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Abstract. Let Γn,κ be the class of all graphs with n ≥ 3 vertices and

κ ≥ 2 vertex connectivity. Denote by Υn,β the family of all connected
graphs with n ≥ 4 vertices and matching number β where 2 ≤ β ≤ ⌊n

2
⌋.

In the classes of graphs Γn,κ and Υn,β , the elements having maximum
augmented Zagreb index are determined.

Keywords: Topological index, augmented Zagreb index, vertex connec-
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1. Introduction

Let G denote a simple, finite and undirected graph with vertex set V (G)
and edge set E(G) such that |V (G)| = n, and |E(G)| = m. Suppose that du
is the degree of the vertex u ∈ V (G) and uv is the edge connecting the ver-
tices u and v. In molecular graphs, vertices correspond to atoms while edges
represent covalent bonds between atoms [19]. The numbers reflecting certain
structural features of a molecule which are obtained from the corresponding
molecular graph are called “molecular structure descriptors” or simply “topo-
logical indices” [22]. A great variety of such indices are studied and used in
theoretical chemistry [6, 13, 22, 23]. Among which the atom-bond connectivity
(ABC) index was proposed by Estrada et al. [9]. This index is defined as

ABC(G) =
∑

uv∈E(G)

√
du + dv − 2

dudv
.

For chemical applicability of ABC index, see the papers [8,9,15] and for more
details see the survey [12], recent papers [4, 5, 7, 10, 17, 20] and the references
cited therein.
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Inspired by the ABC index, Furtula et al. [11] introduced a new topological
index known as the augmented Zagreb index (AZI) defined as:

AZI(G) =
∑

uv∈E(G)

(
dudv

du + dv − 2

)3

.

AZI is a valuable predictive index in the study of the heat of formation in hep-
tanes and octanes [11]. Gutman and Tošović [14] recently tested the correlation
abilities of 20 vertex-degree-based topological indices for the case of standard
heats of formation and normal boiling points of octane isomers, and they found
that AZI yields the best results. Hence, it is natural and interesting to study
the mathematical properties of the AZI.

The union H ∪K of two graphs H and K is the graph with the vertex set
V (H) ∪ V (K) and the edge set E(H) ∪ E(K). The join H +K of two graphs
H and K is the graph with the vertex set V (H) ∪ V (K) and the edge set
E(H)∪E(K)∪{uv|u ∈ V (H), v ∈ V (K)}. The vertex connectivity (commonly
referred to as connectivity) κ(G) = κ of a graph G is the minimum number of
vertices whose removal gives rise to a disconnected or trivial graph [16]. If G
is disconnected then κ(G) = 0. A matching in a graph is a set of pairwise non-
adjacent edges [3]. A maximum matching is one which covers as many vertices
as possible. The matching number β(G) = β of a graph G is the number of
edges in a maximum matching. A component of a graph is odd (respectively
even) if it has an odd (respectively even) number of vertices. If a graph G has
n vertices and o(G) is the number of odd components, then by Tutte-Berge
formula [21],

(1.1) n− 2β(G) = max{o(G−A)− |A| : A ⊂ V (G)}.

For undefined notations and terminologies in graph theory, see [3, 16].
Furtula et al. [11] studied the extremal properties of AZI for trees and

chemical trees. Huang et al. [18] gave various bounds (lower and upper) on
AZI for several families of connected graphs and they proved that AZI of
a connected graph G strictly increases by adding an edge in G. Wang et
al. [24] established some bounds on AZI of connected graphs and improved
some results of [11, 18]. In [1], the authors derived some inequalities between
AZI and several other vertex-degree-based topological indices. In [2], the same
authors obtain tight upper bounds for AZI of chemical bicyclic and unicyclic
graphs. In this article, sharp upper bounds on AZI of a graph G are given in
terms of its order, vertex connectivity or matching number.

2. The augmented Zagreb index and vertex connectivity

Let us denote by Γn,κ the collection of all graphs with n ≥ 3 vertices and
κ ≥ 2 vertex connectivity. In this section, we will prove that among all graphs
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in the collection Γn,κ, the graph Kκ + (K1 ∪Kn−κ−1) has the maximum AZI.
To proceed, we need the following lemma.

Lemma 2.1. Let ϕ1(x) =
x(x−1)

2

(
(x+a−1)2

2x+2a−4

)3
, ϕ2(x) = ax

(
(n−1)(x+a−1)

x+n+a−4

)3
and ϕ(x) = ϕ1(x) + ϕ2(x) where x ∈ [1,∞), a ≥ 2 and a, n ∈ N. Let n′ − a−
x, n− a− x ∈ [1,∞) and n′ ∈ N such that n ≥ n′. Then ϕ(x) + ϕ(n′ − a− x)

is monotonously decreasing for x ∈ [1, n′−a
2 ] and monotonously increasing for

x ∈ (n
′−a
2 , n′ − a − 1]. Moreover, the maximum value of ϕ(x) + ϕ(n′ − a − x)

in the interval [1, n′ − a− 1] is ϕ(1) + ϕ(n′ − a− 1).

Proof. After routine calculations, one arrives at

(2.1) ϕ
′′

1 (x) =
(x+ a− 1)4ϕ3(x)

8(x+ a− 2)5

where

ϕ3(x) = 10x4 + (28a− 66)x3 + (27a2 − 123a+ 145)x2

+(2a2(5a− 33) + 146a− 111)x+ (a− 1)(a− 2)(a2 − 6a+ 11).

Note that for all a ≥ 2 and x ≥ 1, the following inequalities hold:

(40x+ 84a− 198)x2 ≥ 10, (290 + 6a(9a− 41))x ≥ 14,

2a(73 + a(5a− 33))− 111 ≥ −3.

Hence, it follows that

ϕ
′

3(x) = (40x+ 84a− 198)x2 + (290 + 6a(9a− 41))x

+2a(73 + a(5a− 33))− 111 > 0,

which implies that ϕ3(x) is monotonously increasing and consequently ϕ3(x) ≥
ϕ3(1) = a4 + a3 − 8a2 + 6a > 0 as a ≥ 2. Therefore, from Equation (2.1) it

follows that ϕ
′′

1 (x) > 0. Moreover, it can be easily verified that

ϕ
′′
2 (x) =

6a(n− 3)(n− 1)3 + (x+ a− 1)((2n+ a− 7)x+ (a− 1)(n+ a− 4))

(x+ n+ a− 4)5
> 0

and consequently one has ϕ
′′
(x) = ϕ

′′

1 (x) + ϕ
′′

2 (x) > 0. It means that ϕ
′
(x) is

monotonously increasing in the interval [1, n′−a−1]. Therefore, if x ≤ n′−a−x
then

(ϕ(x) + ϕ(n′ − a− x))
′
= ϕ

′
(x)− ϕ

′
(n′ − a− x) ≤ 0,

and if x > n′ − a− x then

(ϕ(x) + ϕ(n′ − a− x))
′
= ϕ

′
(x)− ϕ

′
(n′ − a− x) > 0.

□

We also need the following result.
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Lemma 2.2. ( [18]) Let G be a connected graph with n ≥ 3 vertices, and
G ≇ Kn. Then

AZI(G) < AZI(G+ e),

where e ̸∈ E(G).

Now, we are in a position to prove the main result of this section.

Theorem 2.3. If G is a graph belongs to the class Γn,κ, then

AZI(G) ≤ κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+ κ4

(
n− 1

n+ κ− 3

)3

+
(n− κ− 1)(n− κ− 2)

16

(
(n− 2)2

n− 3

)3

+κ(n− κ− 1)

(
(n− 2)(n− 1)

2n− 5

)3

,

the equality holds if and only if G ∼= Kκ + (K1 ∪Kn−κ−1).

Proof. If G ∼= Kn, then κ = n − 1 and hence Kκ + (K1 ∪Kn−κ−1) ∼= Kn, so
the result is true in this case. If G ≇ Kn, then 2 ≤ κ ≤ n − 2. Let G′ ≇ Kn

be a member of the collection Γn,κ with the maximum AZI. Let A be a
κ−element subset of V (G′) such that G′ −A is disconnected. Then the graph
G′−A has only two components (if G′−A has more than two components. Let
G′−A+e be a graph obtained fromG′−A by adding the edge e between any two
components of G′−A. Then κ(G′) = κ(G′+e) but AZI(G′) < AZI(G′+e), a
contradiction to the definition of of G′). Let G1, G2 be the components of the
graph G′ − A such that |V (G1)| = n1, |V (G2)| = n2. Then from Lemma 2.2
and definition of G′, it follows that G1, G2, G

′− (V (G1)∪V (G2)) are complete
graphs and each vertex of A must be adjacent with all vertices of G1 and G2.
Hence G′ ∼= Kκ + (Kn1 ∪Kn2). If u ∈ A, v ∈ V (G1), w ∈ V (G2), then

du = n− 1, dv = n1 + κ− 1, dw = n2 + κ− 1.

By using definition of AZI, one have

AZI(G′) =
κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+
n1(n1 − 1)

2

(
(n1 + κ− 1)2

2n1 + 2κ− 4

)3

+κn1

(
(n− 1)(n1 + κ− 1)

n1 + κ+ n− 4

)3

+
n2(n2 − 1)

2

(
(n2 + κ− 1)2

2n2 + 2κ− 4

)3

+κn2

(
(n− 1)(n2 + κ− 1)

n2 + κ+ n− 4

)3

,
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which is equivalent to

AZI(G′) =
κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+ ϕ(n1) + ϕ(n2)

=
κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+ ϕ(n1) + ϕ(n− κ− n1),

where ϕ(x) is defined in Lemma 2.1. By Lemma 2.1 and definition of G′, one
gets

AZI(G′) =
κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+ ϕ(1) + ϕ(n− κ− 1)

=
κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+ κ4

(
n− 1

n+ κ− 3

)3

+
(n− κ− 1)(n− κ− 2)

16

(
(n− 2)2

n− 3

)3

+κ(n− κ− 1)

(
(n− 2)(n− 1)

2n− 5

)3

= AZI(Kκ + (K1 ∪Kn−κ−1)).

□

Bearing in mind Theorem 2.3 and Lemma 2.2, we have a stronger version of
the Theorem 2.3.

Theorem 2.4. If G is a graph with n ≥ 3 vertices and vertex connectivity κ′

where 2 ≤ κ′ ≤ κ, then

AZI(G) ≤ κ(κ− 1)

16

(
(n− 1)2

n− 2

)3

+ κ4

(
n− 1

n+ κ− 3

)3

+
(n− κ− 1)(n− κ− 2)

16

(
(n− 2)2

n− 3

)3

+κ(n− κ− 1)

(
(n− 2)(n− 1)

2n− 5

)3

,

the equality holds if and only if G ∼= Kκ + (K1 ∪Kn−κ−1).

3. The augmented Zagreb index and matching number

Let us denote by Υn,β , the class of all connected graphs with n ≥ 4 vertices
and matching number β, where 2 ≤ β ≤ ⌊n

2 ⌋. In this section, we characterize
the graph with the maximum AZI belongs to the calss Υn,β .
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Lemma 3.1. Let H1=Kβ +
r∪

i=1

Kni and

H2=Kβ+
(
Kn1 ∪ ...∪Kns−1 ∪Kns−1 ∪Kns+1 ∪ ... ∪Knt−1 ∪Knt+1 ∪Knt+1 ∪ ... ∪Knr

)
where 1 ≤ s < t ≤ r, nt ≥ ns ≥ 2; r, β ≥ 2,

r∑
i=1

ni + β = n, r, β, ni ∈ N. Then

AZI(H2) > AZI(H1).

Proof. Let Θ = AZI(H2) − AZI(H1). Then By using the definitions of AZI
and ϕ(x), one has

Θ =
(ns − 1)(ns − 2)

2

(
(ns + β − 2)2

2ns + 2β − 6

)3

+β(ns − 1)

(
(n− 1)(ns + β − 2)

ns + n+ β − 5

)3

+
nt(nt + 1)

2

(
(nt + β)2

2nt + 2β − 2

)3

+ β(nt + 1)

(
(n− 1)(nt + β)

nt + n+ β − 3

)3

−ns(ns − 1)

2

(
(ns + β − 1)2

2ns + 2β − 4

)3

− βns

(
(n− 1)(ns + β − 1)

ns + n+ β − 4

)3

−nt(nt − 1)

2

(
(nt + β − 1)2

2nt + 2β − 4

)3

− βnt

(
(n− 1)(nt + β − 1)

nt + n+ β − 4

)3

= ϕ(ns − 1) + ϕ(nt + 1)− ϕ(ns)− ϕ(nt).

Let us take N = ns + nt + β. Then nt ≥ ns implies that ns ≤ N−β
2 and hence

by using Lemma 2.1, we have

Θ = ϕ(ns − 1) + ϕ(N − β − (ns − 1))− (ϕ(ns) + ϕ(N − β − ns)) > 0

□

Now, we are ready to prove the main result of this section.

Theorem 3.2. Let G be a graph belongs to the class Υn,β.

(i) If β = ⌊n
2 ⌋, then AZI(G) ≤ n(n−1)7

16(n−2)3 , the equality holds if and only if

G ∼= Kn.

(ii) If 2 ≤ β < ⌊n
2 ⌋, then AZI(G) ≤ β(β−1)(n−1)6

16(n−2)3 + β4(n− β)
(

n−1
n+β−3

)3
,

the equality holds if and only if G ∼= Kβ +Kn−β.

Proof. Part (i) is a direct consequence of Lemma 2.2. To prove the part (ii),
let us denote by Υ1

n,β the collection of all graphs belongs to Υn,β for which
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2 ≤ β < ⌊n
2 ⌋. Let G′ be a member of Υ1

n,β having the maximum AZI. Then

by Tutte-Berge formula (1.1) there must be a set B1 ⊂ V (G′) such that

n− 2β = max{o(G−B)− |B| : B ⊂ V (G′)} = o(G′ −B1)− |B1|.

Let us take |B1| = b and o(G′ − B1) = r. Then n− 2β = r − b and n ≥ r + b
implies that β ≥ b. If b = 0, then n− 2β = r = 0 or 1 because G′ is connected.
In both cases, β = ⌊n

2 ⌋, a contradiction. Hence b ≥ 1, which implies that r ≥ 3.
Suppose that G1, G2, G3, . . . , Gr be the all odd components of G′ −B1. We

claim that G′ − B1 has no even component(s). Contrarily suppose that Gr+1

be an even component of G′ − B1. Let G+ be the graph obtained from G′ by
adding an edge e between G1 and Gr+1. Then β(G+) ≥ β(G′). But

n− 2β(G+) ≥ o(G+ −B1)− |B1| = o(G′ −B1)− |B1| = n− 2β(G′),

which implies β(G+) ≤ β(G′) and hence β(G+) = β(G′). On the other hand,
from the Lemma 2.2 it follows that AZI(G+) > AZI(G′), a contradiction to
the definition of G′.

Let |V (Gi)| = ni where i = 1, 2, . . . , r. Without loss of generality, we can
assume that nr ≥ nr−1 ≥ . . . ≥ n1. By using Lemma 2.2, we deduce that
all the graphs G1, G2, G3, . . . , Gr, G

′ − (
∪r

i=1 V (Gi)) are complete and each
vertex of B1 is adjacent with all vertices of G1, G2, G3, . . . , Gr. Hence G′ ∼=
Kb + (

∪r
i=1 Kni). Now, we have the following three possibilities:

Case 1. If nr = 1, then β = b and

G′ ∼= Kb +

(
r∪

i=1

Kni

)
∼= Kb +Kr

∼= Kb +Kn−2β+b
∼= Kβ +Kn−β .

Case 2. If ni = 1 for i = 1, 2, . . . , r − 1 and nr ≥ 3. Then we have

G′ ∼= Kb+

(
r∪

i=1

Kni

)
∼= Kb+

(
Kr−1 ∪Knr

) ∼= Kb+
(
Kn−2β+b−1 ∪K2β−2b+1

)
.

But Kb +
(
Kn−2β+b−1 ∪K2β−2b+1

)
is a spanning subgraph of Kβ + Kn−β

and hence from Lemma 2.2, it follows that AZI(G′) < AZI(Kβ + Kn−β), a
contradiction to the definition of G′.

Case 3. If there are some i, j ∈ {1, 2, . . . , r} such that nj ≥ ni ≥ 3. Then
by using Lemma 3.1 and Lemma 2.2, we have

AZI(G′) = AZI

(
Kb +

(
r∪

i=1

Kni

))
< AZI

(
Kb +

(
Kn−2β+b−1 ∪K2β−2b+1

))
< AZI

(
Kβ +Kn−β

)
,

again a contradiction to the definition of G′.
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In the last two cases, contradiction is obtained and only the case 1 is true.
Hence G′ ∼= Kβ +Kn−β and by simple calculations, one has

AZI(G′) =
β(β − 1)(n− 1)6

16(n− 2)3
+ β4(n− β)

(
n− 1

n+ β − 3

)3

.

□

Keeping in view of the Theorem 3.2 and Lemma 2.2, we have the stronger
version of the Theorem 3.2.

Theorem 3.3. Let G be a graph with n ≥ 4 vertices and matching number β′,
where 2 ≤ β′ ≤ β ≤ ⌊n

2 ⌋.

(i) If β = ⌊n
2 ⌋, then AZI(G) ≤ n(n−1)7

16(n−2)3 , the equality holds if and only if

G ∼= Kn.

(ii) If 2 ≤ β′ ≤ β < ⌊n
2 ⌋, then AZI(G) ≤ β(β−1)(n−1)6

16(n−2)3 +β4(n−β)
(

n−1
n+β−3

)3
,

the equality holds if and only if G ∼= Kβ +Kn−β.
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[9] E. Estrada, L. Torres, L. Rodŕıguez and I. Gutman, An atom-bond connectivity index:
modelling the enthalpy of formation of alkanes, Indian J. Chem. A 37 (1998), no. 10,
849–855.
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