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Abstract. Let H, L and X be subgroups of a finite group G. Then H is
said to be X-permutable with L if for some x ∈ X we have ALx = LxA.

We say that H is X-quasipermutable (XS-quasipermutable, respectively)
in G provided G has a subgroup B such that G = NG(H)B and H X-
permutes with B and with all subgroups (with all Sylow subgroups, re-

spectively) V of B such that (|H|, |V |) = 1. In this paper, we analyze
the influence of X-quasipermutable and XS-quasipermutable subgroups
on the structure of G. Some known results are generalized.
Keywords: X-quasipermutable subgroup, Sylow subgroup, p-soluble

group, p-supersoluble group, p-nilpotent group.
MSC(2010): Primary: 20D10; Secondary: 20D15, 20D20.

1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite
group. Moreover, p and q are always supposed to be primes.

If AB = BA, then A is said to permute with B; if G = AB, then B is called
a supplement of A to G; if ABx = BxA for at least one element x ∈ X, then
A is said to X-permute with B [4].

A large number of researches are connected with the study of subgroups
H of G such that H permutes with some subgroups of its supplement B in
G. If, for example, H X-permutes with all subgroups of B, then H is called
X-semipermutable in G [5]; if H permutes with all Sylow subgroups of B, then
H is called SS-quasinormal in G [10]. Subgroups with a condition of this kind
have been useful in the analysis of many aspects of the theory of finite groups.

In this paper, we introduce and analyze some applications of the following
concepts that cover the conditions ofX-semipermutability and SS-quasinormality.
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Definition 1.1. Let H and X be subgroups of G. Then we say that H is X-
quasipermutable (XS-quasipermutable, respectively) in G provided G has a sub-
group B such that G = NG(H)B and H X-permutes with B and with all sub-
groups (with all Sylow subgroups, respectively) V of B such that (|H|, |V |) = 1.

We say also that H is quasipermutable (S-quasipermutable, respectively) if
H is 1-quasipermutable (1S-quasipermutable, respectively) in G.

Before continuing, consider two examples.

Example 1.2. (i) Let q divide p − 1 and G = Q ⋊ (P ⋊H), where |H| = q,
P = CPH(P ) is a group of order p and Q is a simple Fq[PH]-module which is
faithful for PH. Let X = F (G) = Q. It is clear that H is X-quasipermutable
in G. We shall show that H is not S-quasipermutable in G and so H is not
quasipermutable in G. Assume that G = NG(H)B for some subgroup B of G
such thatH permutes with all Sylow p-subgroup of B. It is clear that p does not
divide |NG(H)|, NQ(P ) = 1 andNQ(H) ̸= Q. Let a ∈ Q\NQ(H). Then a = bn
for some n ∈ NG(H) and b ∈ B. Thus HP a = H(P b)n = (P b)nH = P aH.

Hence PHa−1

= Ha−1

P , so Ha−1 ≤ NG(P ). Therefore Ha−1 ≤ PH and so

H = (Ha−1

)x for some x ∈ P . But then a−1x ∈ NG(H) ≤ QH, which implies
that x = 1. Thus a−1, a ∈ NQ(H). This contradiction shows that H is not
S-quasipermutable in G.

(ii) It is clear that every X-semipermutable subgroup is X-quasipermutable
and every SS-quasipermutable subgroup is S-quasipermutable. We shall show
that the inverse statements are not true in general. Indeed, let G = PH ⋊ P1,
where P = ⟨y⟩ and H are the groups defined above, and P1 = ⟨y1⟩ is a group
of order p. Then H evidently is quasipermutable in G, and for every z ∈ G,
⟨yy1⟩zH ̸= H⟨yy1⟩z. Thus H is not G-semipermutable in G.

Now, let G = C7 ⋊ Aut(C7), where C7 is a group of order 7. Let H and
S be the subgroups of order 2 and 3, respesctively, in Aut(C7). Then H is
quasipermutable in G. Assume that H is SS-quasinormal in G. For any
supplement B of H to G we have C7S ≤ B, so for every 1 ̸= x ∈ C7 we have
HSx = SxH, which implies that G = HG ≤ NG(S) (see (i)), so S ≤ CG(C7).
This contradiction shows that H is not SS-quasinormal in G.

Our main goal here is to prove the following result.

Theorem 1.3. Let P be a Sylow p-subgroup of G and X = F (G).
(I) If P is XS-quasipermutable in G, then G is p-soluble and PG is soluble.
(II) If P is X-quasipermutable in G, then the following statements hold:
(i) P ′ ≤ Op(G). If, in addition, NG(P ) is p-nilpotent, then the focal subgroup

G′ ∩ P of G is contained in Op(G).
(ii) lp(G) ≤ 2.
(iii) If p > q for all primes q dividing |G : NG(P )|, then P is normal in G.
(iv) If for some prime q ̸= p a Hall p′-subgroup of G is q-supersoluble, then

G is q-supersoluble.
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Corollary 1.4. (See Main result in [2]) Let P be a Sylow p-subgroup of G. If
P is 1-semipermutable in G, then the following statements hold:

(i) G is p-soluble and P ′ ≤ Op(G).
(ii) lp(G) ≤ 2.
(iii) If for some prime q ̸= p a Hall p′-subgroup of G is q-supersoluble, then

G is q-supersoluble.

Corollary 1.5. Let p1 > · · · > pt be the set of all primes dividing |G|, πi =
{p1, . . . , pi} and Hi a Hall πi-subgroup of G. Let X = F (G). If for every k ≤ i,
Hk is X-quasipermutable in G, then Hi is normal in G.

Proof. By Theorem 1.3(II)(iii),H1 is normal inG, andHk/H1 isX-quasipermu-
table in G/H1 (see Lemma 2.2(1) below). Hence Hk/H1 is normal in G/H1 by
induction, so Hi is normal in G. □

Theorem 5.4 in [5] is equivalent to the following special case of Corollary
1.5.

Corollary 1.6. Let p1 > · · · > pt be the set of all primes dividing |G|, πi =
{p1, . . . , pi} and Hi a Hall πi-subgroup of G. Let X = F (G). If for every k ≤ i,
Hk is X-semipermutable in G, then Hi is normal in G.

We use Mϕ(G) to denote a set of maximal subgroups of G such that Φ(G)
coincides with the intersection of all subgroups in Mϕ(G).

On the base of Theorem 1.3 we prove also the following results.

Theorem 1.7. Let P be a Sylow p-subgroup of G and X = F (G). Suppose
that every number V of some fixed Mϕ(P ) is XS-quasipermutable in G.

(i) If |P | > p, then G is p-supersoluble.
(ii) If (p− 1, |G|) = 1, then G is p-nilpotent.

Corollary 1.8. (See Theorem 1.1 in [10]) Let P be a Sylow p-subgroup of G,
where p be the smallest prime dividing |G|. If every number V of some fixed
Mϕ(P ) is SS-quasinormal in G, then G is p-nilpotent.

Corollary 1.9. Let P be a Sylow p-subgroup of G and X = F (G). If NG(P )
is p-nilpotent and every number V of some fixed Mϕ(P ) is XS-quasipermutable
in G, then G is p-nilpotent.

Proof. If |P | = p, then G is p-nilpotent by Burnside’s theorem [6, IV, 2.6]. Oth-
erwise, G is p-supersoluble by Theorem 1.7. The hypothesis holds for G/Op′(G)
(see Lemma 2.2(1) below) and so in the case when Op′(G) ̸= 1, G/Op′(G) is
p-nilpotent by induction, which implies the p-nilpotency of G. Therefore we
may assume that Op′(G) = 1. But then, by Lemma 2.7(3) below, P is normal
in G. Hence G is p-nilpotent by hypothesis. □

From Corollary 1.9 we get
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Corollary 1.10. (See Theorem 1.2 in [10]) Let P be a Sylow p-subgroup of
G. If NG(P ) is p-nilpotent and every number V of some fixed Mϕ(P ) is SS-
quasinormal in G, then G is p-nilpotent.

Theorem 1.11. If every Sylow subgroup of G is F (G)-quasipermutable in G,
then G is supersoluble.

Corollary 1.12. (See Theorem 5 in [11]) If every Sylow subgroup of G is
1-semipermutable in G, then G is supersoluble.

2. Preliminaries

The first lemma is evident.

Lemma 2.1. Let A, B and X be subgroups of G and N a normal subgroup
of G. If A X-permutes with B, then AN/N (XN/N)-permutes with BN/N .
Hence in the case when X ≤ N , AN/N permutes with BN/N .

Lemma 2.2. Let H and X be subgroups of G and N a normal subgroup of G.
Suppose that H is X-quasipermutable (XS-quasipermutable, respectively) in G.

(1) If either H is a Hall subgroup of G or for every prime p dividing |H|
and for every Sylow p-subgroup Hp of H we have Hp ≰ N , then HN/N is
(XN/N)-quasipermutable ((XN/N)S-quasipermutable, respectively) in G/N .

(2) If H is S-quasipermutable in G, then H permutes with some Sylow p-
subgroup of G for all primes p such that (|H|, p) = 1.

Proof. By hypothesis, there is a subgroup B of G such that G = NG(H)B
and H X-permutes with B and with all subgroups (with all Sylow subgroups,
respectively) L of B such that (|H|, |L|) = 1.

(1) It is clear that G/N = NG/N (HN/N)(BN/N). Let K/N be any sub-
group (any Sylow p-subgroup, respectively) ofBN/N such that (|HN/N |, |K/N |)
= 1. Then K = (K ∩ B)N . Let B0 be a minimal supplement of K ∩ B ∩ N
to K ∩ B. Then K/N = (K ∩ B)N/N = B0(K ∩ B ∩ N)N/N = B0N/N
and K ∩ B ∩ N ∩ B0 ≤ N ∩ B0 ≤ Φ(B0). Therefore π(K/N) = π(B0), so
(|HN/N |, |B0|) = 1. It follows that (|H|, |B0|) = 1, so in the case when H is
X-qiasipermutable in G, H X-permutes with B0 and hence HN/N (XN/N)-
permutes with K/N = B0N/N . Thus HN/N is (XN/N)-qiasipermutable in
G/N .

Finally, suppose that H is XS-qiasipermutable in G and K/N is a Sylow
p-subgroup of BN/N . Then B0 is a p-group, so (|H|, p) = 1 and for some Sylow
p-subgroup Bp of B we have B0 ≤ Bp. Then K/N = B0N/N and hence HN/N
(XN/N)-permutes with K/N . Thus HN/N is (XN/N)S-qiasipermutable in
G/N .

(2) By [6, VI, 4.6], there are Sylow p-subgroups P1, P2 and P of NG(H), B
and G, respectively, such that P = P1P2. Hence H permutes with P . □



411 Yi and Yang

Lemma 2.3. (See Theorem E in [8]) Suppose that G = AB and P ≤ Op(A).
Assume that every conjugate of P in A permutes with every Sylow q-subgroup
of B for all primes q ̸= p. Then PG is soluble and the p-complements in PG

are nilpotent.

Lemma 2.4. (See Lemma 2.15 in [3]) Let E be a normal non-identity quasinilpo-
tent subgroup of G. If Φ(G) ∩ E = 1, then E is the direct product of some
minimal normal subgroups of G.

Lemma 2.5. Let H be a subnormal subgroup of G. If H is nilpotent, soluble,
or a π-group, then HG is nilpotent, soluble, a π-group, respectively.

Proof. See the proof of Theorem 2.2 in [7, Ch. 2]. □

Lemma 2.6. (O. Kegel [9]) If G has three nilpotent subgroups A1, A2 and A3

whose indices |G : A1|, |G : A2|, |G : A3| are pairwise coprime, then G is itself
nilpotent.

We shall need in our proofs the following properties of p-supersoluble groups.

Lemma 2.7. (1) If G/Φ(G) is p-supersoluble, then G is p-supersoluble [6, IV,
8.6].

(2) Let N and R be distinct minimal normal subgroups of G. If G/N and
G/R are p-supersoluble, then G is p-supersoluble.

(3) Let A = G/Op′(G). Then G is p-supersoluble if and only if A/Op(A) is
an abelian group of exponent dividing p− 1, p is the largest prime dividing |A|
and F (A) = Op(A) is a normal Sylow subgroup of A.

Proof. (2) This follows from the G-isomorphism NR/N ≃ R.
(3) Since G is p-supersoluble if and only if G/Op′(G) is p-supersoluble, we

may assume without loss of generality that Op′(G) = 1.
First assume that G is p-supersoluble. In this case G/CG(H/K) is an abelian

group of exponent dividing p−1 for any chief factor H/K of G of order divisible
by p. On the other hand,

Op′,p(G) = Op(G) = ∩{CG(H/K) | H/K is a chief factor of G and p ∈ π(H/K)}

by [1, A, 13.2]. Hence G/Op(G) is an abelian group of exponent dividing p−1.
Thus p is the largest prime dividing |G| and F (G) = Op(G) is a normal Sylow
p-subgroup of G.

Finally, if G/Op(G) is an abelian group of exponent dividing p − 1, then
any chief factor H/K of G below Op(G) is cyclic by [1, B, 9.8(d)]. Hence G is
supersoluble. □

Lemma 2.8. Let G = P ⋊E, where P is the Sylow p-subgroup of G and E is
a Sylow tower group. Suppose that for every Sylow subgroup Q of E there is a
subgroup B of P such that P = NP (Q)B and Q permutes with all subgroups of
B. Then G is p-supersoluble.
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Proof. Suppose that this lemma is false and let G be a counterexample of
minimal order. It is clear that G is soluble and |P | > p. Let p1 > · · · > pt be
the set of all prime divisors of |E|. Let Pi be a Sylow pi-subgroup of E.

Let N be a normal subgroup of G. Then the hypothesis holds for G/N ,
so the choice of G and Lemma 2.7 imply that N is the only minimal normal
subgroup of G and N ≰ Φ(G). Therefore N = CG(N) = F (G) = P by [1, A,
15.2], so E is a maximal subgroup of G.

Assume that |π(E)| > 2. Then t > 2. Let Ei be a Hall p′i-subgroup of
E. Then the hypothesis holds for PEi, so PEi is p-supersoluble by the choice
of G. Moreover, since P = CG(P ) we have Op′(PEi) = 1. Therefore PEi

is supersoluble by Lemma 2.7(3), and F (PEi) = P . Thus PEi/P ≃ Ei is an
abelian group of exponent dividing p−1. Therefore E has at least three abelian
subgroups Ei, Ej and Ek of exponent dividing p − 1 whose indices |E : Ei|,
|E : Ej |, |E : Ek| are pairwise coprime. But then by Lemma 2.6, E is nilpotent,
and every Sylow subgroup of E is an abelian group of exponent dividing p− 1.
Hence E is an abelian group of exponent dividing p − 1, which implies that
|P | = p. This contradiction shows that |π(E)| = 2.

Since E is a Sylow tower group, P1 is normal in E, so NG(P1) ∩ P = 1.
Therefore P1 permutes with all subgroups of P . If P ≤ NG(P2), then PP2 =
P × P2. Hence in this case P2 ≤ CG(P ) = P . This contradiction shows
that NG(P2) ∩ P ̸= P , so there is a non-identity subgroup B < P such that
P2B = BP2. Hence BE = B(P1P2) = (P1P2)B = BE is a subgroup of G,
which contradicts the maximality of E = P1P2. □

3. Proofs of the results

Proof of Theorem 1.3. Suppose that this is false and let G be a coun-
terexample of minimal order. Let D = PG. Then, in view of Proposition 3.1
in [12], X ̸= 1.

(I) This assertion is a corollary of Lemmas 2.1 and 2.3.
(II) By hypothesis, there is a subgroup B of G such that G = NG(P ) and

P X-permutes with B and with every subgroup S of B such that (p, |S|) = 1.
Then for some x ∈ X we have PBx = BxP . Hence D = PG = PNG(P )Bx

=
PBx ≤ PBx, so D = P (D ∩Bx).

(i) Suppose that this assertion is false.
(1) Op(D) = 1, so Op(N) = 1 for any normal subgroup N of G.
Indeed, suppose that Op(G) ̸= 1. By Lemma 2.2(1), the hypothesis holds

for G/Op(G). Hence the choice of G implies that

P ′Op(G)/Op(G) ≤ (POp(G)/Op(G))′ ≤ Op(G/Op(G)) = 1,

and if NG(P ) is p-nilpotent, then

(G/Op(G))′ ∩ (P/Op(G)) = (G′Op(G)/Op(G)) ∩ (P/Op(G)) =

= Op(G)(G′ ∩ P )/Op(G) ≤ Op(G/Op(G)) = 1.
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Hence we have P ′ ≤ Op(G) in the former case, and G′ ∩ P ≤ Op(G) in the
case when NG(P ) is p-nilpotent. This contradiction shows that Op(G) = 1, so
Op(N) = 1 since every subnormal p-subgroup of G is contained in Op(G) by
Lemma 2.5.

(2) P is not abelian.
Suppose that P is abelian. Then in the case when NG(P ) is p-nilpoten,

P ≤ Z(NG(P )) and so G is p-nilpotent by Burnside’s theorem [6, IV, 2.6].
Hence a Hall p′-subgroup E of G is normal in G. Since P is abelian, it follows
that G′ ≤ E. Therefore G′ ∩ P = 1 ≤ Op(G), contrary to our assumption on
G. Hence we have (2).

(3) Φ(G) ∩X = 1.
Suppose that E = Φ(G) ∩ X ̸= 1. In view of Claims (1) and (2), P ′ ≰ E.

On the other hand, the choice of G implies that P ′E/E ≤ O/E = Op(G/E).
Hence p divides |O|. Let Op be a Sylow p-subgroup of O. Then by the Frattini
Argument, G = ONG(Op) = (EOp)NG(Op) = NG(Op) and so 1 < Op ≤
Op(G), contrary to Claim (1).

(4) X is a minimal normal subgroup of G, so X ≤ D.
Lemma 2.4 and Claim (3) imply that X is the direct product of some

minimal normal subgroups N, . . . , R of G. Assume that N ̸= X and let
V/N = Op(G/N) and W/R = Op(G/R). Then V ∩W ≤ Op(G), so Claim (1)
implies that V ∩W = 1. On the other hand, P ′N/N ≤ V/N and P ′R/R ≤ W/R
by the choice of G and so 1 < P ′ ≤ V ∩W , a contradiction. Hence X = N ≤ D
by Assertion (I).

(5) CD(X) = X = F (D).
In view of Lemma 2.5 and Claim (4), F (G) = X ≤ F (D) ≤ F (G), so

X = F (D) and hence CD(X) = X by [1, A, 10.6(a)].
(6) X ≰ B.
Assume that X ≤ B and let X be a q-group. Then by Claim (4), P per-

mutes with all subgroups of X. Hence XP is supersoluble by Lemma 2.8 and
F (XP ) = X by Claim (5). Hence P ≃ XP/F (XP ) is abelian, contrary to
Claim (2).

Final contradiction for (i). Since x ∈ X ≤ D by Claim (4), D = P (D∩Bx) =
P (D ∩ B). Therefore the hypothesis holds for D, so in the case when D < G,
P ′ ≤ Op(D) = 1 by Claim (1) and hence P is abelian, contrary to Claim (2).
Therefore D = G = PB and so X ≤ B, contrary to Claim (6).

(ii) Since by Assertion (i), P ′ ≤ Op(G), the Sylow p-subgroups of G/Op(G)
are abelian. Hence, by [6, VI, 6.6], we have lp(G/Op(G)) ≤ 1. But then
lp(G) ≤ 2.

(iii) Assume that this assertion is false.
(a) NP is normal in G for every non-identity normal subgroup N of G,

so Op(G) = 1 and X is a p′-group (Since the hypothesis holds for G/N , this
follows from the choice of G and the fact that Op(G) ≤ P ).
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(b) Φ(G)∩X = 1 (In view of the Frattini Argument, this follows from Claim
(a)).

(c) X is a minimal normal subgroup of G. Hence for some prime q ̸= p we
have X ≤ Oq(G) ∩D (see Claim (4) in the proof of (i) and use Claim (a)).

(d) X ≰ NG(P ), so q < p.
Suppose thatX ≤ NG(P ). Then, in view of Claims (a) and (c), XP = X×P

is normal in G, which implies the normality of P . Thus X ≰ NG(P ) and so
q < p by hypothesis.

(e) X ≰ B.
Suppose that X ≤ B. Then Claim (c) and Lemma 2.8 imply that XP is

supersoluble. But, in view of Lemma 2.7(3), this contradicts to Claim (d).
(f) G ̸= PB and D = P (D ∩B) ̸= G.
In view of Claims (c) and (e), we have G ̸= PB and x ∈ D, so D =

P (D ∩Bx) = P (D ∩B)x = P (D ∩B) ̸= G.
Final contradiction for (iii). By Claim (c), X ≤ D. Hence, by Claim (f), the

hypothesis holds for D = P (D ∩ B) since |D : ND(P )| = |NG(P )D : NG(P )|.
Hence in view of Claim (f), the choice of G implies that P is normal in D and
so P is normal in G.

(iv) Let N be a minimal normal subgroup of G. Then the hypothesis holds
for G/N , so G/N is q-supersoluble by the choice of G. Hence N is the unique
minimal normal subgroup of G, N ≰ Oq′(G), and N ≰ Φ(G) by Lemma 2.7.
In particular, N ≰ P , which implies that N is a p′-group since G is p-soluble
by Assertion (I).

Let E be a Hall p′-subgroup of G. Then N ≤ E, so N is a q-group since E
is q-supersoluble by hypothesis. Hence N = CG(N) = Oq(G) = X by [1, A,
15.2], and X ≤ D. Therefore D = P (D ∩B)x = P (D ∩B), so X ≤ B.

Since E is q-supersoluble, N has a maximal subgroup V such that V is
normal in E. On the other hand, PV ∩ N = V is normal in PV . Hence
G = PE ≤ NG(V ), which in view of the minimality of N implies that V = 1.
Hence |N | = q, so G is q-supersoluble. This contradiction completes the proof
of Assertion (iv).

The theorem is proved.
Proof of Theorem 1.7. (i) Suppose that this assertion is false and let G

be a counterexample of minimal order.
Let V ∈ Mϕ(P ) and D = V G. By hypothesis, there is a subgroup B of G

such that G = NG(V )B and V is X-permutable with B and with all Sylow
subgroups S of B such that (p, |S|) = 1.

(1) Op′(N) = 1 for every subnormal subgroup N of G. Hence X ≤ Op(G).
Indeed, suppose that for some subnormal subgroupN ofG we haveOp′(N) ̸=

1. Then Op′(G) ̸= 1 by Lemma 2.5, and the hypothesis holds for G/Op′(G) by
Lemma 2.2(1). Hence G/Op′(N) is p-supersoluble by the choice of G. Thus G
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is p-supersoluble, a contradiction. Therefore Op′(N) = 1. Therefore, since X
is nilpotent, X ≤ Op(G).

(2) If L is a minimal normal subgroup of G, then L ≰ Φ(P ).
Indeed, in the case when L ≤ Φ(P ) we have L ≤ Φ(G) and the hypothesis

holds for G/L by Lemma 2.2(1). Hence G/L is p-supersoluble by the choice of
L. Therefore G is p-supersoluble by Lemma 2.7(1), a contradiction.

(3) D is soluble, so Op(G) ̸= 1.
Assume that Op(G) = 1. Then in view of Claim (1), X = 1. Therefore V

permutes with B and with all Sylow subgroups S of B such that (p, |S|) = 1.
Therefore D = V G = V NG(V )B = V B ≤ V B, so D = V (D ∩ B). Hence V D

is soluble by Lemma 2.3. But Claim (1) implies that Op′(V D) = 1. Hence
Op(V

D) ̸= 1, and Op(V
D) ≤ Op(G) by Lemma 2.5. Thus Op(G) ̸= 1, a

contradiction.
(4) P is not cyclic.
Assume that P is cyclic. Claim (3) implies that for some minimal normal

subgroup L of G we have L ≤ Op(G) ≤ P . Then |L| = p, and since L ≰ Φ(P )
by Claim (2), we get L = P , contrary to the hypothesis.

(5) Every normal p-soluble subgroup of G is supersoluble and p-closed (See
Claim (5)(a) in the proof of Proposition in [12]).

(6) G is not p-soluble (This directly follows from Claim (5)).
Final contradiction for (i). In view of Claim (4), there is a subgroup W ∈

Mϕ(P ) such that V ̸= W . Then P = VW . In view of Claims (3) and (6),
P ≰ D. Hence V is a Sylow subgroup of D, so V is normal in D (and also in G)
by Claim (5). Similarly, W is normal in G. Hence P is normal in G, contrary
to Claim (6). This final contradiction completes the proof of Assertion (i).

(ii) If |P | = p, then G is p-nilpotent by [6, IV, 5.4]. Let |P | > p and H/K
any chief factor of G of order divisible by p. Then |H/K| = p by Assertion (i),
so CG(H/K) = G since (p− 1, |G|) = 1. Hence G is p-nilpotent.

Proof of Theorem 1.11. Suppose that this theorem is false and let G be a
counterexample of minimal order. Let p be the largest prime dividing |G| and
P a Sylow p-subgroup of G. Then P is normal in G by Theorem 1.3(II)(iii).

Let N be a minimal normal subgroup of G. Then the hypothesis holds
for G/N by Lemma 2.2(1). Hence G/N is supersoluble by the choice of G.
Moreover, the choice of G and Lemma 2.7 imply that N is the only minimal
normal subgroup of G, N ≤ P and N ≰ Φ(G). Hence G = N ⋊ M for some
maximal subgroup M of G, |N | > p and N = CG(N) = P by [1, A, 15.2].
Let Q be any Sylow subgroup of M . Then Q is a Sylow subgroup of G and
so, by hypothesis, there is a subgroup B of G such that G = NG(Q)B and
Q X-permutes with every subgroup L of B such that (q, |L|) = 1. It is clear
that P = (P ∩NG(Q))(P ∩ B) = NP (Q)(P ∩ B), and Q permutes with every
subgroup of P ∩B since X = N = P . Therefore G is p-supersoluble by Lemma
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2.8, which implies that |N | = p. This contradiction completes the proof of the
result.
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