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Abstract. In this paper we prove that each element of any regular Baer
ring is a sum of two units if no factor ring of R is isomorphic to Z2 and we
characterize regular Baer rings with unit sum numbers ω and ∞. Then as
an application, we discuss the unit sum number of some classes of group

rings.
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1. Introduction

The study of rings generated additively by their units started in 1953-1954
(See, [21–23]). An associative unital ring R is said to have the n-good, for a
positive integer n, if its every element can be written as a sum of exactly n
units of R. The unit sum number of a ring R, denoted by usn(R), is the least
integer n, if any such integer exists, such that R is n-good. If R has an element
that is not a sum of units then we set usn(R) to be ∞, and if every element of
R is n-good for some n but R is not n-good for any n, then we set usn(R) = ω.
The unit sum number of a module M , denoted by usn(M), is the unit sum
number of its endomorphism ring. Recently some authors have been interested
in this concept and they could get various results. For additional historical
background the reader is referred to the papers [1–3,6,14] and [20]. From [11],
a ring R is called π-regular if for each element a ∈ R there exist a positive
integer n (depending on a) and an element x ∈ R such that an = anxan. A
π-regular ring R for which the n in the above can be taken to be 1 is called
regular.

A ring R is called Baer if the left annihilator of every nonempty subset of
R is generated by an idempotent. The concept of a Baer ring was introduced
by Kaplansky in order to abstract properties of rings of operators on a Hilbert
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space in [12]. The definition of Baer is indeed left-right symmetric by [12]. The
aim of this paper is to study the unit sum number of Baer rings.

Zelinsky [23] proved that every element in the ring of linear transformations
of a vector space V over a division ring D is a sum of two units unless dimV = 1
and D = Z2. Because EndD(V ) is a (von-Neumann) regular ring, Zelinsky’s
result generated quite a bit of interest in regular rings that have the property
that every element is a sum of (two) units. This result motivated Skornjakov
to ask in [19, Problem 31, p. 167] if usn(R) ≤ ω for a (von Neumann) regular
ring R, but one needs to add some condition ensuring that Z2 is not a factor
ring (for example, that 1/2 ∈ R), to exclude the exceptional case already noted
in the result of Zelinsky. A negative answer to Skornjakov question was given
in 1977 by Bergman who constructed a regular algebra R over rationals with
usn(R) = ∞, as reported by Handelman in [9]. But since EndD(V ) is a reg-
ular Baer ring [4, Example 1.26], another natural question which arises from
Zelinsky’s result is the following: Which regular Baer rings have the property
that every element is a sum of two units?
In this paper, we answer to this question and prove that every element of a
regular Baer ring is a sum of two units if and only if it has no factor ring iso-
morphic to Z2. Also we characterize regular Baer rings with unit sum number
ω and ∞.

In 2006 Khurana and Srivastava in [13] proved that every element of a right
self-injective ring is a sum of two units if and only if it has no factor ring
isomorphic to Z2. Since each self-injective ring is a Baer ring, some results
which obtained by Khurana and Srivastava in [13] would be an application of
Theorem 5. Further in section 3 as an another application, we determine the
unit sum number of some classes of group rings.

All rings in this paper will have identity element. For a ring R, J(R) will
denote the Jacobson radical of R and for integer n > 1, we will denote by
Mn(R) the ring of n × n matrices over R. We use |X| and c to denote the
cardinality of a set X and the cardinality of the continuum, respectively.

2. The unit sum number of regular Baer rings

Before discussing the main results we need some properties of the unit sum
number of rings and modules.

Lemma 2.1. Let R be a ring, I an ideal of R, η : R → R/I the natural sur-
jection. Then the following statements hold:
(a) if a ∈ R is n-good then so is η(a) ∈ R/I, and the converse also holds if
I ⊆ J(R);
(b) usn(R/I) ≤ usn(R) with equality if I ⊆ J(R);
(c) if the ring R is a finite product of the rings R1, . . . , Rn then usn(R) ≥
max{usn(R1), . . . , usn(Rn)} with equality holding if the right hand side is ei-
ther finite or ∞;
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(d) Let D be a division ring. If |D| ≥ 3 then usn(D) = 2, whereas if |D| = 2,
that is , D = Z2 the field of two elements, then usn(Z2) = ω.

Proof. See [20, Lemma 2] and [3, F1]. □

Theorem 2.2. A ring R is a Baer ring if and only if R itself, regarded as a
regular R-module, is a Baer semisimple module.

Proof. See [8, Theorem 4]. □

For getting the main result of this paper we need some definitions from [8]
which we bring them as follows.

Definition 2.3. Let M be a right R-module. Then, we call a (right R-
)submodule N of M a perpetual submodule of M if for all x ∈ N and y ∈
M,annl(x) ⊆ annl(y) implies y ∈ N .

Definition 2.4. let M be a right R-module. Then
(1) M is called a Baer simple R-module if M ̸= 0, and M contains no perpetual
submodules of M other than M itself and (0).
(2) M is called a Baer semismiple R-module if every perpetual submodule of
M is a direct summand of M .

Theorem 2.5. Let R be a regular Baer ring then the following conditions are
equivalent:

(1) Every element of R is a sum of two units.
(2) Identity of R is a sum of two units.
(3) R has no factor ring isomorphic to Z2.

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious.
Next, we show (3) ⇒ (1). Suppose that no factor ring of R is isomorphic
to Z2. Now we show that each element of R is a sum of two units. By the
previous theorem R itself, regarded as a regular (left) right R-module, is a
regular Baer semisimple module; therefore, by [8, proposition 2] R is the direct
sum of a family of Baer simple submodules. This family is not empty. We have
RR =

⊕n
i=1 Mi while the Mi are Baer simple R-submodules of R. Let RR =⊕r

j=1 M
nj

ij
, where {Mi1 , . . . ,Mir} is a set of representatives of the isomorphism

classes of Mi for i = 1, . . . , n such that n1 + n2 + . . .+ nr = n. Then

R ∼= EndR(R) ∼= EndR(M
n1
i1

⊕ . . .⊕Mnr
ir

)

∼=


Hom(Mn1

i1
,Mn1

i1
) Hom(Mn1

i1
,Mn2

i2
) . . . Hom(Mn1

i1
,Mnr

ir
)

Hom(Mn2
i2

,Mn1
i1

) Hom(Mn2
i2

,Mn2
i2

) . . . Hom(Mn2
i2

,Mnr
ir

)
...

...
...

Hom(Mnr
ir

,Mn1
i1

) Hom(Mnr
ir

,Mn2
i2

) . . . Hom(Mnr
ir

,Mnr
ir

)


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Now by this fact that Mil ≇ Miĺ
for l ̸= ĺ and regularity of Hom(Mil ,Miĺ

) we

have Hom(Mil ,Miĺ
) = 0 ; therefore, Hom(Mnl

il
,M

nĺ
iĺ
) = 0. So

R ∼=


Hom(Mn1

i1
,Mn1

i1
) 0 . . . 0

0 Hom(Mn2
i2

,Mn2
i2

) . . . 0
...

...
...

0 0 . . . Hom(Mnr
ir

,Mnr
ir

)

 .

Thus R ∼=
∏r

j=1 EndR(M
nj

ij
) ∼=

∏r
j=1 Mnj (EndR(Mij )). As Mij is a Baer

simple R−module for each 1 ≤ j ≤ r, so EndR(Mij ) is a domain by [8, Theorem
2]. On the other hand Dj := EndR(Mij ) is a regular domain, thus is a division
ring. Since R has no factor ring isomorphic to Z2, each element of Mnj

(Dj)
for all 1 ≤ j ≤ r is a sum of two units. Therefore, the unit sum number of R
is 2. □

Recall that if V is a right vector space over a division ring D, then EndD(V )
is a regular Baer ring. It is easy to see that the identity of EndD(V ) is a sum
of two units, except when dim(VD) = 1 and D = Z2. As a consequence, we get
the following result.

Corollary 2.6. (Zelinsky, [23]). Every element of EndD(V ) is a sum of two
units, except when dim(VD) = 1 and D = Z2.

Remark 2.7. Let R be a regular ring and A its lattice of principal right ideals.
If A is a complete lattice then R is a Baer ring [4, Corollary 1.22]. Therefore,
the unit sum umber of R is 2 if it has no factor isomorph to Z2.

Now with the following theorem we can determine when the unit sum number
of a regular Baer ring can be 2, ω or ∞.

Theorem 2.8. The unit sum number of a nonzero regular Baer ring R is 2 ,
ω or ∞. Moreover,

(1) usn(R) = 2 if and only if R has no factor ring isomorphic to a nonzero
Boolean ring.

(2) usn(R) ≥ ω if R has a factor ring isomorphic to Z2. Further if R has
a factor ring isomorphic to a nonzero Boolean ring with more than two
elements then usn(R) = ∞.

Proof. (1) Since Z2 is a homomorphic image of every Boolean ring then by
Theorem 2.5, it is obvious.

(2) Let R have a factor ring isomorphic to Z2. In this case R/I ∼= Z2, but
as usn(R/I) ≤ usn(R), then usn(R) ≥ ω. Now if R has a factor isomorphic to
a nonzero Boolean ring with more than two elements, then R has a factor ring
isomorphic to Z2 × Z2; therefore, usn(R) = ∞.

□
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Since every π-regular Baer ring with |Id(R)| < c is a semilocal ring [16,
Theorem 5], by the next proposition we can obtain the unit sum number of
π-regular Baer rings with |Id(R)| < c.

Proposition 2.9. Let R be a semilocal ring. If R has no factor ring isomorphic
to Z2 then every element of R is a sum of two units.

Proof. If R is a semilocal ring thus R/J(R) is a semisimple ring; therefore,
R ∼=

∏r
l=1 Mnl

(Dl) while Mnl
(Dl) admits a diagonal reduction i.e., there exist

invertible matrices P and Q in Mnl
(Dl) such that PMnl

(Dl)Q is a diagonal
matrix. So there are invertible matrices U1, U2 such that PMnl

(Dl)Q = U1 +
U2. Therefore, Mnl

(Dl) = P−1U1Q
−1 +P−1U2Q

−1. So each element of R can
be written as a sum of two units. □
Corollary 2.10. Let R be a π-regular Baer ring with |Id(R)| < c. If R has
no factor ring isomorphic to Z2 then every element of R is a sum of two units.

Henriksen proved in [10] that for any ring R and n ≥ 2, usn(Mn(R)) ≤ 3.
Vámos in [20] showed that the unit sum number of a proper matrix ring over
an elementary divisor ring is 2. Here we show that the unit sum number of a
square matrix ring over a regular ring with finite Goldie dimension is, 2.

Proposition 2.11. Let R be a regular ring with finite Goldie dimension then
usn(Mn(R)) = 2. In particular, for finitely generated free R-module F , usn(F ) =
2.

Proof. Let S = Mn(R). By [15], S is a regular Baer ring and by Theorem
2.5, usn(Mn(R)) = 2. Since EndR(F ) ∼= Mn(R), for some nonzero integer n,
usn(F ) = 2. □

Recall that the unit sum number of a module is the unit sum number of its
endomorphism ring. So the unit sum number of any module, whose endomor-
phism ring modulo jacobson radical is regular Baer ring, is 2, ω or ∞. We list
two such classes of modules below.

Corollary 2.12. Let MR be an extending module such that its endomorphism
ring S is a regular ring. Then unit sun number of M is 2, ω or ∞.

Proof. If M be an extending module such that its endomorphism ring S is a
regular ring then M is a Baer module, and subsequently S is a Baer ring [18,
proposition 4.12]. Therefore, the result follows from Corollary 2.8. □

Srivastava and Khurana in [13] proved that every element of a right self-
injective ring is a sum of two units if and only if it has no factor ring iso-
morphic to Z2 and they extend this result to endomorphism rings of right
quasi-continuous modules with finite exchange property. As continuous mod-
ules is quasi-continuous modules with finite exchange property [17, Theorem
3.24], they proved that every element in the endomorphism ring of a continuous
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module, is a sum of two units if no factor of endomorphism ring is isomorphic
to Z2. In this paper we obtain the same result but with a different proof and
use the unit sum number of regular Baer rings. As a consequence we get the
following result.

Corollary 2.13. Let MR be a continuous module. Then each element of endo-
morphism of MR is a sum of two units if and only if has no factor isomorphic
to Z2.

Proof. Let S = EndR(M). If M is a continuous module, by [17, Theorem 3.11
and proposition 3.5], S = S/J(S) is a regular right continuous ring, thus SS is
a extending module with regular endomorphism ring. Therefore, by corollary
2.12, usn(S) = 2 so usn(M) = 2 if and only if S has no factor ring isomorphic
to Z2. □

3. The unit sum number of some classes of group rings

In [22], Z. Yi and Q. Y. Zhou studied Baer properties of group rings. In
this section we discuss the Baer property of group rings and we conclude by
showing an application of our result for group rings.

Theorem 3.1. If G = H ×K is a locally finite group and RG is a Baer group
ring, then usn(RH) = usn(RK) = 2 if R has no factor ring isomorphic to Z2.

Proof. Note that RG = R(H ×K) ∼= (RH)K. Since RG = ⊕g∈GRg is a free
left R-module with a basis G satisfying the assumption of [22, Theorem 2.1],
RH is regular Baer. Similarly RK is regular Baer. Since R has no factor ring
isomorphic to Z2, so RH(RK) has no factor isomorphic to Z2. Therefore by
Theorem 2.5, usn(RH) = usn(RK) = 2. □

Theorem 3.2. Let G be a locally finite group. If RH is a regular Baer group
ring for every proper subgroup H of G, then RG is regular Baer group ring.
Particularly, usn(RG) = 2 if R has no factor ring isomorphic to Z2.

Proof. Let X be a arbitrary subset of RG. For each xα ∈ X, let xα =
Σn

i=1aαigαi and H =< . . . , gα1 , . . . , gαn , . . . >. By the assumption, RH is
Baer. Since xα ∈ RH, there exist e ∈ RH such that lRH(xα) = RHe. Since
exα = 0, we have RGe ⊆ lRG(xα). We next show that the other inclusions also
hold.

Let v ∈ lRG(xα) and let {1, g′

1, g
′

2, ...} be a left coset representative of H in

G. That is G = H ∪ g
′

1H ∪ g
′

2H ∪ . . .. Now v can be written as v = Σg
′

ibi,

where bi ∈ RH. Since 0 = vxα = Σg
′

i(bixα), we obtain that biuxα = 0 for all i.
So bi ∈ lRH(xα) = RHe, and thus bi = cie for some ci ∈ RH. It follows that

v =
∑

g
′

ibi =
∑

(g
′

ici)e ∈ RGe. So lRG(xα) ⊆ RGe, and thus lRG(xα) = RGe.
Thus RG is a Baer group ring. On the other hand by [5, Theorem 3], RG is a
regular group ring. Note that if R has no factor ring isomorphic to Z2 then the
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group ring RG also has no factor ring isomorphic to Z2; therefore, by Theorem
2.5, usn(RG) = 2. □

Lemma 3.3. Let R be a regular Baer ring. If 2−1 ∈ R then usn(RC2) = 2 if
and only if usn(R) = 2.

Proof. Write C2 = {1, g}. Since 2−1 ∈ R, then RC2
∼= R × R. From this fact

and usn(RG) ≥ uns(R) is obvious. □
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