lambda_{i}^{-1}\left(\left(\varphi \circ \Lambda_{i-1}\right)^{-1}(q) \cap \Lambda_{i-1}^{-1}\left(U_{j}\right)\right)$ and let $T_{i-1} \subseteq W_{C}\left(X_{i-1}\right)$ be the center of λ_{i}.

We can assume that $p \in \lambda_{i}^{-1}\left(T_{i-1}\right)$ since λ_{i} is an isomorphism out of the center, i.e., at points $p \in X_{i} \backslash \lambda_{i}^{-1}\left(T_{i-1}\right)$. Let $\bar{p}=\lambda_{i}(p) \in T_{i-1}$. By the
induction hypothesis, there exist formal permissible parameters $\bar{x}, \bar{y}, \bar{z}$ at \bar{p} for $D_{i-1, j}$ such that one of the cases (qtı.cnp) through (qtıl.cnp) of conclusion II of the lemma holds. All of the cases are similar. We will work out in detail the case when ($\mathfrak{q t 2 3 . n p}$) holds for \bar{p} (so $q \in C \cap V_{j}$ is a 1-point for E_{j}, C is a 0^{+}-curve for E_{j} at q, and \bar{p} is a 1-point for $D_{i-1, j}$, and we are in the case (qt23)).

Suppose that ($\mathfrak{q t 2 3 . n p}$) holds for \bar{p}, then, by the induction hypothesis, the weak transform \mathcal{I}_{i-1} of \mathcal{I}_{0} on X_{i-1} satisfies $\hat{\mathcal{I}}_{i-1, \bar{p}}=(\bar{y}, \bar{z})$.

We note that $\hat{\mathcal{I}}_{i-1, \bar{p}}$ has order 1 at \bar{p} as well as all points of the curve that has local equations $\bar{y}=\bar{z}=0$ at \bar{p}. Since T_{i-1} must be an irreducible component of maximal dimension of $\operatorname{Max} W_{C}\left(X_{i-1}\right)$ due to condition 2) of Definition 2.11, we have that T_{i-1} is a curve and $\bar{y}=\bar{z}=0$ are local equations of T_{i-1} at \bar{p}. Thus there exist permissible parameters x, y, z for $D_{i, j}$ at $p \in \lambda_{i}^{-1}(\bar{p})$ such that one of the following equations hold.

$$
\begin{equation*}
\bar{x}=x, \bar{y}=y, \bar{z}=y(z+\alpha), \alpha \in \mathfrak{k} \text { or }, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\bar{x}=x, \bar{y}=y z, \bar{z}=z \tag{cb6}
\end{equation*}
$$

In addition, since T_{i-1} makes SNCs with $D_{i-1, j}$, we have that $D_{i, j}=$ $\left(\left.\lambda_{i}\right|_{U_{i, j}}\right)^{*}\left(D_{i-1, j}\right)_{\text {red }}$ is a SNC divisor.

By substituting ($\mathfrak{c b}_{5}$) and ($\mathfrak{c b 6}$) in ($\mathfrak{q t 2 3 . n p}$), we obtain ($\mathfrak{q t 2 4)}$ and ($\mathfrak{q t 2 5) ~}$ respectively, and in both cases $x=0$ is a local equation of $D_{i, j}$ at p.

Therefore, in the case when ($\mathfrak{q t 2 3 . n p}$) holds for \bar{p}, and similarly, in other cases, the conclusion I of the lemma holds for all i. In all the cases, we have that $W_{C}\left(X_{i}\right)$ is SNC, by an argument similar to that of Proposition 2.10.
3.3. Principalization Sequences Are Finite. In this subsection we prove the following theorem, that is, any principalization sequence is finite.

Theorem 3.3. Suppose that $\varphi: X \rightarrow Y$ is a morphism of nonsingular 3-folds, which is locally toroidal with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$. Let $Z \subset Y$ be a point or a nonsingular curve C such that $C \cap V_{j}$ makes $S N C s$ with E_{j} for all $j \in J$. Then any principalization sequence of Z, obtained by successive blow ups of centers satisfying the conditions of Definition 2.11, will terminate after a finite number $n \geqslant 0$ of blow ups with $W_{Z}\left(X_{n}\right)=\emptyset$.

Proof. We will show that any principalization sequence must terminate with $W_{Z}\left(X_{n}\right)=\emptyset$ after some finite number n of iterations.

Suppose that the algorithm of Definition 2.11 does not end in a finite number of steps with $W_{Z}\left(X_{n}\right)=\emptyset$. Then the algorithm produces an infinite sequence

$$
\cdots \rightarrow X_{n} \xrightarrow{\lambda_{n}} X_{n-1} \rightarrow \cdots \rightarrow X_{1} \xrightarrow{\lambda_{1}} X
$$

and there exist $r>0$, a positive integer n_{0} and $p_{n} \in X_{n}$ for $n \geq n_{0}$ such that for all $n \geq n_{0}, \lambda_{n+1}\left(p_{n+1}\right)=p_{n}$ and $\nu_{p_{n}}\left(\mathcal{I}_{n}\right)=r$ by Lemma 6.4 [7] where \mathcal{I}_{n} is the weak transform of \mathcal{I}_{0} on X_{n} and $\sqrt{\mathcal{I}_{n}}=\mathcal{I}_{W_{Z}\left(X_{n}\right)}$, and \mathcal{I}_{0} is defined by 2) of Definition 2.11.

Let $R_{i}=\hat{\mathcal{O}}_{X_{n_{0}+i}, p_{n_{0}+i}}$ and $J_{i}=\left(\mathcal{I}_{n_{0}+i}\right)_{p_{n_{0}+i}} R_{i}$ for $i \geq 0$. We have that $\nu_{R_{i}}\left(J_{i}\right)=r$ for all i. Without loss of generality, we may reindex the R_{i} so that $R_{i} \neq R_{i+1}$ for all i and we have an induced sequence

$$
\begin{equation*}
R_{0} \rightarrow R_{1} \rightarrow R_{2} \rightarrow \cdots \tag{3.3}
\end{equation*}
$$

We can show that this leads to a contradiction, by considering how the quasi toroidal forms of $\varphi \circ \Lambda_{i}$ transform under blowups. All of the cases are similar. We will work out in detail the most involved case which is when $\varphi \circ \Lambda_{n_{0}}$ has the quasi toroidal form $(\mathfrak{q t ı})$ of the conclusions of Lemma 3.1 at $p_{n_{0}}$ (so the center Z is a point $q \in Y)$. We assume that this is the case, and we will derive a contradiction.

There are regular parameters x_{0}, y_{0}, z_{0} in R_{0} such that

$$
\mathcal{I}_{q} R_{0}=\left(x_{0}^{a} y_{0}^{b} z_{0}^{c}, x_{0}^{d} y_{0}^{e} z_{0}^{f}, x_{0}^{g} y_{0}^{h} z_{0}^{i}\right)
$$

Let $d_{x}=\min \{a, d, g\}, d_{y}=\min \{b, e, h\}$ and $d_{z}=\min \{c, f, i\}$. Then

$$
J_{0}=\frac{1}{x_{0}^{d_{x}} y_{0}^{d_{y}} z_{0}^{d_{z}}} \mathcal{I}_{q} R_{0}=\left(x_{0}^{a^{\prime}} y_{0}^{b^{\prime}} z_{0}^{c^{\prime}}, x_{0}^{d^{\prime}} y_{0}^{e^{\prime}} z_{0}^{f^{\prime}}, x_{0}^{g^{\prime}} y_{0}^{h^{\prime}} z_{0}^{i^{\prime}}\right)
$$

where $a^{\prime}=a-d_{x}, b^{\prime}=b-d_{y}, c^{\prime}=c-d_{z}, d^{\prime}=d-d_{x}, e^{\prime}=e-d_{y}, f^{\prime}=f-d_{z}$, $g^{\prime}=g-d_{x}, h^{\prime}=h-d_{y}$ and $i^{\prime}=i-d_{z}$. After permuting $x_{0}^{a^{\prime}} y_{0}^{b^{\prime}} z_{0}^{c^{\prime}}$ and $x_{0}^{d^{\prime}} y_{0}^{e^{\prime}} z_{0}^{f^{\prime}}$ and $x_{0}^{g^{\prime}} y_{0}^{h^{\prime}} z_{0}^{i^{\prime}}$, we may assume that

$$
r=\nu_{R_{0}}\left(J_{0}\right)=\operatorname{ord}\left(x_{0}^{a^{\prime}} y_{0}^{b^{\prime}} z_{0}^{c^{\prime}}\right)=a^{\prime}+b^{\prime}+c^{\prime} \geq 1
$$

So, after permuting x_{0}, y_{0}, z_{0}, we can assume that $c^{\prime}>0$. Hence

$$
\frac{\partial^{r-1}}{\partial x_{0}^{a^{\prime}} \partial y_{0}^{b^{\prime}} \partial z_{0}^{c^{\prime}-1}} x_{0}^{a^{\prime}} y_{0}^{b^{\prime}} z_{0}^{c^{\prime}}=a^{\prime}!b^{\prime}!\left(c^{\prime}-1\right)!z_{0} \in \hat{\Delta}^{r-1}\left(J_{0}\right)
$$

Thus $H=\mathbf{V}\left(z_{0}\right) \subset \operatorname{Spec}\left(R_{0}\right)$ is a nonsingular hypersurface such that $\mathcal{I}_{H}=\left(z_{0}\right)$ is contained in $\hat{\Delta}^{r-1}\left(J_{0}\right)$ (Definition $\left.6.1[7]\right)$. By Lemma $6.21[7], H$ satisfies the conditions of Definition 6.7 [7] and $z_{0}=0$ is a formal hypersurface of maximal contact for $\operatorname{Sing}\left(J_{0}, r\right)$. So each R_{i} has regular parameters x_{i}, y_{i}, z_{i} such that one of the following equations holds.

$$
\begin{gather*}
x_{i}=x_{i+1}, y_{i}=x_{i+1}\left(y_{i+1}+\alpha_{i+1}\right), z_{i}=x_{i+1} z_{i+1}, \alpha_{i+1} \in \mathfrak{k} \text { or, } \tag{3.4}\\
x_{i}=x_{i+1} y_{i+1}, y_{i}=y_{i+1}, z_{i}=y_{i+1} z_{i+1} \tag{3.5}
\end{gather*}
$$

if T_{i} is the point p_{i},

$$
\begin{equation*}
x_{i}=x_{i+1}, y_{i}=y_{i+1}, z_{i}=x_{i+1} z_{i+1} \tag{3.6}
\end{equation*}
$$

if T_{i} is the curve with the formal local equations $x_{i}=z_{i}=0$ at p_{i} and

$$
\begin{equation*}
x_{i}=x_{i+1}, y_{i}=y_{i+1}, z_{i}=y_{i+1} z_{i+1} \tag{3.7}
\end{equation*}
$$

if T_{i} is the curve with the formal local equations $y_{i}=z_{i}=0$ at p_{i}.

Let $S_{i}=R_{i} / z_{i} R_{i}$ so that S_{i} has regular parameters x_{i}, y_{i}, and (3.3) induces an infinite sequence

$$
S_{0} \rightarrow S_{1} \rightarrow S_{2} \rightarrow \cdots
$$

Let $K_{0}=C\left(J_{0}\right)$ be the coefficient ideal of J_{0} on H (Definition 6.22 [7]) and inductively define

$$
K_{i+1}=\frac{1}{h^{r!}} K_{i} S_{i+1} \text { for } i \geq 0
$$

where $h=0$ is a local equation of the exceptional locus of $\operatorname{Spec}\left(S_{i+1}\right) \rightarrow$ $\operatorname{Spec}\left(S_{i}\right)$. (If (3.4) or (3.6) holds, then $h=x_{i+1}$ and if (3.5) or (3.7) holds then $\left.h=y_{i+1}\right)$.

By formula (6.17) [7], we have that

$$
\operatorname{Sing}\left(K_{i}, r!\right)=\operatorname{Sing}\left(J_{i}, r\right)
$$

in particular, $\nu_{S_{i}}\left(K_{i}\right) \geq r$! for all i. In addition, K_{i} is a principal ideal for $i \gg 0$ by Theorem 4.11 [7], so there exist n_{1} and a_{i}, b_{i} such that $K_{i}=\left(x_{i}^{a_{i}} y_{i}^{b_{i}}\right)$ for $i \geq n_{1}$. We now establish the formula

$$
\begin{equation*}
a_{i+1}+b_{i+1}<a_{i}+b_{i} \tag{3.8}
\end{equation*}
$$

for $i \geq n_{1}$ which leads to contradiction.
First suppose that there are infinitely many i such that λ_{i+1} is the blow up of the point p_{i}. For these $i, S_{i+1} \rightarrow S_{i}$ is a quadratic transform and we have equations

$$
x_{i}=x_{i+1}, y_{i}=x_{i+1}\left(y_{i+1}+\alpha_{i+1}\right) \text { or } x_{i}=x_{i+1} y_{i+1}, y_{i}=y_{i+1} .
$$

Note that by the algorithm (Definition 2.11), we only blow up the point p_{i} if

$$
\nu_{\left(R_{i}\right)_{\left(x_{i}, z_{i}\right)}}\left(J_{i}\right)<r \text { and } \nu_{\left.\left(R_{i}\right)_{\left(y_{i}, z_{i}\right)}\right)}\left(J_{i}\right)<r,
$$

and the conditions $\nu_{\left(R_{i}\right)_{\left(x_{i}, z_{i}\right)}}\left(J_{i}\right)<r$ and $\nu_{\left(S_{i}\right)_{\left(x_{i}\right)}}\left(K_{i}\right)<r$! are equivalent by formula (6.17) [7], also $\nu_{\left(R_{i}\right)_{\left(y_{i}, z_{i}\right)}}\left(J_{i}\right)<r$ and $\nu_{\left(S_{i}\right)_{\left(y_{i}\right)}}\left(K_{i}\right)<r$! are equivalent. Thus if we blow up the point p_{i}, then $K_{i}=\left(x_{i}^{a_{i}} y_{i}^{b_{i}}\right)$ with $a_{i}=\nu_{\left(S_{i}\right)_{\left(x_{i}\right)}}\left(K_{i}\right)<r$! and $b_{i}=\nu_{\left(S_{i}\right)_{\left(y_{i}\right)}}\left(K_{i}\right)<r$!. Further, (3.4) or (3.5) holds. If (3.4) holds, then

$$
K_{i+1}=\left(x_{i+1}^{a_{i}+b_{i}-r!}\left(y_{i+1}+\alpha_{i+1}\right)^{b_{i}}\right), \alpha_{i+1} \in \mathfrak{k}
$$

If $\alpha_{i+1} \neq 0$, then $K_{i+1}=\left(x_{i+1}^{a_{i}+b_{i}-r!}\right)$ and we have $a_{i+1}=a_{i}+b_{i}-r!$ and $b_{i+1}=0$ and clearly (3.8) holds.

If $\alpha_{i+1}=0$, we have $a_{i+1}=a_{i}+b_{i}-r!$ and $b_{i+1}=b_{i}$, and

$$
a_{i+1}+b_{i+1}=a_{i}+b_{i}-r!+b_{i}=\left(a_{i}+b_{i}\right)-\left(r!-b_{i}\right)<a_{i}+b_{i}
$$

which establishes (3.8). If (3.5) holds, then the same argument shows that (3.8) also holds.

Now, suppose that there are infinitely many i such that λ_{i+1} is the blow up of a curve containing p_{i}. By the algorithm, we only blow up a curve if $\nu_{\left(R_{i}\right)_{\left(x_{i}, z_{i}\right)}}\left(J_{i}\right)=r$ or $\nu_{\left(R_{i}\right)_{\left(y_{i}, z_{i}\right)}}\left(J_{i}\right)=r$ (equivalently, $a_{i}=\nu_{\left(S_{i}\right)_{\left(x_{i}\right)}}\left(K_{i}\right)=r$! or $\left.b_{i}=\nu_{\left(S_{i}\right)_{\left(y_{i}\right)}}\left(K_{i}\right)=r!\right)$.

If local equations of T_{i} at p_{i} are $x_{i}=z_{i}=0$, so that (3.6) holds, then $\nu_{\left(R_{i}\right)_{\left(x_{i}, z_{i}\right)}}\left(J_{i}\right)=r$, and

$$
K_{i+1}=\left(x_{i+1}^{a_{i}-r!} y_{i+1}^{b_{i}}\right)
$$

and (3.8) holds. A similar argument shows that if local equations of T_{i} at p_{i} are $y_{i}=z_{i}=0$, so that (3.7) holds, then (3.8) also holds.

But (3.8) is in contradiction to the assumption $p_{i} \in \operatorname{Sing}\left(K_{i}, r!\right)$ for all i, which implies that $a_{i}+b_{i} \geq r$! for all i. Therefore, $W_{Z}\left(X_{n}\right)=\emptyset$ after some finite number n of iterations, in the case when $\varphi \circ \Lambda_{n_{0}}$ has quasi-toroidal form $(\mathfrak{q t ı})$ at $p_{n_{0}}$, and similarly in all the other cases.

4. Toroidalization

In this Section, we first prove that principalization sequences obtained from the algorithm of Definition 2.11 have the property that the resulting morphism, after resolution of indeterminancy, is again locally toroidal with respect to the modified local structure. Then, summing up all our arguments, we deduce Theorem 2.13 and consequently prove our main result Theorem 1.2.
4.1. Local Toroidalization. Suppose that $\varphi: X \rightarrow Y$ is a locally toroidal morphism of nonsingular 3 -folds with respect to $\mathcal{L}=\left\{U_{j}, D_{j}, V_{j}, E_{j}\right\}_{J}$ and $\pi: Y_{1} \rightarrow Y$ is the blow up of $Z \subset Y$ where Z is a point $q \in V_{j}$ or a nonsingular curve C such that $C \cap V_{j}$ makes SNCs with E_{j}, for all $j \in J$. Let $\lambda: X_{1} \rightarrow X$ be a principalization sequence of Z such that $W_{Z}\left(X_{1}\right)=\emptyset$. For $j \in J$, let $U_{1, j}=\lambda^{-1}\left(U_{j}\right)$ and $V_{1, j}=\pi^{-1}\left(V_{j}\right)$, and let $D_{1, j}=\left(\left.\lambda\right|_{U_{1, j}}\right)^{*}\left(D_{j}\right)_{\text {red }}$ and $E_{1, j}=$ $\left(\left.\pi\right|_{V_{1, j}}\right)^{*}\left(E_{j}\right)_{\text {red }}$. Let $\phi_{1, j}$ be the morphism giving a commutative diagram

In this subsection we will verify that $\phi_{1, j}: U_{1, j} \rightarrow V_{1, j}$ is toroidal with respect to $D_{1, j}$ and $E_{1, j}$, for all $j \in J$. Consequently, we will prove the following theorem.

Theorem 4.1. There exists a sequence of blowups of nonsingular subvarieties $\lambda: X_{1} \rightarrow X$ such that λ is a resolution of indeterminancy of the rational map $X \rightarrow Y_{1}$ and the induced morphism $\phi_{1}: X_{1} \rightarrow Y_{1}$ which gives the commutative diagram

is locally toroidal w.r.t. $\mathcal{L}_{X_{1}}=\left\{U_{1, j}, D_{1, j}, V_{1, j}, E_{1, j}\right\}_{J}$.
The remainder of this subsection is devoted to the proof of Theorem 4.1.

Lemma 4.2. For all $j \in J$, we have that $U_{1, j} \backslash D_{1, j} \rightarrow V_{1, j} \backslash E_{1, j}$ is smooth and $D_{1, j}, E_{1, j}$ are SNC divisors in $U_{1, j}$ and $V_{1, j}$ respectively.

Proof. First we note that $E_{1, j}$ is a SNC divisor since E_{j} is and $Z \cap V_{j}$ makes SNCs with E_{j}, and $D_{1, j}$ is a SNC divisor by Lemma 3.1 if Z is a point, and by Lemma 3.2 in case Z is a curve. In addition, since π is the blow up of Z and λ is a principalization sequence of Z centered at $W_{Z}(X) \subseteq \varphi^{-1}(Z)$, we have that

$$
\begin{array}{ccc}
V_{1, j} \backslash \pi^{-1}\left(Z \cap V_{j}\right) & \cong & V_{j} \backslash Z \text { and } \\
U_{1, j} \backslash(\varphi \circ \lambda)^{-1}\left(Z \cap V_{j}\right) & \cong U_{j} \backslash \varphi^{-1}\left(Z \cap V_{j}\right) . \tag{4.1}
\end{array}
$$

Suppose that $j \in J$. We now verify that $U_{1, j} \backslash D_{1, j} \rightarrow V_{1, j} \backslash E_{1, j}$ is smooth. Let $p_{1} \in U_{1, j} \backslash D_{1, j}$, then $q_{1}=\phi_{1, j}\left(p_{1}\right) \in V_{1, j} \backslash E_{1, j}$. Hence $q^{*}=\pi\left(q_{1}\right)=$ $\varphi \lambda\left(p_{1}\right) \in V_{j} \backslash E_{j}$ and $p^{*}=\lambda\left(p_{1}\right) \in \varphi^{-1}\left(q^{*}\right) \subset U_{j} \backslash D_{j}$ which implies that $U_{j} \rightarrow V_{j}$ is smooth above a neighborhood of q^{*}.

Suppose that $Z \cap V_{j} \subset E_{j}$, i.e., Z is a point in E_{j}, or it is a 2^{+}-curve, a 2 -curve, a 1^{+}-curve or a 1 -curve for E_{j}, or $Z \cap V_{j}=\emptyset$. So $q^{*} \notin Z \cap V_{j}$ since $q^{*} \notin E_{j}$, and then $p^{*} \notin \varphi_{j}^{-1}\left(Z \cap V_{j}\right) \subset D_{j}$. Thus $U_{1, j} \backslash D_{1, j} \rightarrow V_{1, j} \backslash E_{1, j}$ is smooth at p_{1} due to the isomorphisms (4.1), and since $U_{j} \backslash D_{j} \rightarrow V_{j} \backslash E_{j}$ is smooth at p^{*}. In particular, if $Z \cap V_{j}=\emptyset$, then $U_{1, j}=U_{j}$ and $V_{1, j}=V_{j}$, and so

$$
U_{1, j} \backslash D_{1, j}=U_{j} \backslash D_{j} \rightarrow V_{j} \backslash E_{j}=V_{1, j} \backslash E_{1, j}
$$

is smooth.
Suppose that $Z \cap V_{j} \nsubseteq E_{j}$, i.e., Z is a point in $V_{j} \backslash E_{j}$, or it is a 0^{+}-curve, or a 0 -curve for E_{j}. Either $q^{*} \notin Z \cap V_{j}$ or $q^{*} \in\left(Z \cap V_{j}\right) \backslash E_{j}$.

If $q^{*} \notin Z \cap V_{j}$, then $p^{*} \notin \varphi_{j}^{-1}\left(Z \cap V_{j}\right)$ and $U_{1, j} \backslash D_{1, j} \rightarrow V_{1, j} \backslash E_{1, j}$ is smooth at p_{1} due to the isomorphisms (4.1), and since $U_{j} \backslash D_{j} \rightarrow V_{j} \backslash E_{j}$ is smooth at p^{*}.

Suppose that $q^{*} \in\left(Z \cap V_{j}\right) \backslash E_{j}$. Since $U_{j} \rightarrow V_{j}$ is smooth in a neighborhood of q^{*} and $\operatorname{dim} U_{j}=\operatorname{dim} V_{j}=3$, we have that $\hat{\mathcal{O}}_{V_{j}, q^{*}} \xrightarrow{\sim} \hat{\mathcal{O}}_{U_{j}, p^{*}}$. Since λ is a principalization sequence with $W_{C}\left(X_{1}\right)=\emptyset, p_{1}$ is actually a point above p^{*} in the blow up of $\varphi_{j}^{-1}\left(Z \cap V_{j}\right)$, which is a finite number of points if Z is a point, and it is a curve when Z is a curve. So, $\hat{\mathcal{O}}_{V_{1, j}, q_{1}} \cong \hat{\mathcal{O}}_{U_{1, j}, p_{1}}$. Thus $U_{1, j} \rightarrow V_{1, j}$ is smooth in a neighborhood of p_{1}.

Therefore, $U_{1, j} \backslash D_{1, j} \rightarrow V_{1, j} \backslash E_{1, j}$ is smooth.
Lemma 4.3. Suppose that $j \in J$ and $q \in Z \cap E_{j}$. Then $\phi_{1, j}: U_{1, j} \rightarrow V_{1, j}$ is toroidal at each point $p_{1} \in(\varphi \lambda)^{-1}(q) \cap U_{1, j}$ with respect to $E_{1, j}$ and $D_{1, j}$.
Proof. Let $p_{1} \in(\varphi \lambda)^{-1}(q) \cap U_{1, j}$, then $p_{1} \in D_{1, j}$ and $q_{1}=\phi_{1, j}\left(p_{1}\right)$ lies in $\pi^{-1}(q) \cap V_{1, j} \subset E_{1, j}$ since $q \in Z \cap E_{j}$. We will use the criteria of Proposition 2.2 to show that $\phi_{1, j}$ is toroidal at p_{1}, by considering the quasi-toroidal form of $\varphi \lambda$ at p_{1}.

Since $q \in Z \cap E_{j}, \varphi \lambda$ has one of the quasi-toroidal forms of the conclusions (i), (ii), or (iii) of Lemma 3.1 if Z is a point, and when Z is a curve, it is one of the quasi-toroidal forms of the conclusions (i) through (v) of Lemma 3.2.

Further, the quasi-toroidal form that holds for $\varphi \lambda$ at p_{1} satisfies $\mathcal{I}_{Z} \mathcal{O}_{X_{1}, p_{1}}$ is principal since $W_{Z}\left(X_{1}\right)=\emptyset$. All of the cases are similar. We will work out in detail the case ($\mathfrak{q t}$) of the conclusion (ii) of Lemma 3.1 (so the center $Z=\{q\}$ is a 2-point for E_{j}).

Suppose that q is a 2-point for E_{j}, and there exist algebraic permissible parameters u, v, w at q for E_{j}, and (formal) permissible parameters x, y, z at p_{1} for $D_{1, j}$ such that the quasi-toroidal form (qt4) holds for $\varphi \lambda$ at p_{1}. Then $x y=0$ is a local equation of $D_{1, j}$ at p_{1} and, after possibly permuting u, v, we have the following possibilities for $\mathcal{I}_{q} \hat{\mathcal{O}}_{X_{1}, p_{1}}$ to be principal.
$(\mathfrak{q t 4} .1) \min \{a, d\}=a=g$ and $\min \{b, e\}=b=h$ and $\mathcal{I}_{q} \hat{\mathcal{O}}_{X_{1}, p_{1}}=\left(x^{a} y^{b}\right)$. So there exist permissible parameters u_{1}, v_{1}, w_{1} at $q_{1} \in \pi^{-1}(q)$ for $E_{1, j}$ such that

$$
u=u_{1}, v=u_{1} v_{1}, w=u_{1}\left(w_{1}+\alpha\right) \text { with } \alpha \in \mathfrak{k}
$$

and $u_{1} v_{1}=0$ is a local equation of $E_{1, j}$ at q_{1}, and

$$
\begin{aligned}
u_{1} & =u=x^{a} y^{b} \\
v_{1} & =\frac{v}{u}=x^{d-a} y^{e-b} \\
w_{1} & =\frac{w}{u}-\alpha=z
\end{aligned}
$$

where $a(e-b)-(d-a) b \neq 0$ since $a e-b d \neq 0$. So, toroidal form (T4) holds.
$(\mathfrak{q t} 4.2)(g, h) \neq(0,0), \alpha \neq 0$ and $\mathcal{I}_{q} \hat{\mathcal{O}}_{X_{1}, p_{1}}=\left(x^{g} y^{h}(z+\alpha)\right)$. So there exist permissible parameters u_{1}, v_{1}, w_{1} at $q_{1} \in \pi^{-1}(q)$ for $E_{1, j}$ such that $u=u_{1} w_{1}, v=v_{1} w_{1}, w=w_{1}$ and $u_{1} v_{1} w_{1}=0$ is a local equation of $E_{1, j}$ at q_{1} and

$$
\begin{aligned}
& u_{1}=\frac{u}{w}=x^{a-g} y^{b-h}(z+\alpha)^{-1} \\
& v_{1}=\frac{v}{w}=x^{d-g} y^{e-h}(z+\alpha)^{-1} \\
& w_{1}=w=x^{g} y^{h}(z+\alpha)
\end{aligned}
$$

Since $a e-b d \neq 0$,

$$
\operatorname{rank}\left(\begin{array}{cc}
a-g & b-h \\
d-g & e-h \\
g & h
\end{array}\right)=\operatorname{rank}\left(\begin{array}{cc}
a & b \\
d & e \\
g & h
\end{array}\right)=2
$$

and, after possibly permuting u_{1}, v_{1}, w_{1}, we may assume $\operatorname{det}\left(\begin{array}{ll}a-g & b-h \\ d-g & e-h\end{array}\right)$ is nonzero. So there exist $\gamma_{1}, \gamma_{2} \in \mathbb{Q}$ such that

$$
\left(\begin{array}{cc}
a-g & b-h \tag{4.2}\\
d-g & e-h
\end{array}\right)\binom{\gamma_{1}}{\gamma_{2}}=\binom{-1}{-1}
$$

and we can set

$$
\begin{aligned}
& \tilde{x}=x(z+\alpha)^{\gamma_{1}} \\
& \tilde{y}=y(z+\alpha)^{\gamma_{2}} \\
& \tilde{\alpha}=\alpha^{1-\left(g \gamma_{1}+h \gamma_{2}\right)} \\
& \tilde{z}=(z+\alpha)^{1-\left(g \gamma_{1}+h \gamma_{2}\right)}-\tilde{\alpha}
\end{aligned}
$$

which satisfy

$$
\begin{aligned}
\left|\begin{array}{lll}
\frac{\partial \tilde{x}}{\partial x} & \frac{\partial \tilde{x}}{\partial y} & \frac{\partial \tilde{x}}{\partial z} \\
\frac{\partial \tilde{z}}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial \tilde{\tilde{y}}}{\partial z}
\end{array}\right|_{(0,0,0)} & =\left|\begin{array}{ccc}
\alpha^{\gamma_{1}} & 0 & 0 \\
0 & \alpha^{\gamma_{2}} & 0 \\
0 & 0 & \left(1-\left(g \gamma_{1}+h \gamma_{2}\right)\right) \alpha^{-\left(g \gamma_{1}+h \gamma_{2}\right)}
\end{array}\right| \\
& =\left(1-\left(g \gamma_{1}+h \gamma_{2}\right)\right) \alpha^{\gamma_{1}+\gamma_{2}-\left(g \gamma_{1}+h \gamma_{2}\right)} \neq 0
\end{aligned}
$$

since $\alpha \neq 0$ and $1-\left(g \gamma_{1}+h \gamma_{2}\right) \neq 0$. (Otherwise, if $\left(g \gamma_{1}+h \gamma_{2}\right)=1$, the equation (4.2) implies that

$$
\left(\begin{array}{ll}
a & b \\
d & e
\end{array}\right)\binom{\gamma_{1}}{\gamma_{2}}=\binom{0}{0}
$$

and since $a e-b d \neq 0, \gamma_{1}=\gamma_{2}=0$ which is in contradiction with the fact that γ_{1}, γ_{2} are solutions to the equation (4.2).

Therefore, we obtain permissible parameters $\tilde{x}, \tilde{y}, \tilde{z}$ at p_{1} for $D_{1, j}$ such that $\tilde{x} \tilde{y}=0$ is a local equation of $D_{1, j}$ at p_{1} and

$$
\begin{aligned}
u_{1} & =\tilde{x}^{a-g} \tilde{y}^{b-h} \\
v_{1} & =\tilde{x}^{d-g} \tilde{y}^{e-h} \\
w_{1} & =\tilde{x}^{g} \tilde{y}^{h}(\tilde{z}+\tilde{\alpha})
\end{aligned}
$$

where $(a-g)(e-h)-(b-h)(d-g) \neq 0$ and $\tilde{\alpha} \neq 0$ since $\alpha \neq 0$. Thus toroidal form (T2) holds for p_{1}.

Therefore, in the the case when the quasi-toroidal form ($\mathfrak{q t}_{4}$) holds for $\varphi \lambda$ at p_{1}, and similarly in other cases, $\phi_{1, j}: U_{1, j} \rightarrow V_{1, j}$ is toroidal at $p_{1} \in$ $(\varphi \lambda)^{-1}(q) \cap U_{1, j}$ where $q \in Z \cap E_{j}$ with respect to $E_{1, j}$ and $D_{1, j}$.

We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. We first construct, by Theorem 3.3, a principalization sequence

$$
\lambda: X_{1}=X_{1, n} \xrightarrow{\lambda_{n}} X_{1, n-1} \rightarrow \cdots \rightarrow X_{1,1} \xrightarrow{\lambda_{1}} X_{0}=X
$$

of Z satisfying $W_{Z}\left(X_{1}\right)=\emptyset$, so that the rational map $X_{1} \rightarrow Y_{1}$ is a morphism, say ϕ_{1}, and we have a commutative diagram of morphisms

We want to show that $\phi_{1}: X_{1} \rightarrow Y_{1}$ is locally toroidal with respect to $\mathcal{L}_{X_{1}}=$ $\left\{U_{1, j}, D_{1, j}, V_{1, j}, E_{1, j}\right\}_{J}$. Suppose that $j \in J$. We must show that $\phi_{1, j}: U_{1, j} \rightarrow$ $V_{1, j}$ is toroidal with respect to the divisors $E_{1, j}$ and $D_{1, j}$.

By Lemma 4.2, $E_{1, j}$ and $D_{1, j}$ are SNC divisors and $U_{1, j} \backslash D_{1, j} \rightarrow V_{1, j} \backslash E_{1, j}$ is smooth. So, by Proposition 2.2, it just remains to verify that one of the forms (T1) through (T6) holds for each $p_{1} \in D_{1, j} \subset U_{1, j}$ and $q_{1}=\phi_{1, j}\left(p_{1}\right)$ lies in $E_{1, j} \subset V_{1, j}$.
since $\varphi_{j}: U_{j} \rightarrow V_{j}$ is toroidal, and due to the isomorphisms (4.1) in the proof of Lemma 4.2, we only need to show that $\phi_{1, j}$ is toroidal at each point $p_{1} \in D_{1, j}$ with $\phi_{1, j}\left(p_{1}\right)=q_{1} \in \pi^{-1}\left(Z \cap V_{j}\right)$ and therefore $q=\pi\left(q_{1}\right) \in Z \cap E_{j}$ since $q_{1} \in E_{1, j}$. This is accomplished by the proof of Lemma 4.3.
4.2. Proof of the Main Theorem. This subsection is devoted to the proofs of Theorem 2.13 and finally our main result Theorem 1.2.

Proof of Theorem 2.13. Since $\varphi: X \rightarrow Y$ is locally toroidal, it clearly satisfies the conclusions of the theorem. Let

$$
\pi: \tilde{Y}=Y_{n} \xrightarrow{\pi_{n}} Y_{n-1} \rightarrow \cdots \rightarrow Y_{2} \xrightarrow{\pi_{2}} Y_{1} \xrightarrow{\pi_{1}} Y
$$

be an embedded resolution of $\tilde{E}_{0} \subset Y$ satisfying the conclusions of Theorem 2.4, where each π_{i} is the blow up of a nonsingular center $Z_{i-1} \subset Y_{i-1}$ which is either a point or a curve. Due to the conclusion 1) of Theorem 2.4, $E_{i, j}$ is a SNC divisor on $V_{i, j}$ for all i, j, and $Z_{i} \cap V_{i, j}$ makes SNCs with $E_{i, j}$ on $V_{i, j}$ for all i, j.

Assume that we have constructed the commutative diagram

with $i<n+1$, satisfying the conclusions of the theorem. Then we consider the blowup $\pi_{i}: Y_{i} \rightarrow Y_{i-1}$ of $Z_{i-1} \subset Y_{i-1}$ in the resolution sequence. By Theorem 3.3, there exists a principalization sequence of Z_{i-1}

$$
\lambda_{i}: X_{i}=X_{i, k_{i}} \rightarrow X_{i, k_{i}-1} \rightarrow \cdots \rightarrow X_{i, 1} \rightarrow X_{i-1}
$$

with $W_{Z_{i-1}}\left(X_{i}\right)=\emptyset$, for some finite number $k_{i} \in \mathbb{N}$. Further, $D_{i, j}=\left(\left.\lambda_{i}\right|_{U_{i, j}}\right)^{*}$ $\left(D_{i-1, j}\right)_{\text {red }}$ is a SNC divisor on $U_{i, j}=\lambda_{i}^{-1}\left(U_{i-1, j}\right)$ for all j by Lemma 3.1 in case Z_{i-1} is a point, and by Lemma 3.2 if Z_{i-1} is a curve.

Therefore, we gain the morphism $X_{i} \rightarrow Y_{i}$, say ϕ_{i}, and the commutative diagram of morphisms

where $\phi_{i}: X_{i} \rightarrow Y_{i}$ is locally toroidal with respect to $\mathcal{L}_{X_{i}}=\left\{U_{i, j}, D_{i, j}, V_{i, j}, E_{i, j}\right\}_{J}$ by Theorem 4.1.

In sum, iterative use of this process results in the diagram $(\mathcal{L T})$ which satisfies the conclusions of the theorem.

Now we give the proof of the Main Theorem.
Proof of Theorem 1.2. Due to Theorem 2.13, there exist proper birational morphisms $\pi: \widetilde{Y} \rightarrow Y$ and $\lambda: \widetilde{X} \rightarrow X$ such that \widetilde{Y} and \widetilde{X} are nonsingular, and we have the commutative diagram

such that $\tilde{\varphi}: \widetilde{X} \rightarrow \tilde{Y}$ is locally toroidal with respect to $\widetilde{\mathcal{L}}=\left\{\tilde{U}_{j}, \tilde{D}_{j}, \tilde{V}_{j}, \tilde{E}_{j}\right\}_{J}$, i.e., $\tilde{\varphi}_{j}=\left.\tilde{\varphi}\right|_{\tilde{U}_{j}}: \tilde{U}_{j} \rightarrow \tilde{V}_{j}$ is toroidal with respect to \tilde{D}_{j} and \tilde{E}_{j} for all $j \in J$, where $\tilde{U}_{j}=\lambda^{-1}\left(U_{j}\right), \tilde{V}_{j}=\pi^{-1}\left(V_{j}\right), \tilde{D}_{j}=\left(\left.\lambda\right|_{\tilde{U}_{j}}\right)^{*}\left(D_{j}\right)_{\text {red }}$ and $\tilde{E}_{j}=$ $\left(\left.\pi\right|_{\tilde{V}_{j}}\right)^{*}\left(E_{j}\right)_{\text {red }}$. Further, $\widetilde{E}=\pi^{*}\left(\tilde{E}_{0}\right)_{\text {red }}$, which contains $\left(\sum_{j \in J} \tilde{E}_{j}\right)_{\text {red }}$, is a SNC divisor on \widetilde{Y} where \tilde{E}_{j} is the Zariski closure of \tilde{E}_{j} in \widetilde{Y}. We will prove that $\tilde{\varphi}$ is in fact toroidal with respect to \widetilde{E} and $\widetilde{D}=\tilde{\varphi}^{*}(\widetilde{E})_{\text {red }}$ which is a SNC divisor on \widetilde{X} as well.

We first verify that $\widetilde{X} \backslash \widetilde{D} \rightarrow \widetilde{Y} \backslash \widetilde{E}$ is smooth. Let $p \in \widetilde{X} \backslash \widetilde{D}$, then $q=$ $\tilde{\varphi}(p) \notin \widetilde{E}$, and hence $q \notin \tilde{E}_{j}$ for all $j \in J$. So $p \notin \tilde{\varphi}^{*}\left(\tilde{E}_{j}\right)_{\mathrm{red}}=\tilde{\varphi}_{j}^{*}\left(\tilde{E}_{j}\right)_{\mathrm{red}}=\tilde{D}_{j}$ for all j. Suppose that $p \in \tilde{U}_{j}$ for some $j \in J$. The morphism $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{D}_{j} and \tilde{E}_{j} by the fact that $\tilde{\varphi}$ is locally toroidal with respect to $\widetilde{\mathcal{L}}=\left\{\tilde{U}_{j}, \tilde{D}_{j}, \tilde{V}_{j}, \tilde{E}_{j}\right\}_{J}$. So $\tilde{\varphi}$ is smooth at p since $\tilde{\varphi}_{j}$ is. Thus $\tilde{\varphi}: \widetilde{X} \backslash \widetilde{D} \rightarrow \widetilde{Y} \backslash \widetilde{E}$ is smooth.

Now suppose that $p \in \widetilde{D}$ and $q=\tilde{\varphi}(p) \in \widetilde{E}$. We must show that there exist (algebraic) permissible parameters u, v, w at q for \widetilde{E} and (formal) permissible parameters x, y, z at p for \widetilde{D} such that one of the forms (T1) through (T6) in Proposition 2.2 holds.

First, we note that there exist $j \in J$ such that $p \in \tilde{U}_{j}$. Then $q \in \tilde{V}_{j}$ and we will use the fact that $\left.\tilde{\varphi}\right|_{\tilde{U}_{j}}=\tilde{\varphi}_{j}: \tilde{U}_{j} \rightarrow \tilde{V}_{j}$ is toroidal with respect to \tilde{E}_{j} and
\tilde{D}_{j} to prove that $\tilde{\varphi}$ is also toroidal at p with respect to \widetilde{E} and \widetilde{D}. Meanwhile, we show \widetilde{D} is a SNC divisor on \widetilde{X}.

If $q \notin \tilde{E}_{j}$, then $\tilde{\varphi}_{j}$ is smooth in a neighborhood of p, and so is $\tilde{\varphi}$. Hence we have $\hat{\mathcal{O}}_{\widetilde{Y}, q} \xrightarrow{\sim} \hat{\mathcal{O}}_{\widetilde{X}, p}$ since $\operatorname{dim} X=\operatorname{dim} Y=3$. Thus \widetilde{D} is a SNC divisor at p since \widetilde{E} is a SNC divisor (at q). So we can assume that $q \in \tilde{E}_{j}$.

Suppose that $q=\tilde{\varphi}(p)$ is a 1-point for \widetilde{E}, then it is a 1-point for \tilde{E}_{j} as well, and $\widetilde{E}, \tilde{E}_{j}$ are equal in a neighborhood of q. So $\widetilde{D}, \tilde{D}_{j}$ are also equal in a neighborhood of p. Hence \widetilde{D} is a SNC divisor at p. In addition, by Proposition 2.2, there exist (algebraic) permissible parameters u, v, w at q for \tilde{E}_{j} (hence for \widetilde{E}) and (formal) permissible parameters x, y, z at p for \tilde{D}_{j} (so, for \widetilde{D}) such that $u=0$ is a local equation of both $\tilde{E}_{j}, \widetilde{E}$ at $q, x=0$ is a local equation of both $\tilde{D}_{j}, \widetilde{D}$ at p and (T6) holds for p since $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{E}_{j} and \tilde{D}_{j}. Thus $\tilde{\varphi}$ is toroidal at p with respect to \widetilde{E} and \widetilde{D}.

Suppose that q is a 2 -point for \widetilde{E}, then q can be a 2 -point or a 1 -point for \tilde{E}_{j}. If q is a 2-point for \tilde{E}_{j}, we can argue exactly as before to see that \widetilde{D} has SNCs at p as \tilde{D}_{j} has, and p is either a 2 -point or a 1 -point for both \tilde{D}_{j} and \widetilde{D}. In addition, (T4) holds for p in case it is a 2 -point, and (T5) holds for p in case it is a 1-point since $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{E}_{j} and \tilde{D}_{j}. So $\tilde{\varphi}$ is toroidal at p with respect to \widetilde{E} and \widetilde{D}.

Now suppose that q is a 2 -point for \widetilde{E}, but it is a 1-point for \tilde{E}_{j}. By Proposition 2.2 , since $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{E}_{j} and \tilde{D}_{j}, there exist (algebraic) permissible parameters u, v, w at q for \tilde{E}_{j} and (formal) permissible parameters x, y, z at p for \tilde{D}_{j} such that $u=0$ is a local equation of \tilde{E}_{j} at q, $x=0$ is a local equation of \tilde{D}_{j} at p and (T6) holds for p, i.e.,

$$
u=x^{a}, v=y, w=z \text { with } a>0
$$

We can change the parameters v, w to obtain new permissible parameters u, \tilde{v}, \tilde{w} at q for both \tilde{E}_{j} and \widetilde{E} such that $u \tilde{v}=0$ is a local equation of \widetilde{E} at q and $u=0$ remains as a local equation of \tilde{E}_{j} at q. By the formal inverse function theorem, the expansions

$$
\begin{align*}
\tilde{v} & =\alpha_{1} u+\beta_{1} v+\gamma_{1} w+\text { higher degree terms in } u, v \text { and } w \\
\tilde{w} & =\alpha_{2} u+\beta_{2} v+\gamma_{2} w+\text { higher degree terms in } u, v \text { and } w \tag{4.3}
\end{align*}
$$

of \tilde{v}, \tilde{w} in $\hat{\mathcal{O}}_{\tilde{Y}, q} \cong \mathfrak{k}[[u, v, w]]$, with $\alpha_{i}, \beta_{i}, \gamma_{i} \in \mathfrak{k}$, satisfy

$$
0 \neq \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial u}{\partial u} & \frac{\partial \tilde{v}}{\partial u} & \frac{\partial \tilde{w}}{\partial u} \\
\frac{\partial u}{\partial v} & \frac{\partial v}{\partial v} & \frac{\partial w}{\partial w} \\
\frac{\partial u}{\partial w} & \frac{\partial v}{\partial w} & \frac{\partial w}{\partial w}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & \alpha_{1} & \alpha_{2} \\
0 & \beta_{1} & \beta_{2} \\
0 & \gamma_{1} & \gamma_{2}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ll}
\beta_{1} & \beta_{2} \\
\gamma_{1} & \gamma_{2}
\end{array}\right) .
$$

In addition, \tilde{D}_{j} has SNCs at p and there exist algebraic permissible parameters $\bar{x}, \bar{y}, \bar{z}$ in $\mathcal{O}_{\tilde{X}, p}$ such that $\bar{x}=0$ is a local equation of \tilde{D}_{j} at p and so, there exists a unit $\delta_{x} \in \hat{\mathcal{O}}_{\tilde{X}, p}$ such that $x=\delta_{x} \bar{x}$ (Recall that $x=0$ is also a local equation of \tilde{D}_{j} at p).

By substituting (T6) in (4.3), we have

$$
\begin{aligned}
\tilde{v} & =\alpha_{1} x^{a}+\beta_{1} y+\gamma_{1} z+\text { higher degree terms in } x, y \text { and } z \\
\tilde{w} & =\alpha_{2} x^{a}+\beta_{2} y+\gamma_{2} z+\text { higher degree terms in } x, y \text { and } z
\end{aligned}
$$

and

$$
\operatorname{det}\left(\begin{array}{lll}
\frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} \\
\frac{\partial \tilde{v}}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial \tilde{v}}{\partial z} \\
\frac{\partial \tilde{w}}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial \tilde{w}}{\partial z}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{\partial \tilde{v}}{\partial x} & \frac{\partial \tilde{v}}{\partial y} & \frac{\partial \tilde{v}}{\partial z} \\
\frac{\partial \tilde{w}}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial \tilde{w}}{\partial z}
\end{array}\right)=\beta_{1} \gamma_{2}-\gamma_{1} \beta_{2} \bmod \hat{\mathfrak{m}}_{p}
$$

is a unit in $\hat{\mathcal{O}}_{\tilde{X}, p}$. Thus $x, \tilde{y}=\tilde{v}, \tilde{z}=\tilde{w}$ are formal regular parameters at p. Since $x=\delta_{x} \bar{x}$ and $\tilde{y}, \tilde{z} \in \mathcal{O}_{\tilde{X}, p}$ then we have that $\bar{x}, \tilde{y}, \tilde{z}$ are regular parameters in $\mathcal{O}_{\tilde{X}, p}$ and a local equation for \widetilde{D} at p is

$$
0=u \tilde{v}=x^{a} \tilde{y}=\delta_{x}^{a} \bar{x}^{a} \tilde{y}
$$

Since $a>0, \bar{x} \tilde{y}=0$ is a local equation of \widetilde{D} at p, showing that \widetilde{D} is a SNC divisor at p.

We have an expression

$$
u=x^{a}, \tilde{v}=\tilde{y}, \tilde{w}=\tilde{z} \text { with } \operatorname{det}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)=a>0
$$

So toroidal form (T4) holds for p and $\tilde{\varphi}$ is toroidal with respect to \widetilde{E} and \widetilde{D}.
Suppose that q is a 3 -point for $\underset{\tilde{E}}{\tilde{E}}$, then q_{\sim} can be a 3 -point, a 2 -point or a 1-point for \tilde{E}_{j}. If q is a 3 -point for \tilde{E}_{j}, then $\widetilde{E}, \tilde{E}_{j}$ are equal in a neighborhood of q and $\widetilde{D}, \tilde{D}_{j}$ are also equal in a neighborhood of p. Hence D is a SNC divisor at p. In addition, $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{E}_{j} and \tilde{D}_{j} and, by Proposition 2.2, there exist (algebraic) permissible parameters u, v, w at q for \tilde{E}_{j} (hence for \widetilde{E}) and (formal) permissible parameters x, y, z at p for \tilde{D}_{j} (so for \widetilde{D}) such that $u v w=0$ is a local equation of both $\tilde{E}_{j}, \widetilde{E}$ at q and, either $x y z=0$ is a local equation of both $\tilde{D}_{j}, \widetilde{D}$ at p and (T1) holds for p, or $x y=0$ is a local equation of both $\tilde{D}_{j}, \widetilde{D}$ at p and (T2) holds for p, or $x=0$ is a local equation of both $\tilde{D}_{j}, \widetilde{D}$ at p and (T3) holds for p. Thus $\tilde{\varphi}$ is toroidal at p with respect to \widetilde{E} and \widetilde{D}.

Suppose that q is a 3 -point for \widetilde{E}, but it is a 2 -point for \tilde{E}_{j}. Since $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{E}_{j} and \tilde{D}_{j}, by Proposition 2.2 , there exist (algebraic) permissible parameters u, v, w at q for \tilde{E}_{j} and (formal) permissible parameters x, y, z at p for \tilde{D}_{j} such that $u v=0$ is a local equation of \tilde{E}_{j} at q and one of the toroidal forms (T4) or (T5) holds.

We can change the parameter w to obtain new permissible parameters u, v, \tilde{w} at q for both \tilde{E}_{j} and \widetilde{E} such that $u v \tilde{w}=0$ is a local equation of \widetilde{E} at q and $u v=0$ remains as a local equation of \tilde{E}_{j} at q. By the formal inverse function theorem, the expansion

$$
\tilde{w}=\alpha u+\beta v+\gamma w+\text { higher degree terms in } u, v \text { and } w
$$

of \tilde{w} in $\hat{\mathcal{O}}_{\widetilde{Y}, q} \cong \mathfrak{k}[[u, v, w]]$, with $\alpha, \beta, \gamma \in \mathfrak{k}$, satisfies

$$
0 \neq \operatorname{det}\left(\begin{array}{ccc}
\frac{\partial u}{\partial u} & \frac{\partial v}{\partial u} & \frac{\partial \tilde{w}}{\partial u} \\
\frac{\partial u}{\partial v} & \frac{\partial v}{\partial v} & \frac{\partial w}{\partial w} \\
\frac{\partial u}{\partial w} & \frac{\partial v}{\partial w} & \frac{\partial w}{\partial w}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & \alpha \\
0 & 1 & \beta \\
0 & 0 & \gamma
\end{array}\right)=\gamma .
$$

We first suppose that (T4) holds for permissible parameters u, v, w at q for \tilde{E}_{j} and, for permissible parameters x, y, z at p for \tilde{D}_{j}. So, $x y=0$ is a local equation of \tilde{D}_{j} at p and, $u=x^{a} y^{b}, v=x^{d} y^{e}, w=z$ with $a e-b d \neq 0$. In addition, \tilde{D}_{j} is a SNC divisor on \tilde{U}_{j} at p and there exist algebraic permissible parameters $\bar{x}, \bar{y}, \bar{z}$ in $\mathcal{O}_{\widetilde{X}, p}$ such that $\bar{x} \bar{y}=0$ is a local equation of \tilde{D}_{j} at p and so, after possibly permuting x, y, there exist units $\delta_{x}, \delta_{y} \in \hat{\mathcal{O}}_{\tilde{X}, p}$ such that $x=\delta_{x} \bar{x}$ and $y=\delta_{y} \bar{y}$. Then we have

$$
\tilde{w}=\alpha x^{a} y^{b}+\beta x^{d} y^{e}+\gamma z+\text { higher degree terms in } x, y \text { and } z
$$

and

$$
\operatorname{det}\left(\begin{array}{lll}
\frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\
\frac{\partial \tilde{w}}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial \tilde{w}}{\partial z}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{\partial \tilde{w}}{\partial x} & \frac{\partial \tilde{w}}{\partial y} & \frac{\partial \tilde{w}}{\partial z}
\end{array}\right)=\frac{\partial \tilde{w}}{\partial z}=\gamma \bmod \hat{\mathfrak{m}}_{p}
$$

is a unit in $\hat{\mathcal{O}}_{\tilde{X}, p}$. Thus $x, y, \tilde{z}=\tilde{w}$ are formal regular parameters at p. Since $x=\delta_{x} \bar{x}$ and $y=\delta_{y} \bar{y}$ and $\tilde{z} \in \mathcal{O}_{\tilde{X}, p}$, we have that $\bar{x}, \bar{y}, \tilde{z}$ are regular parameters in $\mathcal{O}_{\tilde{X}, p}$ and a local equation for \widetilde{D} at p is

$$
0=u v \tilde{w}=x^{a+d} y^{b+e} \tilde{z}=\delta_{x}^{a+d} \delta_{y}^{b+e} \bar{x}^{a+d} \bar{y}^{b+e} \tilde{z}
$$

Now $a+d>0$ and $b+e>0$ since $a e-b d \neq 0$ and $a, b, d, e \geqslant 0$. So $\bar{x} \bar{y} \tilde{z}=0$ is a local equation of \widetilde{D} at p, showing that \widetilde{D} is a SNC divisor at p. We have an expression

$$
u=x^{a} y^{b}, v=x^{d} y^{e}, \tilde{w}=\tilde{z} \text { with } a e-b d \neq 0
$$

So these parameters and equations satisfy all the conditions of toroidal form (T1) since

$$
\operatorname{det}\left(\begin{array}{ccc}
a & b & 0 \\
d & e & 0 \\
0 & 0 & 1
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
a & b \\
d & e
\end{array}\right)=a e-b d \neq 0
$$

Thus $\tilde{\varphi}$ is toroidal at p with respect to \widetilde{E} and \widetilde{D}.
Now suppose that (T5) holds for permissible parameters u, v, w at q for \tilde{E}_{j} and permissible parameters x, y, z at p for \tilde{D}_{j}. So, $x=0$ is a local equation of \tilde{D}_{j} at p and, $u=x^{a}, v=x^{d}(y+\sigma), w=z$ with $0 \neq \sigma \in \mathfrak{k}$ and $a, d>0$. In addition, \tilde{D}_{j} is a SNC divisor on \tilde{U}_{j} at p and there exist algebraic permissible parameters $\bar{x}, \bar{y}, \bar{z}$ in $\mathcal{O}_{\tilde{X}, p}$ such that $\bar{x}=0$ is a local equation of \tilde{D}_{j} at p and so, there exists a unit $\delta_{x} \in \hat{\mathcal{O}}_{\tilde{X}, p}$ such that $x=\delta_{x} \bar{x}$. In this case, we have

$$
\tilde{w}=\alpha x^{a}+\beta x^{d}(y+\sigma)+\gamma z+\text { higher degree terms in } x, y \text { and } z
$$

and, the same as before,

$$
\operatorname{det}\left(\begin{array}{lll}
\frac{\partial x}{\partial x} & \frac{\partial x}{\partial y} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial x} & \frac{\partial y}{\partial y} & \frac{\partial y}{\partial z} \\
\frac{\partial \tilde{w}}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial \tilde{w}}{\partial z}
\end{array}\right)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
\frac{\partial \tilde{w}}{\partial x} & \frac{\partial \tilde{w}}{\partial y} & \frac{\partial \tilde{w}}{\partial z}
\end{array}\right)=\frac{\partial \tilde{w}}{\partial z}=\gamma \bmod \hat{\mathfrak{m}}_{p}
$$

is a unit in $\hat{\mathcal{O}}_{\tilde{X}, p}$. So, $x, y, \tilde{z}=\tilde{w}$ are formal regular parameters at p. Since $x=\delta_{x} \bar{x}$ and $\tilde{z} \in \mathcal{O}_{\tilde{X}, p}$, we have that \bar{x}, \tilde{z} are linearly independent in $\mathfrak{m}_{p} / \mathfrak{m}_{p}^{2}$. Thus they extend to a regular system of parameters in $\mathcal{O}_{\tilde{X}, p}$, say $\bar{x}, \tilde{z}, \tilde{y}$, and

$$
0=u v \tilde{w}=x^{a+d}(y+\sigma) \tilde{z}=\delta_{x}^{a+d} \bar{x}^{a+d}(y+\sigma) \tilde{z}
$$

is a local equation of \widetilde{D} at p. We note that $a+d>0$ since $a, d>0$, so, $\bar{x} \tilde{z}=0$ is a local equation of \widetilde{D} at p, which shows that \widetilde{D} is a SNC divisor at p.

We have an expression

$$
u=x^{a}, \tilde{w}=\tilde{z}, v=x^{d}(y+\sigma) \text { with } a, d>0, \sigma \neq 0
$$

and here $x \tilde{z}=0$ is a (formal) local equation of \widetilde{D} at p. So these parameters and equations satisfy all the condition of toroidal form (T2) since $(d, 0) \neq(0,0)$ and

$$
\operatorname{det}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)=a>0
$$

Thus $\tilde{\varphi}$ is toroidal at p with respect to \widetilde{E} and \widetilde{D}.
Finally, suppose that q is a 3 -point for \widetilde{E}, but it is a 1-point for \tilde{E}_{j}. By Proposition 2.2, there exist (algebraic) permissible parameters u, v, w at q for \tilde{E}_{j} and (formal) permissible parameters x, y, z at p for \tilde{D}_{j} such that $u=0$ is a local equation of $\tilde{E}_{j}, x=0$ is a local equation of \tilde{D}_{j} at p and (T6) holds for p since $\tilde{\varphi}_{j}$ is toroidal with respect to \tilde{E}_{j} and \tilde{D}_{j}.

We can change the parameters v, w to obtain new permissible parameters u, \tilde{v}, \tilde{w} at q for both \tilde{E}_{j} and \widetilde{E} such that $u \tilde{v} \tilde{w}=0$ is a local equation of \widetilde{E} at q and $u=0$ remains as a local equation of \tilde{E}_{j} at q.

Completely similar to the case when q is a 2-point for \widetilde{E}, but it is a 1-point for \tilde{E}_{j}, we see that $\bar{x}, \tilde{v}, \tilde{w}$ are regular parameters in $\mathcal{O}_{\tilde{X}, p}$, where $\bar{x}=0$ is an algebraic local equation of \tilde{D}_{j}, such that $\bar{x} \tilde{v} \tilde{w}=0$ is a local equation of \widetilde{D} at p since $u \tilde{v} \tilde{w}=0$ is a local equation of \widetilde{E} at $q=\tilde{\varphi}(p)$ and $u=x^{a}=\delta_{x}^{a} \bar{x}^{a}$ for some unit $\delta_{x} \in \hat{\mathcal{O}}_{\tilde{X}, p}$ and $0<a \in \mathbb{N}$. So \widetilde{D} is a SNC divisor at p.

Also, x, \tilde{v}, \tilde{w} are permissible parameters at p for \widetilde{D} such that $x \tilde{v} \tilde{w}=0$ is a local equation of \widetilde{D} at p and toroidal form (T1) holds for these parameters at p and u, \tilde{v}, \tilde{w} at q for \widetilde{E} since $a>0$. Thus $\tilde{\varphi}$ is toroidal at p with respect to \widetilde{E} and \widetilde{D}.

Therefore, $\tilde{\varphi}: \widetilde{X} \rightarrow \widetilde{Y}$ is a toroidal morphism with respect to $\widetilde{E}, \widetilde{D}$.

Acknowledgments

I am sincerely thankful to my advisors, Professor Cutkosky for his great guidance on gaining the knowledge of the subject and jthe main result of this worki ${ }_{i}$, and Professor Zaare-Nahandi for his continued support and help. Part of this work was completed in the helpful environment of the University of Missouri Mathematics Department with the support of the Institute for Research in Fundamental Sciences, and the Ministry of Science, Research and Technology (Iran), to which I am grateful.

References

[1] D. Abramovich, K. Karu, K. Matsuki and J. Wlodarczyk, Torification and factorization of birational maps, J. Amer. Math. Soc. 15 (2002), no. 3, 531-572.
[2] W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
[3] E. Bierstone and P. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997) no. 2, 207-302.
[4] A. Bravo, S. Encinas and O. Villamayor, A simplified proof of desingularization and applications, Rev. Mat. Iberoamericana 21 (2005), no. 2, 349-458.
[5] S. D. Cutkosky, Local monomialization and factorization of morphisms, Astérisque 260 1999.
[6] S. D. Cutkosky, Monomialization of morphisms from 3-folds to surfaces, Lecture Notes in Mathematics, 1786, Springer-Verlag, Berlin, 2002.
[7] S. D. Cutkosky, Resolution of Singularities, Graduate Studies in Mathematics, 63, American Mathematical Society, Providence, 2004.
[8] S. D. Cutkosky, Toroidalization of dominant morphisms of 3-folds, Mem. Amer. Math. Soc. 190 (2007), no. 890, vi+222 pages.
[9] S. D. Cutkosky, A simpler proof of toroidalization of morphisms from 3-folds to surfaces, Ann. Inst. Fourier 63 (2013), no. 3, 865-922.
[10] S. D. Cutkosky, Introduction to Algebraic Geometry, Preprint.
[11] S. D. Cutkosky and O. Kascheyeva, Monomialization of strongly prepared morphisms from nonsingular n-folds to surfaces, J. Algebra 275 (2004), no. 1, 275-320.
[12] D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, An Introduction to Computational Algebraic Geometry and Commutative Algebra, Third ed. UTM, Springer, New York, 2007.
[13] S. D. Cutkosky and O. Piltant, Monomial resolution of morphisms of algebraic surfaces, Comm. Algebra 28 (2000) no. 12, 5935-5959.
[14] S. Ensinas and H. Hauser, Strong resolution of singularities in characteristic zero, Comment Math. Helv. 77 (2002), no. 4, 821-845.
[15] K. Hanumanthu, Toroidalization of locally toroidal morphisms from n-folds to surfaces, J. Pure Appl. Algebra 213 (2009), no. 3, 349-359.
[16] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math. (2) 79 (1964) 109-326.
[17] G. Kempf, F. Knudsen, D. Mumford and B. Saint-Donat, Toroidal embeddings I, Lecture Notes in Mathematics, 339, Speringer-Verlag, Berlin-New York, 1973.
[18] B. Teissier, Valuations, deformations and toric geometry, Valuation theory and its applications II, F.V. Kuhlmann, S. Kuhlmann and M. Marshall, editors, Fields Institute Communications 33, Amer. Math. Soc., Providence, 361-459.
[19] O. Zariski, Local uniformization on algebraic varieties, Ann. Math. (2) 41 (1940) 852896.
(Razieh Ahmadian) School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

E-mail address: ahmadian@ipm.ir

[^0]: Article electronically published on April 30, 2016.
 Received: 10 December 2014, Accepted: 3 February 2015.

