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Abstract. A toroidalization of a dominant morphism φ : X → Y of
algebraic varieties over a field of characteristic zero is a toroidal lifting of φ
obtained by performing sequences of blow ups of nonsingular subvarieties
above X and Y . We give a proof of toroidalization of locally toroidal

morphisms of 3-folds.
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1. Introduction

The problem of toroidalization is to obtain, for a dominant morphism φ :
X → Y of varieties over an algebraically closed field k of characteristic zero, a

morphism φ̃ : X̃ → Ỹ such that there exists a commutative diagram

where λ : X̃ → X and π : Ỹ → Y are sequences of monoidal transforms, i.e.,

blow ups with nonsingular centers, X̃ and Ỹ are nonsingular, and there exist

simple normal crossing (SNC) divisors DỸ and DX̃ = φ̃∗(DỸ )red on Ỹ and

X̃ respectively, such that φ̃ is toroidal with respect to DX̃ and DỸ , i.e., φ̃ is

locally given by monomials in appropriate étale local parameters on X̃ with
respect to DX̃ and DỸ . The toroidal morphism φ̃ is called a toroidalization of
φ.

The precise definitions of toroidal varieties and their morphisms are in [17],
and more recently, in [8, Definition 4.3]. In the case of a nonsingular variety
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X, the choice of a SNC divisor on X makes it into a toroidal variety – see [7],
or Section 2 of this paper for definition of SNC divisor.

The idea of toroidalization, which is fundamental in studying the structure
of birational morphisms, is first proposed in [1, Problem 6.2.1 ]. This problem
does not have a positive answer in positive characteristic p > 0, even for maps
of curves, for instance, y = xp + xp+1 [7].

The existence of toroidalization has been proven completely when Y is a
curve, or when X and Y are of dimension ⩽ 3. When Y is a curve, toroidal-
ization follows from embedded resolution of hypersurface singularities [16], or
from any of the simplified proofs including [3, 4, 14].

In the case when X and Y are surfaces, several proofs of toroidalization have
been constructed – see, for instance, Corollary 6.2.3 [1], or [13], which includes
the case when only tame ramification occurs in positive characteristic.

In [6], and with a simpler proof in [9], toroidalization has been solved for
morphisms from 3-folds to surfaces by S. D. Cutkosky, where he introduced
the concept of strongly prepared morphism. Toroidalization of a strongly pre-
pared morphism from an n-fold to a surface has also been proven by Cutkosky
and Kascheyeva in [11]. In [8], Cutkosky proves toroidalization for dominant
morphisms of 3-folds.

Toroidalization, locally along a fixed valuation, has been proven in all di-
mensions by Cutkosky in [5]. This led up to the notion of locally toroidal
morphism.

Suppose that φ : X → Y is a dominant morphism of nonsingular varieties
over an algebraically closed field of characteristic zero. Let J be a finite set.
The morphism φ is locally toroidal if there exist open covers {Uj}j∈J of X and
{Vj}j∈J of Y , and SNC divisors Dj on Uj and Ej on Vj such that for all j ∈ J ,
φj := φ|Uj : Uj → Vj , φ

∗
j (Ej)red = Dj , φj : Uj \ Dj → Vj \ Ej is smooth,

and φj : Uj → Vj is toroidal with respect to Ej and Dj . We will say that φ is
locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J if these conditions hold
– also, see Definition 1.3 [15].

Patching problems for locally toroidal morphisms which are local resolutions
of singularities along a valuation appear in [19] and [18].

The following question of existence of toroidalization for locally toroidal
morphisms, proposed by S. D. Cutkosky, has been considered by Hanumanthu
in [15] where he provided a positive answer to the question in the case of a
locally toroidal morphism from an n-fold to a surface.

Question 1.1. [Cutkosky, Question 1.4 [15]] Suppose that φ : X → Y is a morphism

of nonsingular varieties which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J .
Does there exist a commutative diagram
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such that λ : X̃ → X and π : Ỹ → Y are sequences of monoidal transforms,

X̃ and Ỹ are nonsingular, and there exist SNC divisors Ẽ and D̃ = φ̃∗(Ẽ)red
on Ỹ and X̃ respectively, such that φ̃ is toroidal with respect to Ẽ and D̃?

In this paper, we prove toroidalization for locally toroidal morphisms of
3-folds.

Theorem 1.2 (Main Theorem). Suppose φ : X → Y is a morphism of non-
singular 3-folds which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J .
Then there exists a commutative diagram

such that λ : X̃ → X and π : Ỹ → Y are sequences of monoidal transforms, X̃

and Ỹ are nonsingular, and there exist SNC divisors Ẽ and D̃ = φ̃∗(Ẽ)red on

Ỹ and X̃ respectively, such that φ̃ is toroidal with respect to Ẽ and D̃.

This theorem is proven in subsection 4.2. It is expected that the methods
of this paper can be extended to give a positive answer to Question 1.1.

2. Notations, Definitions, and Main Ideas

Throughout this paper, k is an algebraically closed field of characteristic
zero. A variety is a quasi projective variety over k. A curve, surface or 3-fold
is a variety of respective dimension 1, 2 or 3. If D =

∑
diDi is an effective

divisor with di ∈ Z>0 and Di prime divisors, then (
∑

diDi)red :=
∑

Di.
An effective divisor D on a nonsingular variety X is simple normal crossing

(SNC) if at each p ∈ X there exist regular parameters (x1, . . . , xn) in OX,p and
natural numbers a1, . . . , an such that ID,p = xa1

1 · · ·xan
n OX,p where ID ⊂ OX

is the ideal sheaf of D.

2.1. Locally Toroidal Morphisms of 3-folds. In this subsection, we provide
a necessary and sufficient condition for a morphism of 3-folds to be locally
toroidal using the list of toroidal forms for a dominant morphism of 3-folds ([8]
pages 21-22).

Definition 2.1 ([8] page 19). Suppose that V is a nonsingular three dimen-
sional variety over an algebraically closed field of characteristic zero and F is
a reduced SNC divisor on V . Suppose that q ∈ V is a closed point. q is called
an n-point for F if q lies in exactly n irreducible components of F . We have
that 0 ≤ n ≤ 3. We say that u, v, w are (formal) permissible parameters at q

(for F ) if u, v, w are regular parameters in ÔV,q and

1) u = 0 is a (formal) local equation of F if q is a 1-point,
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2) uv = 0 is a (formal) local equation of F at q if q is a 2-point and
3) uvw = 0 is a (formal) local equation of F at q if q is a 3-point.

We say that permissible parameters u, v, w are algebraic permissible param-
eters if u, v, w ∈ OX,q.

Proposition 2.2 ([8] pages 21-22). Suppose that φ : X → Y is a morphism of
nonsingular 3-folds and {Uj}J , {Vj}J are open covers of X and Y respectively
and Dj is a SNC divisor on Uj, Ej is a SNC divisor on Vj such that for all
j ∈ J , φj : Uj → Vj, φ

∗
j (Ej)red = Dj and Uj \Dj → Vj \ Ej is smooth.

Then φ : X → Y is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J if
and only if the following condition holds for all j ∈ J and p ∈ Dj.

Let q = φ(p) = φj(p) ∈ Ej. Then there exist (algebraic) permissible param-
eters u, v, w at q for Ej and (formal) permissible parameters x, y, z at p for Dj

such that one of the following forms holds:

(T1) p is a 3-point of Dj and q is a 3-point of Ej,

u = xaybzc, v = xdyezf , w = xgyhzi,

where a, b, c, d, e, f, g, h, i ∈ N and

det

 a b c
d e f
g h i

 ̸= 0.

(T2) p is a 2-point of Dj and q is a 3-point of Ej,

u = xayb, v = xdye, w = xgyh(z + α),

with 0 ̸= α ∈ k and a, b, d, e, f, g, h ∈ N satisfy ae− bd ̸= 0 and (g, h) ̸=
(0, 0).

(T3) p is a 1-point of Dj and q is a 3-point of Ej,

u = xa, v = xd(y + α), w = xg(z + β),

with 0 ̸= α, 0 ̸= β ∈ k and a, d, g > 0.
(T4) p is a 2-point of Dj and q is a 2-point of Ej,

u = xayb, v = xdye, w = z,

with ae− bd ̸= 0.
(T5) p is a 1-point of Dj and q is a 2-point of Ej,

u = xa, v = xd(y + α), w = z,

with 0 ̸= α ∈ k and a, d > 0.
(T6) p is a 1-point of Dj and q is a 1-point of Ej,

u = xa, v = y, w = z,

with a > 0. □
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2.2. Embedded Resolution of Surface Singularities and Its Properties.
In order to have a SNC divisor (a toroidal structure) on Y containing all Ej ,

we construct the reduced divisor Ẽ0 = (
∑

j∈J Ej)red on Y where Ej is the

Zariski closure of Ej in Y . However Ẽ0 is not necessarily SNC and we need to
apply the algorithm of embedded resolution of surface singularities. Theorem
2.4 below, follows from this algorithm and its proof, starting with the resolution
datum R = (∅, ∅, Ẽ0, Y ) (Theorem 5.19 [7]).

Due to the fact that all centers in the algorithm are permissible (Definition
5.21 [7]), we establish further properties of the centers (conclusions 1), 2) of
Theorem 2.4) which are basic to the procedure for proving our main result.

Definition 2.3. Suppose that D is a SNC divisor on a nonsingular variety
X, Z is a nonsingular subvariety of X, and p ∈ X. We say that Z makes
SNCs with D at p if there exist regular parameters x1, . . . , xd at p, r ≥ 0 and
m1, . . . ,md ≥ 0 such that xm1

1 xm2
2 · · ·xmd

d = 0 is a local equation of D at p and
x1 = · · · = xr = 0 are local equations of Z at p. (If p ̸∈ Z then take r = 0 and
if p ̸∈ D then take mi = 0 for all i).

Theorem 2.4. Suppose that Y is a nonsingular projective three dimensional
variety over an algebraically closed field of characteristic zero. Let J be a
finite set. Suppose that {Vj}j∈J is an open cover of Y and Ej for j ∈ J

are reduced SNC divisors on Vj. Let Ej be the Zariski closure of Ej in Y ,

and let Ẽ0 = (
∑

j∈J Ej)red. Then there exists a proper birational morphism

π : Ỹ → Y such that Ỹ is nonsingular, π∗(Ẽ0)red is a SNC divisor on Ỹ , and
π has a factorization

Ỹ = Yn
πn→ Yn−1 → · · · → Yi

πi→ Yi−1 → · · · π1→ Y0 = Y

such that each πi is the blowup of a nonsingular center Zi−1 ⊂ Yi−1 which is
either a point or a curve. Let Πi = π1 ◦ · · · ◦ πi : Yi → Y . For j ∈ J , let
Vi,j = Π−1

i (Vj), πi,j = (πi|Vi,j ) : Vi,j → Vi−1,j, Πi,j = (Πi|Vi,j ) : Vi,j → Vj,

Ei,j = Π∗
i,j(Ej)red and Ei,j be the Zariski closure of Ei,j in Yi.

Let Ẽi = (
∑

j∈J Ei,j)red, a divisor on Yi. We further have that

1) Ei,j is a SNC divisor on Vi,j for all i, j, and Zi ∩Vij makes SNCs with
Eij on Vij for all i, j. (Although possibly Zi ∩ Eij ̸= ∅ but Zi ∩ Vij ̸⊂
Eij).

2) Ẽi ⊆ Π∗
i (Ẽ0)red for all i.

The remainder of this subsection is devoted to the proof of Theorem 2.4.
At the end, we will provide all possible local equations of a nonsingular curve
C ⊂ Y such that for all j ∈ J , C∩Vj makes SNCs with Ej (Remark–Definition
2.8).

Example 2.5. This example shows that the inclusion of 2) of the conclusions
of Theorem 2.4 will not in general be an equality. Let Y be a nonsingular
3-fold. Suppose that S ⊂ Y is a singular surface and Z is the singular locus of
S.
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Let {V1 = Y \ Z, V2 = Y } which is clearly an open cover of Y and consider

the SNC divisors E1 = S\Z on V1 and E2 = 0 on V2. Then Ẽ0 = S. Embedded
resolution of singularities π1 : Y1 → Y of S has an exceptional locus F which

appears in π∗
1(Ẽ0). However, V1,1 ∩ F = ∅ and E1,2 = 0 on V1,2. So, F is not

contained in E1,1 + E1,2.

Lemma 2.6. Suppose that A is the strict transform on Yi of an irreducible
component of Ẽ0. If Zi ∩A ̸= ∅ then Zi ⊂ A.

Proof. Let D be the strict transform of Ẽ0 on Yi. Let r be the maximum
multiplicity of points of D on Yi. Since Zi is permissible for the resolution
algorithm, Zi ⊂ D and D has order r at all points of D. Let B1, . . . , Br be
the irreducible components of D containing Zi and let A,C1, . . . , Cs be the
irreducible components of D which contain q but do not contain Zi. Let Q be
the generic point of Zi. Then the multiplicity satisfies

r = νq(D) = νq(A) +
∑

νq(Ci) +
∑

νq(Bi)
>

∑
νq(Bi)

≥
∑

νQ(Bi) by upper semicontinuity of multiplicity (Appendix A.19 [7])
= νQ(D) = r

giving a contradiction. □

Lemma 2.7. Suppose that X is a nonsingular variety and D = A + B is a
SNC divisor on X where A and B have no irreducible components in common.
Suppose that Z is a nonsingular subvariety of X such that Z makes SNCs with
A and if C is an irreducible component of B then either Z ⊂ C or Z ∩C = ∅.
Then Z makes SNCs with D.

Proof. Suppose that q ∈ Z ∩ Supp(D). Let R = OX,q and P = IZ,q. Let m be
the maximal ideal of R and let m′ be the maximal ideal of R/P = OZ,q. We
have a short exact sequence of L = R/m vector spaces

0 → P/P ∩m2 ∼= (P +m2)/m2 → m/m2 → m′/(m′)2 → 0.

Let xt = 0 for 1 ≤ t ≤ r be local equations at q of the irreducible components
of A which contain q and let xt = 0 for r + 1 ≤ t ≤ s be local equations at
q of the irreducible components of B which contain q. Since A + B is a SNC
divisor,

(2.1) the classes x1, . . . , xs of x1, . . . , xs in m/m2 are linearly independent.

After possibly reindexing the xi, we may assume that x1, . . . , xc ̸∈ P and
xc+1, . . . , xr ∈ P . By assumption, we have that xr+1, . . . , xs ∈ P . Since
A makes SNCs with Z, x1, . . . , xr can be extended to a regular system of
parameters

xc+1, . . . , xr, y1, . . . , ya, x1, . . . , xc, z1, . . . , zb

of R such that {xc+1, . . . , ya} is a basis of P + m2/m2 and {xc+1, . . . , zb} is a
basis of m/m2. In particular,

(2.2) Span(x1, . . . , xc) ∩ (P +m2)/m2 = {0}.
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By (2.1), xc+1, . . . , xs are linearly independent, so they can be extended to
a basis {xc+1, . . . , xs, σ1, . . . , σd} of (P +m2)/m2. By (2.2),

xc+1, . . . , xs, σ1, . . . , σd, x1, . . . , xc

are linearly independent in m/m2, so we can extend them to a basis

{xc+1, . . . , xs, σ1, . . . , σd, x1, . . . , xc, τ1, . . . , τe}

of m/m2. Let u1, . . . , ud ∈ P be such that the class of ui in P/P ∩ m2 ∼=
(P +m2)/m2 is σi for 1 ≤ i ≤ d and let v1, . . . , ve ∈ m be such that vi = τi for
1 ≤ i ≤ e. Then (by definition)

(2.3) xc+1, . . . , xs, u1, . . . , ud, x1, . . . , xc, v1, . . . , ve

is a regular system of parameters in R. Let I be the ideal

I = (xc+1, . . . , xs, u1, . . . , ud).

We have that

(2.4) s− c+ d = dimR− dimR/I

by Proposition A.4 [2]. Let n be the maximal ideal of R/I. From the exact
sequence

0 → (I +m2)/m2 → m/m2 → n/n2 → 0

of L-vector spaces, we see that

dim n/n2 = dimm/m2 − dim(I +m2)/m2

= dimm/m2 − (s− c+ d)
= dimm/m2 − (dimR− dimR/I) by (2.4)
= dimR/I

since R is a regular local ring. Thus R/I is a regular local ring; in particular,
I is a prime ideal. Since I and P have the same height, I = P . Thus by (2.3),
Z makes SNCs with D = A+B at q. □

Now we give the proof of Theorem 2.4.

Proof of Theorem 2.4. We first prove 1). We will establish 1) by induction on
i that Ei,j is a SNC divisor on Vi,j and Zi ∩ Vi,j makes SNCs with Ei,j at
all points of Zi ∩ Vi,j . Since Ei+1,j will be a SNC divisor if Zi ∩ Vi,j makes
SNCs with Ei,j , we may assume by induction that Ei,j is a SNC divisor. Let
Z = Zi ∩ Vi,j . We must show that Z makes SNCs with Ei,j . We decompose
Ei,j = A + B where B is the strict transform of Ej on Vj to Vi,j and A is
the sum of exceptional components of Πi,j . Since Zi is permissible for the
resolution datum of the algorithm, Zi makes SNCs with A. By Lemmas 2.6
and 2.7, we conclude that Z makes SNCs with Ei,j .

And clearly, 2) follows since Zi ⊆ Π∗
i (Ẽ0)red for all i, as Zi is a permissible

center for the algorithm (Definition 5.21 [7]). □
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Remark–Definition 2.8. Suppose that φ : X → Y is a morphism of non-
singular 3-folds, which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J
and C ⊂ Y is a nonsingular curve such that for all j ∈ J , C ∩ Vj makes SNCs
with Ej . If q ∈ Ej ∩ C for some j, then there exist algebraic permissible
parameters u, v, w at q for Ej such that one of the following holds.

1) q is a 3-point of Ej (which has local equation uvw = 0 at q) and
u = v = 0 are local equations of C at q and, C is called a 2+-curve
for Ej at q.

2) q is a 2-point of Ej (which has local equation uv = 0 at q) and u = v = 0
are local equations of C at q and, C is called a 2-curve for Ej at q.

3) q is a 2-point of Ej (which has local equation uv = 0 at q) and u =
w = 0 are local equations of C at q and, C is called a 1+-curve for Ej

at q.
4) q is a 1-point of Ej (which has local equation u = 0 at q) and u = v = 0

are local equations of C at q and, C is called a 1-curve for Ej at q.
5) q is a 1-point of Ej (which has local equation u = 0 at q) and v = w = 0

are local equations of C at q and, C is called a 0+-curve for Ej at q.

If q ∈ (C ∩ Vj) \ Ej , i.e., q is a 0-point for Ej , there exist regular parameters
u, v, w at q such that u = v = 0 are local equations of C at q and C is called a
0-curve for Ej at q.

2.3. Extended Strategy for the Proof. Suppose that φ : X → Y is a locally
toroidal morphism of nonsingular 3-folds with respect to L = {Uj , Dj , Vj , Ej}J
and π1 : Y1 → Y is the blow up of a permissible center Z ⊂ Y satisfying the
conclusions 1), 2) of the Theorem 2.4. Then we will obtain

Y1>>
π−1
1 ◦φ

}
}
}
}

π1

��
X

φ
// Y.

The locus of indeterminant points of the rational map π−1
1 ◦φ is the set WZ(X)

defined in Definition 2.9 below. Due to the toroidal forms of Proposition 2.2,
we will describe WZ(X) explicitly in Proposition 2.10.

To resolve the indeterminancy of the rational map X 99K Y1, we will provide
a careful algorithm for principalization of monomial ideals in Definition 2.11
so that the resulting morphism, after resolution of indeterminancy, is again
locally toroidal. We must be very careful about how we principalize, as most
resolutions of indeterminancy will not have this property – see Example 2.14.

Definition 2.9. Suppose that φ : X → Y is a dominant morphism of nonsin-
gular varieties and Z ⊂ Y is a nonsingular subvariety. Define

WZ(X) = {p ∈ X | IZOX,pis not invertible}

where IZ is the ideal sheaf of Z in OY .
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Suppose that X is a 3-fold. We will say that WZ(X) is SNC if the reduced
ideal sheaf IWZ(X) has the property that for every close point p ∈ WZ(X), there
are regular parameters x, y, z in OX,p such that one of the following forms hold:

(N.1) IWZ(X),p = (x, y) ∩ (x, z) ∩ (y, z),
(N.2) IWZ(X),p = (x, z) ∩ (y, z),
(N.3) IWZ(X),p = (x, z),
(N.4) IWZ(X),p = (x, y, z).

Proposition 2.10. Suppose that φ : X → Y is a morphism of nonsingular 3-
folds which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J . Let Z ⊂ Y
be a point q or a nonsingular curve C such that for all j ∈ J , C ∩ Vj makes
SNCs with Ej. Then WZ(X) is SNC.

Proof. First, suppose that Z is a point q ∈ Y and Iq is the ideal sheaf of q in
OY . Since X is nonsingular we have the factorization IqOX = JK where J is
an invertible ideal sheaf and dimOX/K < dimX − 1 (Lemma 15.8 [10]). Then√
K = IWq(X) and Supp(OX/K) = Wq(X).

Let p ∈ Wq(X) which is obviously contained in φ−1(q). Suppose that p ∈ Uj

for some j ∈ J .
If q /∈ Ej , then φ is smooth at p since φ is locally toroidal. So there exist

regular parameters x, y, z in OX,p and regular parameters u, v, w in OY,q such
that u = x, v = y and w = z. Thus

IqOX,p = (u, v, w)OX,p = (x, y, z) = Kp

and IWq(X),p =
√
Kp = (x, y, z). So, (N.4) holds for p.

If q ∈ Ej for some j ∈ J , then p must lie in Dj ⊂ Uj and, since φj : Uj → Vj

is toroidal with respect to Ej and Dj , by Proposition 2.2, one of the toroidal
forms (T1) through (T6) holds.

Suppose that (T1) holds for q ∈ Ej and p ∈ Wq(X) ⊆ φ−1(q) ⊂ Dj , then
there exist algebraic permissible parameters u, v, w at q for Ej and (formal)
permissible parameters x, y, z at p for Dj such that p is a 3-point of Dj with
local equation xyz = 0, q is a 3-point for Ej with local equation uvw = 0, and

u = xaybzc

v = xdyezf

w = xgyhzi,

where a, b, c, d, e, f, g, h, i ∈ N and det

 a b c
d e f
g h i

 ̸= 0.

In addition, Dj is a SNC divisor on Uj and there exist regular parameters
x̄, ȳ, z̄ in OX,p such that x̄ȳz̄ = 0 is a local equation of Dj . So there exists unit

series δx, δy, δz ∈ ÔX,p such that, after possibly interchanging the variables,
x = δxx̄, y = δy ȳ and z = δz z̄.
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Set δu = δaxδ
b
yδ

c
z, δv = δdxδ

e
yδ

f
z and δw = δgxδ

h
y δ

i
z. Then we have

u = δux̄
aȳbz̄c

v = δvx̄
dȳez̄f

w = δwx̄
g ȳhz̄i.

In fact, δu, δv and δw are units in OX,p since, for instance,

δu =
u

x̄aȳbz̄c
∈ QF (OX,p) ∩ ÔX,p = OX,p

by Lemma 2.1 [5]. So, ū = δ−1
u u, v̄ = δ−1

v v and w̄ = δ−1
w w are regular algebraic

permissible parameters at q and we have

IqOX,p = (ū, v̄, w̄)OX,p = (x̄aȳbz̄c, x̄dȳez̄f , x̄g ȳhz̄i).

Let dx = min{a, d, g}, dy = min{b, e, h} and dz = min{c, f, i}, then

IqOX,p = (x̄dx ȳdy z̄dz )Kp.

Since IqOX,p is a monomial ideal, so are Kp and IWq(X),p =
√
Kp. Therefore,

IWq(X),p must be one of the ideals in (N.1) through (N.4). Geometrically, there
exists an affine neighborhood Up of p such that Up ∩ Wq(X) is a finite union
of coordinate subspaces, i.e., vector subspaces of kn defined by setting some
subset of variables x̄, ȳ, z̄ equal to zero (page 440, Proposition 1. [12]).

The proof is similar when one of the forms (T2) through (T6) holds, also
when Z is a nonsingular curve C ⊂ Y such that, for all j ∈ J , C ∩ Vj makes
SNCs with Ej . □

Definition 2.11. Suppose that φ : X → Y is a morphism of nonsingular
3-folds, which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J . Let
Z ⊂ Y be a point or a nonsingular curve C such that for all j ∈ J , C ∩ Vj

makes SNCs with Ej . A principalization sequence of Z is a sequence

· · · → Xn
λn−−→ Xn−1 → · · · −→ Xi

λi−→ Xi−1 −→ · · ·X1
λ1−→ X

such that each λi : Xi → Xi−1 is the blow up of a nonsingular curve or point
in WZ(Xi−1) satisfying the following conditions.

1) WZ(Xi) is SNC for all i.
2) Since X is nonsingular, we have a factorization IZOX = J I0 where

IZ is the ideal sheaf of Z in OY , J is an invertible ideal sheaf and
dimOX/I0 < dimX − 1 (Lemma 15.8 [10]). Thus Supp(OX/I0) =
WZ(X). Let Ii be the weak transform of I0 (page 65 [7]), so that
Supp(OX/Ii) = WZ(Xi). Let

ri = max{νp(Ii) | p ∈ Xi}

where νp(Ii) is the order of (Ii)p in OXi,pi (Definition A.17 [7]). Then
for all i, Zi is an irreducible component of maximal dimension of

MaxWZ(Xi) = {p ∈ Xi | νp(Ii) = ri}.
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Example 2.14 shows that we have to be careful in our construction of a
principalization of an ideal sheaf in order to obtain a locally toroidal morphism.
This is the reason for the condition 2) in the statement of Definition 2.11.

Definition 2.12. The composition of a principalization sequence and a toroidal
form is called a quasi-toroidal form.

In Section 3, we will apply this algorithm to resolve the indeterminancy of
the rational map π−1

1 ◦φ : X 99K Y1 considering Z to be different types of points
(Definition 2.1) and different types of permissible curves (Remark–Definition
2.8). Meanwhile we will provide a thorough list of quasi-toroidal forms. We
will see that any principalization sequence λ of Z which is actually a resolution
of indeterminancy of X 99K Y1 is finite.

Then we will prove, in Section 4, that the induced morphism ϕ1 : X1 → Y1

which gives the commutative diagram

X1
ϕ1−−−−→ Y1

λ

y yπ

X −−−−→
φ

Y

is locally toroidal with respect to the modified local toroidal structure.
Iterative use of this process results in Theorem 2.13 below, which is proven

in subsection 4.2. Finally, in the proof of our main result Theorem 1.2, we
will prove that φ̃ constructed in Theorem 2.13 is actually our desired toroidal
morphism.

Theorem 2.13. Suppose that φ : X → Y is a morphism of nonsingular 3-
folds which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J . Let Ej

be the Zariski closure of Ej in Y , and let Ẽ0 = (
∑

j∈J Ej)red. Then there

exist proper birational morphisms π : Ỹ → Y and λ : X̃ → X such that Ỹ

and X̃ are nonsingular, π∗(Ẽ0)red is a SNC divisor on Ỹ and, φ̃ : X̃ → Ỹ

is locally toroidal with respect to L̃ = {Ũj , D̃j , Ṽj , Ẽj}J where Ũj = λ−1(Uj),

Ṽj = π−1(Vj), D̃j = (λ|Ũj
)∗(Dj)red and Ẽj = (π|Ṽj

)∗(Ej)red. Furthermore,

there exists a commutative diagram

(LT ) X̃ = Xn
λn //

φ̃=ϕn

��

Xn−1
//

ϕn−1

��

· · · // X1
λ1 //

ϕ1

��

X

φ

��
Ỹ = Yn πn

// Yn−1
// · · · // Y1 π1

// Y

such that each πi is the blow up of a nonsingular center Zi−1 ⊂ Yi−1 which is
either a point or a curve, and each λi is a principalization sequence of Zi−1

with WZi−1(Xi) = ∅.
Let Πi = π1 ◦ · · · ◦ πi : Yi → Y and Λi = λ1 ◦ · · · ◦ λi : Xi → X. For j ∈ J ,

let Vi,j = Π−1
i (Vj), Πi,j = (Πi|Vi,j ) : Vi,j → Vj, Ei,j = Π∗

i,j(Ej)red, and let
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Ui,j = Λ−1
i (Uj), Λi,j = (Λi|Ui,j ) : Ui,j → Uj, Di,j = Λ∗

i,j(Dj)red. We further
have that, for all i, j,

1) Di,j is a SNC divisor on Ui,j and Ei,j is a SNC divisor on Vi,j.
2) ϕi : Xi → Yi is locally toroidal w.r.t. Li = {Ui,j , Di,j , Vi,j , Ei,j}J .

Example 2.14. This example shows that if φ : X → Y is locally toroidal
and Z ⊂ Y is a nonsingular curve such that C ∩ Vj makes SNCs with Ei for
all j, then most sequences of blow ups of points and nonsingular curves which
principalize IZOX will not lead to a resolution of indeterminacy ϕ1 : X1 → Y1

(where Y1 is the blow up of Z) such that ϕ1 is locally toroidal. This is why
we need the restriction 2) of Definition 2.11. For our example, we consider the
following germ of a locally toroidal map φ : X → Y .

Suppose that C is a 2-curve at the point q ∈ Y which is a 2-point of Ej .
So, there exist algebraic permissible parameters u, v, w at q for Ej such that
uv = 0 is a local equation of Ej at q and u = v = 0 are local equations of C at
q. We consider p ∈ φ−1(q) to be a 2-point of Dj and that there exist (formal)
permissible parameters x, y, z at p such that xy = 0 is a local equation of Dj

at p and

u = x2y, v = xy3, w = z.

Suppose that π : Y1 → Y is the blow up of C, and we want to resolve the
indeterminancy. We note that

(u, v)ÔX,p = (x2y, xy3) = (xy)(x, y2).

So, WC(X) ∩ Uj contains the curve x = y = 0. Now, the point p which has
local equations x = y = z = 0 makes SNCs with WC(X). If we blow it up to
get λ1 : X1 → X, we also have that D1,j = (λ1|Uj )

∗(Dj)red is a SNC divisor
on Uj .

Consider the point p1 ∈ λ−1
1 (p) which has regular parameters x1, y1, z1 de-

fined by

x = x1, y = x1y1, z = x1z1.

Then D1,j has the local equation x1y1 = 0 at p1, so x1, y1, z1 are permissible
parameters at p1. Substituting into u, v, w, we obtain

u = x3
1y1, v = x4

1y
3
1 , w = x1z1.

Thus the rational map ϕ1,j : U1,j 99K V1,j is a morphism at p1, and q1 = ϕ1,j(p1)
has regular parameters u1 = u, v1 = v

u , w1 = w. These are permissible
parameters at q1 for E1,j = (π|Vj )

∗(Ej)red and u1v1 = 0 is a local equation of
E1,j at q1. However, local equations of ϕ1,j at p1 are

u1 = x3
1y1, v1 = x1y

2
1 , w1 = x1z1

which is not toroidal with respect to D1,j and E1,j .
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3. Principalization

This Section is devoted to proving that any principalization sequence (Defi-
nition 2.11) of a permissible center Z in the resolution algorithm is finite. That
is Theorem 3.3 and the proof is based on a detailed analysis of the principal-
ization sequences of all types of permissible centers.

Suppose that φ : X → Y is a locally toroidal morphism of nonsingular
3-folds with respect to L = {Uj , Dj , Vj , Ej}J . Let

(P) · · · −→ Xn
λn−−→ Xn−1 → · · · −→ Xi

λi−→ Xi−1 −→ · · ·X1
λ1−→ X

be a principalization sequence of a point q ∈ Y or a nonsingular curve C ⊂ Y
such that C ∩ Vj makes SNCs with Ej for all j ∈ J , and let Λi = λ1 ◦ · · ·λi.

3.1. Analysis of Principalization Sequences of Points. In the following
Lemma, we study the sequence (P) for all possibilities of a center that is a
point q ∈ Y (Definition 2.1).

Lemma 3.1. Suppose j ∈ J and q ∈ Vj. There exist algebraic permissible

parameters u, v, w at q for Ej such that for all i, if p ∈ (φ◦Λi)
−1(q)∩Λ−1

i (Uj),
then
I. Di,j = (Λi|Uj

)∗(Dj)red is a SNC divisor in a neighborhood of p, and there
exist formal permissible parameters x, y, z at p for Di,j such that

(i) If q is a 3-point for Ej, and uvw = 0 is a local equation of Ej at q,
one of the following forms holds at p.
(qt1) p is a 3-point for Di,j, xyz = 0 is a local equation of Di,j at p and

(T1) holds.
(qt2) p is a 2-point for Di,j, xy = 0 is a local equation of Di,j at p and

(T2) holds.
(qt3) p is a 1-point for Di,j, x = 0 is a local equation of Di,j at p and

(T3) holds.
(ii) If q is a 2-point for Ej, and uv = 0 is a local equation of Ej at q, one

of the following forms holds at p.
(qt4) p is a 2-point and xy = 0 is a local equation of Di,j at p, and

u = xayb, v = xdye, w = xgyh(z + α)

with ae− bd ̸= 0, g ⩽ min{a, d}, h ⩽ min{b, e}, and α ∈ k.
(qt5) p is a 3-point and xyz = 0 is a local equation of Di,j at p, and

u = xaybzc, v = xdyezf , w = xgyhzi

where g = min{a, d, g}, h = min{b, e, h} and i = min{c, f, i}, and

det

 a b c
d e f
g h i

 ̸= 0.

(qt6) p is a 1-point and x = 0 is a local equation of Di,j at p, and

u = xa, v = xd(y + α), w = xg(z + β)
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with a, d > 0, α, β ∈ k, α ̸= 0 and g ⩽ min{a, d}.
(qt7) p is a 2-point and xz = 0 is a local equation of Di,j at p, and

u = xaza, v = xdzd(y + α), w = xgzg+1

with a, d > 0, 0 ̸= α ∈ k and g + 1 ⩽ min{a, d}.
(iii) If q is a 1-point for Ej, and u = 0 is a local equation of Ej at q, one

of the following forms holds at p.
(qt8) p is a 1-point and x = 0 is a local equation of Di,j at p, and

u = xa, v = xa′
(y + α), w = xa′

(z + β)

where a, a′ ∈ N satisfy a > 0 and a′ ⩽ a, and α, β ∈ k.
(qt9) p is a 2-point and xy = 0 is a local equation of Di,j at p, and

u = xaya, v = xa′
ya

′+1, w = xa′
ya

′+1(z + α)

with α ∈ k and a, a′ ∈ N satisfy a > 0 and a′ + 1 ⩽ a.
(qt10) p is a 2-point and xz = 0 is a local equation of Di,j at p, and

u = xaza, v = xa′
yza

′+1, w = xa′
za

′+1

where a, a′ ∈ N satisfy a > 0 and a′ + 1 ⩽ a.
(iv) If q is a 0-point for Ej, i.e., q ∈ Vj \ Ej, one of the following forms

holds at p.
(qt11) p is a 0-point for Di,j, and u = x, v = y, w = z.
(qt12) p is a 0-point for Di,j, and

u = x, v = x(y + α), w = x(z + β) with α, β ∈ k.

(qt13) p is a 0-point for Di,j, and

u = xy, v = y, w = y(z + α) with α ∈ k.

(qt14) p is a 0-point for Di,j, and u = xz, v = yz, w = z.

II. Wq(Xi) is SNC for all i. Precisely, if p ∈ Wq(Xi), then there exist (for-
mal) permissible parameters x, y, z at p for Di,j such that one of the following
possibilities holds. The weak transform of I0 defined by 2) of Definition 2.11
on Xi is denoted by Ii which satisfies

√
Ii = IWq(Xi).

(qt1.np) We are in the case (qt1) and ÎWq(Xi),p is one of the ideals (N.1) through
(N.4).

(qt2.np) We are in the case (qt2) and ÎWq(Xi),p = (x, y).
(qt4.np) We are in the case (qt4) with equations

u = xayb, v = xdye, w = xgyhz

where ae− bd ̸= 0, and

g < min{a, d} or h < min{b, e} or (a− d)(b− e) < 0.

Then Ii satisfies

Îi,p = (xmin{a−g,d−g}, z)∩(xmax{a−g,d−g}, ymax{b−h,e−h}, z)∩(ymin{b−h,e−h}, z).
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In particular, if g = min{a, d}, h = min{b, e},

Îi,p = (xmax{a−g,d−g}, ymax{b−h,e−h}, z).

Hence ÎWq(Xi),p is one of the ideals (N.2), (N.3) or (N.4).
(qt6.np) We are in the case (qt6) with equations

u = xa, v = xd(y + α), w = xgz

where 0 ̸= α ∈ k and g < min{a, d}. In addition, ÎWq(Xi),p = (x, z).
(qt8.np) We are in the case (qt8) with equations

u = xa, v = xa′
y, w = xa′

z and a′ < a.

Further, Ii satisfies Îi,p = (xa−a′
, y, z) with a−a′ > 0. Thus ÎWq(Xi),p =

(x, y, z).

(qt11.np) We are in the case (qt11), and Ii satisfies Îi,p = (x, y, z) = ÎWq(Xi),p.

Proof. By Proposition 2.2 and Proposition 2.10, X satisfies the conclusions of
the lemma. If we prove conclusion I, then, by an argument similar to that
of Proposition 2.10, we will obtain conclusion II. So, it remains to show that
conclusion I holds. Inductively, we assume that the conclusions hold for Λi−1

and we prove them for Λi.
Suppose that p ∈ (φ◦Λi)

−1(q)∩Λ−1
i (Uj) = λ−1

i ((φ◦Λi−1)
−1(q)∩Λ−1

i−1(Uj))
and let Ti−1 ⊆ Wq(Xi−1) be the center of λi.

We can assume that p ∈ λ−1
i (Ti−1) since λi is an isomorphism out of the

center, i.e., at points p ∈ Xi \ λ−1
i (Ti−1). Let p̄ = λi(p) ∈ Ti−1.

By the induction hypothesis, there exist formal permissible parameters x̄, ȳ, z̄
at p̄ for Di−1,j such that one of the cases (qt1.np) through (qt11.np) of the
conclusion II of the lemma holds. All of the cases are similar. We will work
out in detail the case when (qt4.np) holds for p̄ (so q ∈ Vj is a 2-point for Ej ,
p̄ is a 2-point for Di−1,j , and we are in the case (qt4)).

Suppose that (qt4.np) holds for p̄, then, by the induction hypothesis, the
weak transform Ii−1 of I0 on Xi−1 satisfies

Îi−1,p̄ = (x̄min{a−g,d−g}, z̄)∩(x̄max{a−g,d−g}, ȳmax{b−h,e−h}, z̄)∩(ȳmin{b−h,e−h}, z̄)

where ae− bd ̸= 0, and

g < min{a, d} or h < min{b, e} or (a− d)(b− e) < 0.

We note that Îi−1,p̄ has order ri−1 = 1 at p̄. The center Ti−1 is the point p̄

if and only if min{a − g, d − g} = min{b − h, e − h} = 0, and then Îi−1,p̄ =

(x̄max{a−g,d−g}, ȳmax{b−h,e−h}, z̄). In this case, x̄ = ȳ = z̄ = 0 are clearly
formal local equations of Ti−1 at p̄. Hence there exist permissible parameters
x, y, z at p ∈ λ−1

i (p̄) for Di,j such that one of the following equations holds.

(pb1) x̄ = x, ȳ = x(y + α), z̄ = x(z + β), α, β ∈ k or,

(pb2) x̄ = xy, ȳ = y, z̄ = y(z + α), α ∈ k or,

(pb3) x̄ = xz, ȳ = yz, z̄ = z.
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However, if g < min{a, d}, i.e., min{a− g, d− g} > 0, ri−1 is 1 at all points
of the curve with local equations x̄ = z̄ = 0 at p̄, or if min{b−h, e−h} > 0, this
order is 1 at all points of the curve which has local equations ȳ = z̄ = 0 at p̄.
Since Ti−1 is an irreducible component of maximal dimension of MaxWq(Xi−1)
due to condition 2) of Definition 2.11, andWq(Xi−1) is SNC, if g < min{a, d} or
h < min{b, e}, we have that Ti−1 is a curve and either x̄ = z̄ = 0, or ȳ = z̄ = 0
are formal local equations of Ti−1 at p̄.

After possibly permuting x̄, ȳ, we can assume that g < min{a, d} and x̄ =
z̄ = 0 are local equations of Ti−1 at p̄. Thus there exist permissible parameters
x, y, z at p ∈ λ−1

i (p̄) for Di,j such that one of the following equations holds.

(cb3) x̄ = x, ȳ = y, z̄ = x(z + α), α ∈ k or,

(cb4) x̄ = xz, ȳ = y, z̄ = z.

Since Ti−1 makes SNCs withDi−1,j , we have thatDi,j = (λi|Ui,j )
∗(Di−1,j)red

is a SNC divisor.
Suppose that Ti−1 is a point. This case only happen if min{a−g, d−g} = 0

and min{b − h, e − h} = 0, so that g = min{a, d} and h = min{b, e}. In this
case, since (qt4.np) holds for p̄, we must have (a − d)(b − e) < 0. Then, after
possibly interchanging x̄ and ȳ (as ȳx̄ = x̄ȳ = 0 is a local equation of Di−1,j at
p̄), we must have g = a = min{a, d}, h = e = min{b, e}, g < d and h < b and
so

(3.1) g + h+ 1 ≤ min{a+ b, d+ e}.

(qt4.np.1) Suppose that (pb1) holds with α = β = 0. Then p is a 2-point of
Di,j with local equation xy = 0, and

u = xa+byb

v = xd+eye

w = xg+h+1yhz

where

det

(
a+ b b
d+ e e

)
= det

(
a b
d e

)
̸= 0.

So, we are in the case (qt4) since (3.1) holds. (Similarly, if (pb1) holds with
α = 0, β ̸= 0 or, (pb2) holds, we are in the case (qt4)).

(qt4.np.2) If (pb1) holds with α ̸= 0, β = 0, then x2(y + α) = 0 is a local
equation of divisor whose support is Di,j and this implies that x = 0 is a local
equation of Di,j and p is a 1-point of Di,j . In addition,

u = xa+b(y + α)b

v = xd+e(y + α)e

w = xg+h+1(y + α)hz
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where a+ b, d+ e > 0 since ae− bd ̸= 0. Hence

det

(
a+ b 0

g + h+ 1 1

)
= a+ b > 0

and so, there exist (unique) γ1, γ2 ∈ Q such that

(3.2)

(
a+ b 0

g + h+ 1 1

)(
γ1
γ2

)
=

(
b
h

)
.

Then we can set

x̃ = x(y + α)γ1

z̃ = z(y + α)γ2

α̃ = αe−γ1(d+e)

ỹ = (y + α)e−γ1(d+e) − α̃

which satisfy∣∣∣∣∣∣∣
∂x̃
∂x

∂x̃
∂y

∂x̃
∂z

∂ỹ
∂x

∂ỹ
∂y

∂ỹ
∂z

∂z̃
∂x

∂z̃
∂y

∂z̃
∂z

∣∣∣∣∣∣∣
(0,0,0)

=

∣∣∣∣∣∣
αγ1 0 0
0 (e− γ1(d+ e))αe−γ1(d+e)−1 0
0 0 αγ2

∣∣∣∣∣∣
= (e− γ1(d+ e))αγ1+γ2+e−γ1(d+e)−1 ̸= 0

since α ̸= 0 and e− γ1(d+ e) ̸= 0. (Otherwise, if e− γ1(d+ e) = 0, due to the
first equation in (3.2), we have that(

a+ b b
d+ e e

)(
γ1
−1

)
=

(
0
0

)
which contradicts ae− bd ̸= 0).

So, we obtain permissible parameters x̃, ỹ, z̃ at p for Di,j such that x̃ = 0 is
a local equation of Di,j at p and

u = x̃a+b

v = x̃d+e(ỹ + α̃)

w = x̃g+h+1z̃

with a + b, d + e > 0 since ae − bd ̸= 0, α̃ ̸= 0 since α ̸= 0 and, g + h + 1 ≤
min{a+ b, d+ e} due to (3.1). So, we are in the case (qt6).

(qt4.np.3) If (pb1) holds and both α, β are nonzero, then x3(y+α)(z+β) = 0
is a local equation of a divisor whose support is Di,j which implies that x = 0
is a local equation of Di,j at p and p is a 1-point of Di,j . Further,

u = xa+b(y + α)b

v = xd+e(y + α)e

w = xg+h+1(y + α)h(z + β)
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where a+ b, d+ e > 0 since ae− bd ̸= 0. So, we can set

x̃ = x(y + α)
b

a+b

α̃ = α−( b
a+b )(d+e)+e = α

ae−bd
a+b

ỹ = (y + α)
ae−bd
a+b − α̃

β̃ = α−( b
a+b )(g+h+1)+hβ = α

(ah−bg)−b
a+b β

z̃ = (y + α)
(ah−bg)−b

a+b (z + β)− β̃

which satisfy∣∣∣∣∣∣∣
∂x̃
∂x

∂x̃
∂y

∂x̃
∂z

∂ỹ
∂x

∂ỹ
∂y

∂ỹ
∂z

∂z̃
∂x

∂z̃
∂y

∂z̃
∂z

∣∣∣∣∣∣∣
(0,0,0)

=

∣∣∣∣∣∣∣
α

b
a+b 0 0

0 (ae−bd
a+b )α

ae−bd
a+b −1 0

0 (ah−bg−b
a+b )α

ah−bg−b
a+b −1β α

ah−bg−b
a+b

∣∣∣∣∣∣∣
= (

ae− bd

a+ b
)α

ae−bd+ah−bg
a+b −1 ̸= 0

since α ̸= 0 and ae− bd ̸= 0.
Therefore, we obtain permissible parameters x̃, ỹ, z̃ at p for Di,j such that

x̃ = 0 is a local equation of Di,j at p and

u = x̃a+b

v = x̃d+e(ỹ + α̃)

w = x̃g+h+1(z̃ + β̃)

with a+ b, d+ e > 0 since ae− bd ̸= 0, α̃, β̃ ̸= 0 since α, β ̸= 0 and, g+h+1 ≤
min{a+ b, d+ e} due to (3.1). So, we are in the case (qt6).

(qt4.np.4) If (pb3) holds, then p is a 3-point of Di,j with local equation
xyz = 0 and,

u = xaybza+b

v = xdyezd+e

w = xgyhzg+h+1

where

det

 a b a+ b
d e d+ e
g h g + h+ 1

 = det

 a b 0
d e 0
g h 1

 = ae− bd ̸= 0,

g ≤ min{a, d} and h ≤ min{b, e} since (qt4.np) holds for p̄, and g + h + 1 ≤
min{a+ b, d+ e} due to (3.1). So, we are in the case (qt5).

Now, suppose that Ti−1 is the curve with local equations x̄ = z̄ = 0 at p̄ (so
that g < min{a, d}). Then one of the equations (cb3), or (cb4) holds.
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(qt4.np.5) Suppose that (cb3) holds, then p is a 2-point of Di,j with local
equation xy = 0 and,

u = xayb

v = xdye

w = xg+1yh(z + α)

where ae − bd ̸= 0, g + 1 ≤ min{a, d} since g < min{a, d}, h ≤ min{b, e} and
α ∈ k. So, we are in the case (qt4).

(qt4.np.6) If (cb4) holds, then p is a 3-point of Di,j with local equation
xyz = 0 and,

u = xaybza

v = xdyezd

w = xgyhzg+1

where g ≤ min{a, d}, h ≤ min{b, e}, and g+1 ≤ min{a, d} since g < min{a, d}.
So, we are in the case (qt5).

Therefore, in the case when (qt4.np) holds for p̄, and similarly, in other cases,
the conclusion I of the lemma holds for all i. In all the cases, we have that
Wq(Xi) is SNC, by an argument similar to that of Proposition 2.10. □

3.2. Analysis of Principalization Sequences of Curves. In the following
Lemma, we study the sequence (P) for all possibilities of a permissible center
that is a nonsingular curve C ⊂ Y – see Remark–Definition 2.8.

Lemma 3.2. Suppose that j ∈ J and q ∈ C ∩ Vj. There exist algebraic
permissible parameters u, v, w at q for Ej such that for all i, if p lies in (φ ◦
Λi)

−1(q) ∩ Λ−1
i (Uj), then

I. Di,j = (Λi|Uj )
∗(Dj)red is a SNC divisor in a neighborhood of p, and there

exist formal permissible parameters x, y, z at p for Di,j such that

(i) If q is a 3-point for Ej and uvw = 0 is a local equation of Ej at q, and
C is a 2+-curve for Ej at q such that u = v = 0 are local equations
of C at q, then one of the quasi-toroidal forms (qt1), (qt2) or (qt3) of
Lemma 3.1 holds at p.

(ii) If q is a 2-point for Ej and uv = 0 is a local equation of Ej at q, and
C is a 2-curve for Ej at q such that u = v = 0 are local equations of C
at q, then one of the following forms holds at p.

(qt15) p is a 2-point and xy = 0 is a local equation of Di,j at p and (T4)
holds.

(qt16) p is a 1-point and x = 0 is a local equation of Di,j at p and (T5)
holds.

(iii) If q is a 2-point for Ej and uv = 0 is a local equation of Ej at q, and
C is a 1+-curve for Ej at q such that u = w = 0 are local equations of
C at q, then one of the following forms holds at p.
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(qt17) p is a 2-point and xy = 0 is a local equation of Di,j at p, and

u = xayb, v = xdye, w = xgyh(z + α)

with ae− bd ̸= 0 and g ⩽ a, h ⩽ b and, α ∈ k.
(qt18) p is a 3-point and xyz = 0 is a local equation of Di,j at p, and

u = xaybzc, v = xdyezf , w = xgyhzi

where g ⩽ a, h ⩽ b and i ⩽ c and det

 a b c
d e f
g h i

 ̸= 0.

(qt19) p is a 1-point and x = 0 is a local equation of Di,j at p, and

u = xa, v = xd(y + α), w = xg(z + β)

where a, d > 0, α, β ∈ k, α ̸= 0 and g ⩽ a.
(qt20) p is a 2-point and xz = 0 is a local equation of Di,j at p, and

u = xaza, v = xdzd(y + α), w = xgzg+1

with a, d > 0, 0 ̸= α ∈ k and g + 1 ⩽ a.
(iv) If q is a 1-point for Ej and u = 0 is a local equation of Ej at q, and C

is a 1-curve for Ej at q such that u = v = 0 are local equations of C
at q, then one of the following forms holds at p.

(qt21) p is a 1-point and x = 0 is a local equation of Di,j at p, and

u = xa, v = xa′
(y + α), w = z

where a, a′ ∈ N satisfy a > 0 and a′ ⩽ a, and α ∈ k.
(qt22) p is a 2-point and xy = 0 is a local equation of Di,j at p, and

u = xaya, v = xa′
ya

′+1, w = z

where a, a′ ∈ N satisfy a > 0 and a′ + 1 ⩽ a.
(v) If q is a 1-point for Ej and u = 0 is a local equation of Ej at q, and C

is a 0+-curve for Ej at q such that v = w = 0 are local equations of C
at q, then one of the following forms holds at p.

(qt23) p is a 1-point for Di,j, x = 0 is a local equation of Di,j at p and
(T6) holds.

(qt24) p is a 1-point for Di,j, x = 0 is a local equation of Di,j at p and,

u = xa, v = y, w = y(z + α) with a > 0 and α ∈ k.

(qt25) p is a 1-point for Di,j, x = 0 is a local equation of Di,j at p and,

u = xa, v = yz, w = z with a > 0.

(vi) If q is a 0-point for Ej, i.e., q ∈ (C ∩ Vj) \Ej, and C is a 0-curve for
Ej at q such that u = v = 0 are local equations of C at q, then (qt11)
or one of the following forms holds at p.

(qt26) p is a 0-point for Di,j and u = x, v = x(y + α), w = z with α ∈ k.
(qt27) p is a 0-point for Di,j and u = xy, v = y, w = z.
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II. WC(Xi) is SNC for all i. Precisely, if p ∈ WC(Xi), then there exist (formal)
permissible parameters x, y, z at p (for Di,j) such that one of the following
possibilities holds. The weak transform of I0 defined by 2) of Definition 2.11
on Xi is denoted by Ii which satisfies

√
Ii = IWC(Xi).

(qt1.cnp) We are in the case (a.1) with (a− d)(b− e) < 0 or, (a− d)(c− f) < 0
or, (b − e)(c − f) < 0. Further, at most two of these three conditions
can hold and, after possibly permuting the parameters x, y, z, we can
assume (a− d)(b− e) < 0 and (a− d)(c− f) ⩽ 0. Then Ii satisfies

Îi,p = (x|a−d|, y|b−e|z|c−f |) = (x|a−d|, y|b−e|) ∩ (x|a−d|, z|c−f |).

(qt2.cnp) We are in the case (a.2) with (a − d)(b − e) < 0, and Ii satisfies

Îi,p = (x|a−d|, y|b−e|).
(qt15.np) We are in the case (b.1) with equations

u = xayb, v = xdye, w = z

where (a− d)(b− e) < 0. Further, Ii satisfies Îi,p = (x|a−d|, y|b−e|).
(qt17.np) We are in the case (c.1) with equations

u = xayb, v = xdye, w = xgyhz

where g < a or h < b and, ae− bd ̸= 0. So, Ii satisfies
Îi,p = (xa−g, z) ∩ (yb−h, z)

with a− g > 0 or b− h > 0.
(qt19.np) We are in the case (c.3) with equations

u = xa, v = xd(y + α), w = xgz

where a, d > 0, 0 ̸= α ∈ k, g < a, and Ii satisfies Îi,p = (xa−g, z) with
a− g > 0.

(qt21.np) We are in the case (d.1) with equations

u = xa, v = xa′
y, w = z

and a′ < a. In addition, Ii satisfies Îi,p = (xa−a′
, y) with a− a′ > 0.

(qt23.np) We are in the case (e.1), and Ii satisfies Îi,p = (y, z).

(qt11.cnp) We are in the case (f.1), and Ii satisfies Îi,p = (x, y).

Proof. The proof is completely similar to that of Lemma 3.1. By Proposition
2.2, after changing the parameters u, v, w, if necessary, X satisfies the conclu-
sion I of the lemma. Conclusion II also holds for X by Proposition 2.10. If we
prove conclusion I, then, by an argument similar to that of Proposition 2.10,
we will obtain conclusion II. So, it remains to show that conclusion I holds.
Inductively, we assume that the conclusions hold for Λi−1 and we prove them
for Λi.

Suppose that p ∈ (φ◦Λi)
−1(q)∩Λ−1

i (Uj) = λ−1
i ((φ◦Λi−1)

−1(q)∩Λ−1
i−1(Uj))

and let Ti−1 ⊆ WC(Xi−1) be the center of λi.
We can assume that p ∈ λ−1

i (Ti−1) since λi is an isomorphism out of the

center, i.e., at points p ∈ Xi \ λ−1
i (Ti−1). Let p̄ = λi(p) ∈ Ti−1. By the
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induction hypothesis, there exist formal permissible parameters x̄, ȳ, z̄ at p̄ for
Di−1,j such that one of the cases (qt1.cnp) through (qt11.cnp) of conclusion II
of the lemma holds. All of the cases are similar. We will work out in detail
the case when (qt23.np) holds for p̄ (so q ∈ C ∩ Vj is a 1-point for Ej , C is
a 0+-curve for Ej at q, and p̄ is a 1-point for Di−1,j , and we are in the case
(qt23)).

Suppose that (qt23.np) holds for p̄, then, by the induction hypothesis, the

weak transform Ii−1 of I0 on Xi−1 satisfies Îi−1,p̄ = (ȳ, z̄).

We note that Îi−1,p̄ has order 1 at p̄ as well as all points of the curve that has
local equations ȳ = z̄ = 0 at p̄. Since Ti−1 must be an irreducible component
of maximal dimension of MaxWC(Xi−1) due to condition 2) of Definition 2.11,
we have that Ti−1 is a curve and ȳ = z̄ = 0 are local equations of Ti−1 at p̄.
Thus there exist permissible parameters x, y, z for Di,j at p ∈ λ−1

i (p̄) such that
one of the following equations hold.

(cb5) x̄ = x, ȳ = y, z̄ = y(z + α), α ∈ k or,

(cb6) x̄ = x, ȳ = yz, z̄ = z.

In addition, since Ti−1 makes SNCs with Di−1,j , we have that Di,j =
(λi|Ui,j )

∗(Di−1,j)red is a SNC divisor.
By substituting (cb5) and (cb6) in (qt23.np), we obtain (qt24) and (qt25)

respectively, and in both cases x = 0 is a local equation of Di,j at p.
Therefore, in the case when (qt23.np) holds for p̄, and similarly, in other

cases, the conclusion I of the lemma holds for all i. In all the cases, we have
that WC(Xi) is SNC, by an argument similar to that of Proposition 2.10. □

3.3. Principalization Sequences Are Finite. In this subsection we prove
the following theorem, that is, any principalization sequence is finite.

Theorem 3.3. Suppose that φ : X → Y is a morphism of nonsingular 3-folds,
which is locally toroidal with respect to L = {Uj , Dj , Vj , Ej}J . Let Z ⊂ Y be a
point or a nonsingular curve C such that C ∩ Vj makes SNCs with Ej for all
j ∈ J . Then any principalization sequence of Z, obtained by successive blow
ups of centers satisfying the conditions of Definition 2.11, will terminate after
a finite number n ⩾ 0 of blow ups with WZ(Xn) = ∅.

Proof. We will show that any principalization sequence must terminate with
WZ(Xn) = ∅ after some finite number n of iterations.

Suppose that the algorithm of Definition 2.11 does not end in a finite number
of steps with WZ(Xn) = ∅. Then the algorithm produces an infinite sequence

· · · −→ Xn
λn−−→ Xn−1 −→ · · · −→ X1

λ1−→ X,

and there exist r > 0, a positive integer n0 and pn ∈ Xn for n ≥ n0 such that
for all n ≥ n0, λn+1(pn+1) = pn and νpn(In) = r by Lemma 6.4 [7] where In
is the weak transform of I0 on Xn and

√
In = IWZ(Xn), and I0 is defined by

2) of Definition 2.11.
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Let Ri = ÔXn0+i,pn0+i and Ji = (In0+i)pn0+iRi for i ≥ 0. We have that

νRi(Ji) = r for all i. Without loss of generality, we may reindex the Ri so that
Ri ̸= Ri+1 for all i and we have an induced sequence

(3.3) R0 → R1 → R2 → · · · .

We can show that this leads to a contradiction, by considering how the quasi
toroidal forms of φ ◦ Λi transform under blowups. All of the cases are similar.
We will work out in detail the most involved case which is when φ ◦ Λn0 has
the quasi toroidal form (qt1) of the conclusions of Lemma 3.1 at pn0 (so the
center Z is a point q ∈ Y ). We assume that this is the case, and we will derive
a contradiction.

There are regular parameters x0, y0, z0 in R0 such that

IqR0 = (xa
0y

b
0z

c
0, x

d
0y

e
0z

f
0 , x

g
0y

h
0 z

i
0).

Let dx = min{a, d, g}, dy = min{b, e, h} and dz = min{c, f, i}. Then

J0 =
1

xdx
0 y

dy

0 zdz
0

IqR0 = (xa′

0 yb
′

0 z
c′

0 , xd′

0 ye
′

0 zf
′

0 , xg′

0 yh
′

0 zi
′

0 )

where a′ = a−dx, b
′ = b−dy, c

′ = c−dz, d
′ = d−dx, e

′ = e−dy, f
′ = f −dz,

g′ = g−dx, h
′ = h−dy and i′ = i−dz. After permuting xa′

0 yb
′

0 z
c′

0 and xd′

0 ye
′

0 zf
′

0

and xg′

0 yh
′

0 zi
′

0 , we may assume that

r = νR0(J0) = ord(xa′

0 yb
′

0 z
c′

0 ) = a′ + b′ + c′ ≥ 1.

So, after permuting x0, y0, z0, we can assume that c′ > 0. Hence

∂r−1

∂xa′
0 ∂yb

′
0 ∂z

c′−1
0

xa′

0 yb
′

0 z
c′

0 = a′!b′!(c′ − 1)!z0 ∈ ∆̂r−1(J0).

ThusH = V(z0) ⊂ Spec(R0) is a nonsingular hypersurface such that IH = (z0)

is contained in ∆̂r−1(J0) (Definition 6.1 [7]). By Lemma 6.21 [7], H satisfies the
conditions of Definition 6.7 [7] and z0 = 0 is a formal hypersurface of maximal
contact for Sing(J0, r). So each Ri has regular parameters xi, yi, zi such that
one of the following equations holds.

(3.4) xi = xi+1, yi = xi+1(yi+1 + αi+1), zi = xi+1zi+1, αi+1 ∈ k or,

(3.5) xi = xi+1yi+1, yi = yi+1, zi = yi+1zi+1

if Ti is the point pi,

(3.6) xi = xi+1, yi = yi+1, zi = xi+1zi+1

if Ti is the curve with the formal local equations xi = zi = 0 at pi and

(3.7) xi = xi+1, yi = yi+1, zi = yi+1zi+1

if Ti is the curve with the formal local equations yi = zi = 0 at pi.
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Let Si = Ri/ziRi so that Si has regular parameters xi, yi, and (3.3) induces
an infinite sequence

S0 → S1 → S2 → · · · .

Let K0 = C(J0) be the coefficient ideal of J0 on H (Definition 6.22 [7]) and
inductively define

Ki+1 =
1

hr!
KiSi+1 for i ≥ 0

where h = 0 is a local equation of the exceptional locus of Spec(Si+1) →
Spec(Si). (If (3.4) or (3.6) holds, then h = xi+1 and if (3.5) or (3.7) holds then
h = yi+1).

By formula (6.17) [7], we have that

Sing(Ki, r!) = Sing(Ji, r);

in particular, νSi(Ki) ≥ r! for all i. In addition, Ki is a principal ideal for

i ≫ 0 by Theorem 4.11 [7], so there exist n1 and ai, bi such that Ki = (xai
i ybii )

for i ≥ n1. We now establish the formula

(3.8) ai+1 + bi+1 < ai + bi

for i ≥ n1 which leads to contradiction.
First suppose that there are infinitely many i such that λi+1 is the blow up

of the point pi. For these i, Si+1 → Si is a quadratic transform and we have
equations

xi = xi+1, yi = xi+1(yi+1 + αi+1) or xi = xi+1yi+1, yi = yi+1.

Note that by the algorithm (Definition 2.11), we only blow up the point pi if

ν(Ri)(xi,zi)
(Ji) < r and ν(Ri)(yi,zi)

(Ji) < r,

and the conditions ν(Ri)(xi,zi)
(Ji) < r and ν(Si)(xi)

(Ki) < r! are equivalent by

formula (6.17) [7], also ν(Ri)(yi,zi)
(Ji) < r and ν(Si)(yi)

(Ki) < r! are equivalent.

Thus if we blow up the point pi, then Ki = (xai
i ybii ) with ai = ν(Si)(xi)

(Ki) < r!

and bi = ν(Si)(yi)
(Ki) < r!. Further, (3.4) or (3.5) holds. If (3.4) holds, then

Ki+1 = (xai+bi−r!
i+1 (yi+1 + αi+1)

bi), αi+1 ∈ k.

If αi+1 ̸= 0, then Ki+1 = (xai+bi−r!
i+1 ) and we have ai+1 = ai + bi − r! and

bi+1 = 0 and clearly (3.8) holds.
If αi+1 = 0, we have ai+1 = ai + bi − r! and bi+1 = bi, and

ai+1 + bi+1 = ai + bi − r! + bi = (ai + bi)− (r!− bi) < ai + bi,

which establishes (3.8). If (3.5) holds, then the same argument shows that (3.8)
also holds.

Now, suppose that there are infinitely many i such that λi+1 is the blow
up of a curve containing pi. By the algorithm, we only blow up a curve if
ν(Ri)(xi,zi)

(Ji) = r or ν(Ri)(yi,zi)
(Ji) = r (equivalently, ai = ν(Si)(xi)

(Ki) = r! or

bi = ν(Si)(yi)
(Ki) = r!).
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If local equations of Ti at pi are xi = zi = 0, so that (3.6) holds, then
ν(Ri)(xi,zi)

(Ji) = r, and

Ki+1 = (xai−r!
i+1 ybii+1)

and (3.8) holds. A similar argument shows that if local equations of Ti at pi
are yi = zi = 0, so that (3.7) holds, then (3.8) also holds.

But (3.8) is in contradiction to the assumption pi ∈ Sing(Ki, r!) for all i,
which implies that ai + bi ≥ r! for all i. Therefore, WZ(Xn) = ∅ after some
finite number n of iterations, in the case when φ ◦Λn0 has quasi-toroidal form
(qt1) at pn0 , and similarly in all the other cases. □

4. Toroidalization

In this Section, we first prove that principalization sequences obtained from
the algorithm of Definition 2.11 have the property that the resulting morphism,
after resolution of indeterminancy, is again locally toroidal with respect to the
modified local structure. Then, summing up all our arguments, we deduce
Theorem 2.13 and consequently prove our main result Theorem 1.2.

4.1. Local Toroidalization. Suppose that φ : X → Y is a locally toroidal
morphism of nonsingular 3-folds with respect to L = {Uj , Dj , Vj , Ej}J and
π : Y1 → Y is the blow up of Z ⊂ Y where Z is a point q ∈ Vj or a nonsingular
curve C such that C ∩ Vj makes SNCs with Ej , for all j ∈ J . Let λ : X1 → X
be a principalization sequence of Z such that WZ(X1) = ∅. For j ∈ J , let
U1,j = λ−1(Uj) and V1,j = π−1(Vj), and let D1,j = (λ|U1,j )

∗(Dj)red and E1,j =
(π|V1,j )

∗(Ej)red. Let ϕ1,j be the morphism giving a commutative diagram

U1,j
ϕ1,j−−−−→ V1,j

λ|U1,j

y yπ|V1,j

Uj −−−−→
φj

Vj .

In this subsection we will verify that ϕ1,j : U1,j → V1,j is toroidal with respect
to D1,j and E1,j , for all j ∈ J . Consequently, we will prove the following
theorem.

Theorem 4.1. There exists a sequence of blowups of nonsingular subvarieties
λ : X1 → X such that λ is a resolution of indeterminancy of the rational map
X 99K Y1 and the induced morphism ϕ1 : X1 → Y1 which gives the commutative
diagram

X1
ϕ1−−−−→ Y1

λ

y yπ

X −−−−→
φ

Y

is locally toroidal w.r.t. LX1 = {U1,j , D1,j , V1,j , E1,j}J .

The remainder of this subsection is devoted to the proof of Theorem 4.1.
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Lemma 4.2. For all j ∈ J , we have that U1,j \D1,j → V1,j \ E1,j is smooth
and D1,j, E1,j are SNC divisors in U1,j and V1,j respectively.

Proof. First we note that E1,j is a SNC divisor since Ej is and Z ∩ Vj makes
SNCs with Ej , and D1,j is a SNC divisor by Lemma 3.1 if Z is a point, and by
Lemma 3.2 in case Z is a curve. In addition, since π is the blow up of Z and
λ is a principalization sequence of Z centered at WZ(X) ⊆ φ−1(Z), we have
that

(4.1)
V1,j \ π−1(Z ∩ Vj) ∼= Vj \ Z and,

U1,j \ (φ ◦ λ)−1(Z ∩ Vj) ∼= Uj \ φ−1(Z ∩ Vj).

Suppose that j ∈ J . We now verify that U1,j \D1,j → V1,j \E1,j is smooth.
Let p1 ∈ U1,j \ D1,j , then q1 = ϕ1,j(p1) ∈ V1,j \ E1,j . Hence q∗ = π(q1) =
φλ(p1) ∈ Vj \ Ej and p∗ = λ(p1) ∈ φ−1(q∗) ⊂ Uj \ Dj which implies that
Uj → Vj is smooth above a neighborhood of q∗.

Suppose that Z ∩ Vj ⊂ Ej , i.e., Z is a point in Ej , or it is a 2+-curve, a
2-curve, a 1+-curve or a 1-curve for Ej , or Z ∩ Vj = ∅. So q∗ /∈ Z ∩ Vj since

q∗ /∈ Ej , and then p∗ /∈ φ−1
j (Z ∩ Vj) ⊂ Dj . Thus U1,j \ D1,j → V1,j \ E1,j is

smooth at p1 due to the isomorphisms (4.1), and since Uj \ Dj → Vj \ Ej is
smooth at p∗. In particular, if Z ∩ Vj = ∅, then U1,j = Uj and V1,j = Vj , and
so

U1,j \D1,j = Uj \Dj → Vj \ Ej = V1,j \ E1,j

is smooth.
Suppose that Z ∩ Vj ⊈ Ej , i.e., Z is a point in Vj \ Ej , or it is a 0+-curve,

or a 0-curve for Ej . Either q
∗ /∈ Z ∩ Vj or q∗ ∈ (Z ∩ Vj) \ Ej .

If q∗ /∈ Z ∩Vj , then p∗ /∈ φ−1
j (Z ∩Vj) and U1,j \D1,j → V1,j \E1,j is smooth

at p1 due to the isomorphisms (4.1), and since Uj \Dj → Vj \Ej is smooth at
p∗.

Suppose that q∗ ∈ (Z∩Vj)\Ej . Since Uj → Vj is smooth in a neighborhood

of q∗ and dimUj = dimVj = 3, we have that ÔVj ,q∗
∼→ ÔUj ,p∗ . Since λ is a

principalization sequence with WC(X1) = ∅, p1 is actually a point above p∗ in
the blow up of φ−1

j (Z ∩ Vj), which is a finite number of points if Z is a point,

and it is a curve when Z is a curve. So, ÔV1,j ,q1
∼= ÔU1,j ,p1 . Thus U1,j → V1,j

is smooth in a neighborhood of p1.
Therefore, U1,j \D1,j → V1,j \ E1,j is smooth. □

Lemma 4.3. Suppose that j ∈ J and q ∈ Z ∩ Ej. Then ϕ1,j : U1,j → V1,j is
toroidal at each point p1 ∈ (φλ)−1(q) ∩ U1,j with respect to E1,j and D1,j.

Proof. Let p1 ∈ (φλ)−1(q) ∩ U1,j , then p1 ∈ D1,j and q1 = ϕ1,j(p1) lies in
π−1(q) ∩ V1,j ⊂ E1,j since q ∈ Z ∩ Ej . We will use the criteria of Proposition
2.2 to show that ϕ1,j is toroidal at p1, by considering the quasi-toroidal form
of φλ at p1.

Since q ∈ Z ∩ Ej , φλ has one of the quasi-toroidal forms of the conclusions
(i), (ii), or (iii) of Lemma 3.1 if Z is a point, and when Z is a curve, it is one
of the quasi-toroidal forms of the conclusions (i) through (v) of Lemma 3.2.
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Further, the quasi-toroidal form that holds for φλ at p1 satisfies IZOX1,p1 is
principal since WZ(X1) = ∅. All of the cases are similar. We will work out in
detail the case (qt4) of the conclusion (ii) of Lemma 3.1 (so the center Z = {q}
is a 2-point for Ej).

Suppose that q is a 2-point for Ej , and there exist algebraic permissible
parameters u, v, w at q for Ej , and (formal) permissible parameters x, y, z at
p1 for D1,j such that the quasi-toroidal form (qt4) holds for φλ at p1. Then
xy = 0 is a local equation of D1,j at p1 and, after possibly permuting u, v, we

have the following possibilities for IqÔX1,p1 to be principal.

(qt4.1) min{a, d} = a = g and min{b, e} = b = h and IqÔX1,p1 = (xayb). So
there exist permissible parameters u1, v1, w1 at q1 ∈ π−1(q) for E1,j

such that

u = u1, v = u1v1, w = u1(w1 + α) with α ∈ k,

and u1v1 = 0 is a local equation of E1,j at q1, and

u1 = u = xayb

v1 =
v

u
= xd−aye−b

w1 =
w

u
− α = z

where a(e− b)− (d− a)b ̸= 0 since ae− bd ̸= 0. So, toroidal form (T4)
holds.

(qt4.2) (g, h) ̸= (0, 0), α ̸= 0 and IqÔX1,p1 = (xgyh(z + α)). So there exist
permissible parameters u1, v1, w1 at q1 ∈ π−1(q) for E1,j such that
u = u1w1, v = v1w1, w = w1 and u1v1w1 = 0 is a local equation of E1,j

at q1 and

u1 =
u

w
= xa−gyb−h(z + α)−1

v1 =
v

w
= xd−gye−h(z + α)−1

w1 = w = xgyh(z + α).

Since ae− bd ̸= 0,

rank

 a− g b− h
d− g e− h
g h

 = rank

 a b
d e
g h

 = 2

and, after possibly permuting u1, v1, w1,we may assume det

(
a− g b− h
d− g e− h

)
is nonzero. So there exist γ1, γ2 ∈ Q such that

(4.2)

(
a− g b− h
d− g e− h

)(
γ1
γ2

)
=

(
−1
−1

)
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and we can set

x̃ = x(z + α)γ1

ỹ = y(z + α)γ2

α̃ = α1−(gγ1+hγ2)

z̃ = (z + α)1−(gγ1+hγ2) − α̃

which satisfy

∣∣∣∣∣∣∣
∂x̃
∂x

∂x̃
∂y

∂x̃
∂z

∂ỹ
∂x

∂ỹ
∂y

∂ỹ
∂z

∂z̃
∂x

∂z̃
∂y

∂z̃
∂z

∣∣∣∣∣∣∣
(0,0,0)

=

∣∣∣∣∣∣
αγ1 0 0
0 αγ2 0
0 0 (1− (gγ1 + hγ2))α

−(gγ1+hγ2)

∣∣∣∣∣∣
= (1− (gγ1 + hγ2))α

γ1+γ2−(gγ1+hγ2) ̸= 0

since α ̸= 0 and 1 − (gγ1 + hγ2) ̸= 0. (Otherwise, if (gγ1 + hγ2) = 1,
the equation (4.2) implies that(

a b
d e

)(
γ1
γ2

)
=

(
0
0

)
and since ae − bd ̸= 0, γ1 = γ2 = 0 which is in contradiction with the
fact that γ1, γ2 are solutions to the equation (4.2).

Therefore, we obtain permissible parameters x̃, ỹ, z̃ at p1 for D1,j

such that x̃ỹ = 0 is a local equation of D1,j at p1 and

u1 = x̃a−g ỹb−h

v1 = x̃d−g ỹe−h

w1 = x̃g ỹh(z̃ + α̃)

where (a− g)(e− h)− (b− h)(d− g) ̸= 0 and α̃ ̸= 0 since α ̸= 0. Thus
toroidal form (T2) holds for p1.

Therefore, in the the case when the quasi-toroidal form (qt4) holds for φλ
at p1, and similarly in other cases, ϕ1,j : U1,j → V1,j is toroidal at p1 ∈
(φλ)−1(q) ∩ U1,j where q ∈ Z ∩ Ej with respect to E1,j and D1,j . □

We now give the proof of Theorem 4.1.

Proof of Theorem 4.1. We first construct, by Theorem 3.3, a principalization
sequence

λ : X1 = X1,n
λn−−→ X1,n−1 → · · · → X1,1

λ1−→ X0 = X
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of Z satisfying WZ(X1) = ∅, so that the rational map X1 99K Y1 is a morphism,
say ϕ1, and we have a commutative diagram of morphisms

X1
ϕ1−−−−→ Y1

λ

y yπ

X −−−−→
φ

Y .

We want to show that ϕ1 : X1 → Y1 is locally toroidal with respect to LX1 =
{U1,j , D1,j , V1,j , E1,j}J . Suppose that j ∈ J . We must show that ϕ1,j : U1,j →
V1,j is toroidal with respect to the divisors E1,j and D1,j .

By Lemma 4.2, E1,j and D1,j are SNC divisors and U1,j \D1,j → V1,j \E1,j

is smooth. So, by Proposition 2.2, it just remains to verify that one of the
forms (T1) through (T6) holds for each p1 ∈ D1,j ⊂ U1,j and q1 = ϕ1,j(p1) lies
in E1,j ⊂ V1,j .

since φj : Uj → Vj is toroidal, and due to the isomorphisms (4.1) in the
proof of Lemma 4.2, we only need to show that ϕ1,j is toroidal at each point
p1 ∈ D1,j with ϕ1,j(p1) = q1 ∈ π−1(Z ∩ Vj) and therefore q = π(q1) ∈ Z ∩ Ej

since q1 ∈ E1,j . This is accomplished by the proof of Lemma 4.3. □

4.2. Proof of the Main Theorem. This subsection is devoted to the proofs
of Theorem 2.13 and finally our main result Theorem 1.2.

Proof of Theorem 2.13. Since φ : X → Y is locally toroidal, it clearly satisfies
the conclusions of the theorem. Let

π : Ỹ = Yn
πn−−→ Yn−1 −→ · · · −→ Y2

π2−→ Y1
π1−→ Y

be an embedded resolution of Ẽ0 ⊂ Y satisfying the conclusions of Theorem
2.4, where each πi is the blow up of a nonsingular center Zi−1 ⊂ Yi−1 which is
either a point or a curve. Due to the conclusion 1) of Theorem 2.4, Ei,j is a
SNC divisor on Vi,j for all i, j, and Zi ∩ Vi,j makes SNCs with Ei,j on Vi,j for
all i, j.

Assume that we have constructed the commutative diagram

Xi−1 −−−−→ · · · −−→

ϕi−1

y
Yi−1 −−−−→ · · · −−→

X2
λ2−−−−→ X1

λ1−−−−→ X

ϕ2

y ϕ1

y φ

y
Y2 −−−−→

π2

Y1 −−−−→
π1

Y

with i < n+1, satisfying the conclusions of the theorem. Then we consider the
blowup πi : Yi → Yi−1 of Zi−1 ⊂ Yi−1 in the resolution sequence. By Theorem
3.3, there exists a principalization sequence of Zi−1

λi : Xi = Xi,ki −→ Xi,ki−1 → · · · → Xi,1 −→ Xi−1

with WZi−1(Xi) = ∅, for some finite number ki ∈ N. Further, Di,j = (λi|Ui,j )
∗

(Di−1,j)red is a SNC divisor on Ui,j = λ−1
i (Ui−1,j) for all j by Lemma 3.1 in

case Zi−1 is a point, and by Lemma 3.2 if Zi−1 is a curve.
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Therefore, we gain the morphism Xi → Yi, say ϕi, and the commutative
diagram of morphisms

Xi
ϕi−−−−→ Yi

λi

y yπi

Xi−1 −−−−→
ϕi−1

Yi−1

where ϕi : Xi → Yi is locally toroidal with respect to LXi = {Ui,j , Di,j , Vi,j , Ei,j}J
by Theorem 4.1.

In sum, iterative use of this process results in the diagram (LT ) which
satisfies the conclusions of the theorem. □

Now we give the proof of the Main Theorem.

Proof of Theorem 1.2. Due to Theorem 2.13, there exist proper birational mor-

phisms π : Ỹ → Y and λ : X̃ → X such that Ỹ and X̃ are nonsingular, and we
have the commutative diagram

X̃
φ̃−−−−→ Ỹ

λ

y yπ

X −−−−→
φ

Y

such that φ̃ : X̃ → Ỹ is locally toroidal with respect to L̃ = {Ũj , D̃j , Ṽj , Ẽj}J ,
i.e., φ̃j = φ̃|Ũj

: Ũj → Ṽj is toroidal with respect to D̃j and Ẽj for all

j ∈ J , where Ũj = λ−1(Uj), Ṽj = π−1(Vj), D̃j = (λ|Ũj
)∗(Dj)red and Ẽj =

(π|Ṽj
)∗(Ej)red. Further, Ẽ = π∗(Ẽ0)red, which contains

(∑
j∈J Ẽj

)
red

, is a

SNC divisor on Ỹ where Ẽj is the Zariski closure of Ẽj in Ỹ . We will prove

that φ̃ is in fact toroidal with respect to Ẽ and D̃ = φ̃∗(Ẽ)red which is a SNC

divisor on X̃ as well.
We first verify that X̃ \ D̃ → Ỹ \ Ẽ is smooth. Let p ∈ X̃ \ D̃, then q =

φ̃(p) /∈ Ẽ, and hence q /∈ Ẽj for all j ∈ J . So p /∈ φ̃∗(Ẽj)red = φ̃∗
j (Ẽj)red = D̃j

for all j. Suppose that p ∈ Ũj for some j ∈ J . The morphism φ̃j is toroidal

with respect to D̃j and Ẽj by the fact that φ̃ is locally toroidal with respect to

L̃ = {Ũj , D̃j , Ṽj , Ẽj}J . So φ̃ is smooth at p since φ̃j is. Thus φ̃ : X̃ \D̃ → Ỹ \Ẽ
is smooth.

Now suppose that p ∈ D̃ and q = φ̃(p) ∈ Ẽ. We must show that there exist

(algebraic) permissible parameters u, v, w at q for Ẽ and (formal) permissible

parameters x, y, z at p for D̃ such that one of the forms (T1) through (T6) in
Proposition 2.2 holds.

First, we note that there exist j ∈ J such that p ∈ Ũj . Then q ∈ Ṽj and we

will use the fact that φ̃|Ũj
= φ̃j : Ũj → Ṽj is toroidal with respect to Ẽj and



401 Ahmadian

D̃j to prove that φ̃ is also toroidal at p with respect to Ẽ and D̃. Meanwhile,

we show D̃ is a SNC divisor on X̃.
If q /∈ Ẽj , then φ̃j is smooth in a neighborhood of p, and so is φ̃. Hence we

have ÔỸ ,q

∼→ ÔX̃,p since dimX = dimY = 3. Thus D̃ is a SNC divisor at p

since Ẽ is a SNC divisor (at q). So we can assume that q ∈ Ẽj .

Suppose that q = φ̃(p) is a 1-point for Ẽ, then it is a 1-point for Ẽj as

well, and Ẽ, Ẽj are equal in a neighborhood of q. So D̃, D̃j are also equal in a

neighborhood of p. Hence D̃ is a SNC divisor at p. In addition, by Proposition
2.2, there exist (algebraic) permissible parameters u, v, w at q for Ẽj (hence for

Ẽ) and (formal) permissible parameters x, y, z at p for D̃j (so, for D̃) such that

u = 0 is a local equation of both Ẽj , Ẽ at q, x = 0 is a local equation of both

D̃j , D̃ at p and (T6) holds for p since φ̃j is toroidal with respect to Ẽj and D̃j .

Thus φ̃ is toroidal at p with respect to Ẽ and D̃.

Suppose that q is a 2-point for Ẽ, then q can be a 2-point or a 1-point for

Ẽj . If q is a 2-point for Ẽj , we can argue exactly as before to see that D̃ has

SNCs at p as D̃j has, and p is either a 2-point or a 1-point for both D̃j and D̃.
In addition, (T4) holds for p in case it is a 2-point, and (T5) holds for p in case

it is a 1-point since φ̃j is toroidal with respect to Ẽj and D̃j . So φ̃ is toroidal

at p with respect to Ẽ and D̃.

Now suppose that q is a 2-point for Ẽ, but it is a 1-point for Ẽj . By

Proposition 2.2, since φ̃j is toroidal with respect to Ẽj and D̃j , there exist

(algebraic) permissible parameters u, v, w at q for Ẽj and (formal) permissible

parameters x, y, z at p for D̃j such that u = 0 is a local equation of Ẽj at q,

x = 0 is a local equation of D̃j at p and (T6) holds for p, i.e.,

u = xa, v = y, w = z with a > 0.

We can change the parameters v, w to obtain new permissible parameters u, ṽ, w̃

at q for both Ẽj and Ẽ such that uṽ = 0 is a local equation of Ẽ at q and

u = 0 remains as a local equation of Ẽj at q. By the formal inverse function
theorem, the expansions

(4.3)
ṽ = α1u+ β1v + γ1w + higher degree terms in u, v and w
w̃ = α2u+ β2v + γ2w + higher degree terms in u, v and w

of ṽ, w̃ in ÔỸ ,q
∼= k[[u, v, w]], with αi, βi, γi ∈ k, satisfy

0 ̸= det

 ∂u
∂u

∂ṽ
∂u

∂w̃
∂u

∂u
∂v

∂ṽ
∂v

∂w̃
∂v

∂u
∂w

∂ṽ
∂w

∂w̃
∂w

 = det

 1 α1 α2

0 β1 β2

0 γ1 γ2

 = det

(
β1 β2

γ1 γ2

)
.

In addition, D̃j has SNCs at p and there exist algebraic permissible parameters

x̄, ȳ, z̄ in OX̃,p such that x̄ = 0 is a local equation of D̃j at p and so, there

exists a unit δx ∈ ÔX̃,p such that x = δxx̄ (Recall that x = 0 is also a local

equation of D̃j at p).
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By substituting (T6) in (4.3), we have

ṽ = α1x
a + β1y + γ1z + higher degree terms in x, y and z

w̃ = α2x
a + β2y + γ2z + higher degree terms in x, y and z

and

det


∂x
∂x

∂x
∂y

∂x
∂z

∂ṽ
∂x

∂ṽ
∂y

∂ṽ
∂z

∂w̃
∂x

∂w̃
∂y

∂w̃
∂z

 = det

 1 0 0
∂ṽ
∂x

∂ṽ
∂y

∂ṽ
∂z

∂w̃
∂x

∂w̃
∂y

∂w̃
∂z

 = β1γ2 − γ1β2 mod m̂p

is a unit in ÔX̃,p. Thus x, ỹ = ṽ, z̃ = w̃ are formal regular parameters at p.

Since x = δxx̄ and ỹ, z̃ ∈ OX̃,p then we have that x̄, ỹ, z̃ are regular parameters

in OX̃,p and a local equation for D̃ at p is

0 = uṽ = xaỹ = δaxx̄
aỹ.

Since a > 0, x̄ỹ = 0 is a local equation of D̃ at p, showing that D̃ is a SNC
divisor at p.

We have an expression

u = xa, ṽ = ỹ, w̃ = z̃ with det

(
a 0
0 1

)
= a > 0.

So toroidal form (T4) holds for p and φ̃ is toroidal with respect to Ẽ and D̃.

Suppose that q is a 3-point for Ẽ, then q can be a 3-point, a 2-point or a

1-point for Ẽj . If q is a 3-point for Ẽj , then Ẽ, Ẽj are equal in a neighborhood

of q and D̃, D̃j are also equal in a neighborhood of p. Hence D is a SNC divisor

at p. In addition, φ̃j is toroidal with respect to Ẽj and D̃j and, by Proposition

2.2, there exist (algebraic) permissible parameters u, v, w at q for Ẽj (hence for

Ẽ) and (formal) permissible parameters x, y, z at p for D̃j (so for D̃) such that

uvw = 0 is a local equation of both Ẽj , Ẽ at q and, either xyz = 0 is a local

equation of both D̃j , D̃ at p and (T1) holds for p, or xy = 0 is a local equation

of both D̃j , D̃ at p and (T2) holds for p, or x = 0 is a local equation of both

D̃j , D̃ at p and (T3) holds for p. Thus φ̃ is toroidal at p with respect to Ẽ and

D̃.
Suppose that q is a 3-point for Ẽ, but it is a 2-point for Ẽj . Since φ̃j is

toroidal with respect to Ẽj and D̃j , by Proposition 2.2, there exist (algebraic)

permissible parameters u, v, w at q for Ẽj and (formal) permissible parameters

x, y, z at p for D̃j such that uv = 0 is a local equation of Ẽj at q and one of
the toroidal forms (T4) or (T5) holds.

We can change the parameter w to obtain new permissible parameters u, v, w̃

at q for both Ẽj and Ẽ such that uvw̃ = 0 is a local equation of Ẽ at q and

uv = 0 remains as a local equation of Ẽj at q. By the formal inverse function
theorem, the expansion

w̃ = αu+ βv + γw + higher degree terms in u, v and w
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of w̃ in ÔỸ ,q
∼= k[[u, v, w]], with α, β, γ ∈ k, satisfies

0 ̸= det

 ∂u
∂u

∂v
∂u

∂w̃
∂u

∂u
∂v

∂v
∂v

∂w̃
∂v

∂u
∂w

∂v
∂w

∂w̃
∂w

 = det

 1 0 α
0 1 β
0 0 γ

 = γ.

We first suppose that (T4) holds for permissible parameters u, v, w at q for

Ẽj and, for permissible parameters x, y, z at p for D̃j . So, xy = 0 is a local

equation of D̃j at p and, u = xayb, v = xdye, w = z with ae − bd ̸= 0. In

addition, D̃j is a SNC divisor on Ũj at p and there exist algebraic permissible

parameters x̄, ȳ, z̄ in OX̃,p such that x̄ȳ = 0 is a local equation of D̃j at p

and so, after possibly permuting x, y, there exist units δx, δy ∈ ÔX̃,p such that

x = δxx̄ and y = δy ȳ. Then we have

w̃ = αxayb + βxdye + γz + higher degree terms in x, y and z

and

det


∂x
∂x

∂x
∂y

∂x
∂z

∂y
∂x

∂y
∂y

∂y
∂z

∂w̃
∂x

∂w̃
∂y

∂w̃
∂z

 = det

 1 0 0
0 1 0
∂w̃
∂x

∂w̃
∂y

∂w̃
∂z

 =
∂w̃

∂z
= γ mod m̂p

is a unit in ÔX̃,p. Thus x, y, z̃ = w̃ are formal regular parameters at p. Since

x = δxx̄ and y = δy ȳ and z̃ ∈ OX̃,p, we have that x̄, ȳ, z̃ are regular parameters

in OX̃,p and a local equation for D̃ at p is

0 = uvw̃ = xa+dyb+ez̃ = δa+d
x δb+e

y x̄a+dȳb+ez̃.

Now a+ d > 0 and b+ e > 0 since ae− bd ̸= 0 and a, b, d, e ⩾ 0. So x̄ȳz̃ = 0 is

a local equation of D̃ at p, showing that D̃ is a SNC divisor at p. We have an
expression

u = xayb, v = xdye, w̃ = z̃ with ae− bd ̸= 0.

So these parameters and equations satisfy all the conditions of toroidal form
(T1) since

det

 a b 0
d e 0
0 0 1

 = det

(
a b
d e

)
= ae− bd ̸= 0.

Thus φ̃ is toroidal at p with respect to Ẽ and D̃.
Now suppose that (T5) holds for permissible parameters u, v, w at q for Ẽj

and permissible parameters x, y, z at p for D̃j . So, x = 0 is a local equation of

D̃j at p and, u = xa, v = xd(y + σ), w = z with 0 ̸= σ ∈ k and a, d > 0. In

addition, D̃j is a SNC divisor on Ũj at p and there exist algebraic permissible

parameters x̄, ȳ, z̄ in OX̃,p such that x̄ = 0 is a local equation of D̃j at p and

so, there exists a unit δx ∈ ÔX̃,p such that x = δxx̄. In this case, we have

w̃ = αxa + βxd(y + σ) + γz + higher degree terms in x, y and z
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and, the same as before,

det


∂x
∂x

∂x
∂y

∂x
∂z

∂y
∂x

∂y
∂y

∂y
∂z

∂w̃
∂x

∂w̃
∂y

∂w̃
∂z

 = det

 1 0 0
0 1 0
∂w̃
∂x

∂w̃
∂y

∂w̃
∂z

 =
∂w̃

∂z
= γ mod m̂p

is a unit in ÔX̃,p. So, x, y, z̃ = w̃ are formal regular parameters at p. Since

x = δxx̄ and z̃ ∈ OX̃,p, we have that x̄, z̃ are linearly independent in mp/m
2
p.

Thus they extend to a regular system of parameters in OX̃,p, say x̄, z̃, ỹ, and

0 = uvw̃ = xa+d(y + σ)z̃ = δa+d
x x̄a+d(y + σ)z̃

is a local equation of D̃ at p. We note that a+ d > 0 since a, d > 0, so, x̄z̃ = 0

is a local equation of D̃ at p, which shows that D̃ is a SNC divisor at p.
We have an expression

u = xa, w̃ = z̃, v = xd(y + σ) with a, d > 0, σ ̸= 0,

and here xz̃ = 0 is a (formal) local equation of D̃ at p. So these parameters
and equations satisfy all the condition of toroidal form (T2) since (d, 0) ̸= (0, 0)
and

det

(
a 0
0 1

)
= a > 0.

Thus φ̃ is toroidal at p with respect to Ẽ and D̃.

Finally, suppose that q is a 3-point for Ẽ, but it is a 1-point for Ẽj . By
Proposition 2.2, there exist (algebraic) permissible parameters u, v, w at q for

Ẽj and (formal) permissible parameters x, y, z at p for D̃j such that u = 0 is a

local equation of Ẽj , x = 0 is a local equation of D̃j at p and (T6) holds for p

since φ̃j is toroidal with respect to Ẽj and D̃j .
We can change the parameters v, w to obtain new permissible parameters

u, ṽ, w̃ at q for both Ẽj and Ẽ such that uṽw̃ = 0 is a local equation of Ẽ at q

and u = 0 remains as a local equation of Ẽj at q.

Completely similar to the case when q is a 2-point for Ẽ, but it is a 1-point
for Ẽj , we see that x̄, ṽ, w̃ are regular parameters in OX̃,p, where x̄ = 0 is an

algebraic local equation of D̃j , such that x̄ṽw̃ = 0 is a local equation of D̃ at

p since uṽw̃ = 0 is a local equation of Ẽ at q = φ̃(p) and u = xa = δaxx̄
a for

some unit δx ∈ ÔX̃,p and 0 < a ∈ N. So D̃ is a SNC divisor at p.

Also, x, ṽ, w̃ are permissible parameters at p for D̃ such that xṽw̃ = 0 is a

local equation of D̃ at p and toroidal form (T1) holds for these parameters at

p and u, ṽ, w̃ at q for Ẽ since a > 0. Thus φ̃ is toroidal at p with respect to Ẽ

and D̃.
Therefore, φ̃ : X̃ → Ỹ is a toroidal morphism with respect to Ẽ, D̃. □
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