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FINITE GROUPS WITH p-SYLOW COVERINGS

K. MEHRABADI AND A. IRANMANESH*

Communicated by Jamshid Moori

Abstract. In this paper we characterize the finite groups with
an irredundant covering containing some p-Sylow subgroups. In
particular we analyze the symmetric and alternating groups, finding
their p-elements having a p-subgroup as centralizer.

1. Introduction

A group G is said to have a covering by subgroups if G is the set-
theoretic union of its proper subgroups. These subgroups are called
components of the covering. The covering is called irredundant if each
proper sub-collection of those subgroups fails to cover G. We will always
assume that coverings are irredundant. Covering aspects of groups have
been studied by many authors from several different perspectives [2, 3,
9, 13]. A more specific question is covering a group by some special
subgroups. For example in [4] the coverings of infinte groups consisting
of normal subgroups are investigated and in [8] the authors studied the
groups having Hall coverings. See also [5] and [6] for components con-
sisting of conjugates of two subgroups. Here we study the finite groups
with components containing Sylow subgroups. Let G be a finite group
and p a prime, by a p-Sylow covering of G we mean an irredundant
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covering of G containing some p-Sylow subgroups. Some examples are
in order.

Example 1.1. • In the Symmetric group S3, the family {A3, 〈(1 2)〉,
〈(1 3)〉, 〈(2 3)〉} is a covering of S3 whose components are Sylow sub-
groups of S3.
• Let G = S3 × C2. Then G has no 3-Sylow covering, but there is a 2-
Sylow covering. Of course this covering consists of all Sylow 2-subgroups
of G and the subgroup A3 × C2.
• Let G = C2 × C2 × C3. There is no 2 or 3-Sylow covering of G.

These examples raise the following questions:

(1) Could one cover a given group by its Sylow subgroups?
(2) Let G be a group and p a prime dividing |G|. When there exists a
p-Sylow covering?
(3) For a given group G, is there a p-Sylow covering for any prime num-
ber p dividing |G|?

The first problem has been studied independently by Higman ([7])
and Zacher ([14], [15]) when G is soluble, by Suzuki ([11]) in the case of
a simple group and by Brandl ([1]) in general. A missing case of the last
paper was studied by Jabara and Lucido ([8]). In section 2, we provide
a necessary and sufficient condition on G for affirmative answers to the
next questions.
If G is a finite group and p a prime, a p-element is an element whose order
is a power of p. A p-element in G is called a Cpp-element if its centralizer
in G is a p-subgroup. Note that a ∈ G is a Cpp-element if and only if
every conjugate of a is a Cpp-element. In section 3, we use the results of
section 2 to characterize all symmetric and alternating groups with p-
Sylow coverings. Furthermore we find all Cpp-elements in these groups.
Let τ be a permutation in Sn or An; when we use the statements a cycle
in τ or a permutation in τ , we mean a product of some disjoint cycles
which appear in the decomposition of τ into the product of disjoint
cycles. Supp(τ) is the set of point in {1, 2, ..., n} such that τ moves
them and Fix(τ) = {1, 2, ..., n}−Supp(τ). All unexplained notation is
standard (see [12]). It is clear that we have to restrict ourselves to the
groups with a proper Sylow subgroup, therefore the groups in this paper
are not p-groups.
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2. Coverings containing Sylow subgroups

We begin this section by the following theorem providing an answer
to the question 2 raised in the previous section.

Theorem 2.1. Let G be a non-cyclic finite group, and let p be a prime
dividing |G|. Then G has a p-Sylow covering if and only if there exists
a Cpp-element in G.

Proof. Suppose that G has a covering containing Sylow p-subgroup
P . If each a ∈ P is not a Cpp-element, then there exists an element
x ∈ CG(a) such that o(x) = q, where q is a prime distinct from p.
Therefore ax belongs to a component of the covering which is not a Sylow
p-subgroup. So (ax)q = aq belongs to this component and consequently
a does. Therefore each element of P belongs to another component of
the covering, against the irredundancy of the covering.

Conversely, let a ∈ G be a Cpp-element. Suppose by contradiction
that G has no p-Sylow covering. Let A1 be a Sylow p-subgroup of
G containing a. Now we make a covering as follows: First consider
{A1} and then add other Sylow p-subgroups to this set one by one
until they cover all the p-elements of G. Then for any other prime q
with q dividing |G|, do the same procedure. By this way we obtain
a set like A = {A1, A2, . . . , An} which is an irredundant covering for
the elements of G whose orders have at most one prime divisor. Define
B = {〈g〉 |g ∈ G \

⋃n
i=1 Ai}. Order B by inclusion and add the maximal

member of each chain in B to A. Now A is a covering for G. But we sup-
posed that G has no p-Sylow covering, therefore all Sylow p-subgroups
of G can be omitted from A. In particular A1 is a subset of union of
some other members in A. But then the union of some elements of B
includes A1. Thus there exists a subgroup B ∈ B such that a ∈ B. Now
by definition of elements of B, we have B ⊆ CG(a), against the fact that
B is not a p-group. �
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It is clear that whenever we mention a p-Sylow covering for a given
group G, it is not important which Sylow p-subgroup of G is chosen.
The following corollary of Theorem 2.1 gives an answer to the third
question:

Corollary 2.2. Let G be a non-cyclic finite group. Then G has a
p-Sylow covering for each prime p dividing |G| if and only if for each p,
there exists a Cpp-element in G.

3. The symmetric and alternating groups

Let n be a positive integer and let p be a prime. Suppose that α1 is
the largest positive integer with n ≥ pα1 and α2 is the largest positive
integer with n − pα1 ≥ pα2 and so on. Thus we have n = pα1 + pα2 +
· · · + pαt + r, where t and r are positive integer, 0 ≤ r ≤ p − 1 and
α1 ≥ α2 ≥ ...αt ≥ 0. We call this representation the p-representation
of n. Observe that in any p-representation the maximum numbers of
equal exponents αi is p − 1. Moreover collecting the p-powers with the
same exponent we pass from the p-representation of n to the unique
representation n(p) of n to the basis p. Now let τ = τ1τ2 · · · τt ∈ Sn,
where τ1 = (a1 a2 · · · apα1 ), τ2 = (apα1+1 apα1+2 · · · apα1+pα2 ), ...
τt = (apα1+···+pαt−1+1 · · · apα1+···+pαt ), such that ai’s are in {1, 2, · · · , n}
and pairwise distinct. If a permutation in Sn has the above form we say
it has the p-form in Sn.

Remark 3.1. Let n be a positive integer and let p be a prime. If a
representation n = pa1+pa2+· · ·+pak +s of n is not the p-representation,
then at least p integers among the ai are equal or s ≥ p.

The following lemma is a corollary in [12], p 297.

Lemma 3.2. If τ is a permutation in Sn and decomposition of τ con-
tains exactly ai i-cycles, with ai ≥ 0, then |CSn(τ)| =

∏
(ai!)iai, where

n = a1 + 2a2 + ... + nan.

Corollary 3.3. For each n ≥ 3, the symmetric group Sn has a
C22-element. Moreover τ ∈ Sn is a C22-element if and only if τ is a
product of 2k-cycles, with k ∈ N, such that at most two of them have the
same length.
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Proof. By Lemma 3.2, each permutation with 2-form is a C22-element
in Sn, so for each n, Sn has a C22-element. The second part follows
directly from Lemma 3.2. �

Corollary 3.4. For each n ≥ 3, the symmetric group Sn has a 2-Sylow
covering.

Theorem 3.5. Let G be the symmetric group Sn for n ≥ 3 and let
p ≤ n be an odd prime. Then G has a Cpp-element if and only if 0 and
1 are the only digits appearing in the representation of n to the basis p.
Moreover in this situation, τ ∈ Sn is a Cpp-element if and only if τ has
the p-form in Sn.

Proof. Suppose G has a Cpp-element τ and τ consists of ai i-cycles with
i = pbi . By Lemma 3.2,

∏
i(ai!)iai is a power of p and ai

′s are all equal to
1 or 0. Thus n = pb1 + pb2 + ...+ pbk + r, where bi’s are pairwise distinct
and r = 0 or 1. Hence the only digits appearing in the representation of
n in basis p are 0 and 1.
Conversely suppose 0 and 1 are the only digits appearing in the rep-
resentation of n to the basis p. Under this condition, by Lemma 3.2,
each permutation with p-form is a Cpp-element. On the other hand if
the p-element τ ∈ Sn has not the p-form, then there are at least p cycles
with the same length. Thus Lemma 3.2 completes the proof. �

Corollary 3.6. Let G be the symmetric group Sn for n ≥ 3 and let p
be an odd prime divisor of |G|. Then G has a p-Sylow covering if and
only if 0 and 1 are the only digits which appear in the representation of
n to the basis p.

Lemma 3.7. For any integer number n ≥ 7, there exists a prime p ≥ 3
such that p + 4 ≤ n < 3p.

Proof. We proceed by induction on n. If n = 7, then take p = 3. Now
let n > 7 and p be a prime such that p+4 ≤ n < 3p. If n+1 < 3p, then
p satisfies the property for n + 1. So let n + 1 = 3p. Then by Bertrand
theorem, there exists a prime q such that p < q < 2p. For such a q we
have q + 4 ≤ 2p + 3 ≤ 3p = n + 1 < 3q. �

In the Example 1.1, we had a p-Sylow covering of S3 for each prime
p dividing |G|. Also we have 4(3) = 11, and therefore by Corollaries 3.4
and 3.6, S4 has a p-Sylow covering for each prime p dividing |G| too.
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Theorem 3.8. The groups S3 and S4 are the only symmetric groups
which have a p-Sylow covering for each prime p ≤ n.

Proof. In the last paragraph we saw the result for n = 3 and 4. For
n ∈ {5, 6, 7, 8}, 2 appears in n(3) hence Sn does not have the covering
containing a 3-Sylow subgroup. So let n ≥ 9. By Lemma 3.7, there
exists a prime p > 3 such that p + 4 ≤ n < 3p. Let P be a p-Sylow
subgroup of Sn. Then |P | ≤ p2. If |P | = p, then S4 ≤ CSn(P ), hence
an element of order 3 centralizes each element in P . So let |P | = p2. If
τ is an arbitrary element in P , then τ is a p-cycle or a product of two
p-cycles. In both cases, 2 divides |CSn(τ)| and the result follows from
Corollary 3.6. �

Now we are going to find similar results for the alternating groups.

Lemma 3.9. Let 2n + 2n−1 + · · ·+ 22 + 2 = 2a1 + 2a2 + · · ·+ 2as, where
ai ≥ 1. If these two representations are not the same, then at least three
of ai’s are equal.

proof. By induction on n. �

Theorem 3.10. For n ≥ 3, the alternating group An has a C22-element
if and only if n does not have the form 22k−1, for any k ∈ N. Moreover
in this situation, τ ∈ An is a C22-element if and only if τ is a C22-
element in Sn.

Proof. First suppose that n = 22k − 1, where k is a positive integer.
Hence n− 1 = 2m +2m−1 + ...+2, where m is an odd number. Let τ be
a 2-element in An. We show that τ is not a C22-element. If |Fix(τ)| > 2,
then τ commutes with a cycle of length 3. If |Fix(τ)| ≤ 2, then since n
is an odd number, we get |Fix(τ)| = 1. Let τ = τ1 · · · τs be the product
of disjoint cycles τi of length 2ai . Then 2a1 + 2a2 + · · ·+ 2as = n− 1 =
2m + 2m−1 + · · · + 2. These two representations of n − 1 are not the
same, since s is even and m is odd. Hence by Lemma 3.9, three a′is are
equal. Without loss of generality we may assume that τ1, τ2 and τ3 are
three disjoint cycles in τ with equal length. Now there exists a π ∈ Sn

such that π3 = τ1τ2τ3 with π ∈ CSn(τ) and by defining ρ = πτj with
j 6= 1, 2, 3, ρ is an element in CAn(τ). So 3 divides |CAn(τ)|.
For the converse suppose that n does not have the form 22k − 1 for any
k ∈ N. This condition can be mentioned as: At least one 0 appears in
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the representation of n to the basis 2 or the number of 1’s is odd. Take
a permutation τ = τ1τ2 · · · τt in Sn with 2-form. By definition of 2-form,
each length of cycle appears at most one time, thus according to Lemma
3.2, we have that τ is a C22-element in Sn. If all the digits of n to the
basis 2 are 1 , then |Fix(τ)| = 1 and the number of cycles in τ are even,
so τ ∈ An is a C22-element. Hence suppose that at least one 0 appears
in the representation of n to the basis 2 and τ 6∈ An. Then we have two
cases:
Case (i). If we have just one 0 in the right side digit of n(2), i.e.,
n(2) = 11 · · · 10, then we put τ ′ = τ1 · · · τt−1. Now τ ′ is a permutation in
An with |Fix(τ ′)| = 2 and the result follows from Lemma 3.2.
Case (ii). If the digit 0 appears in another position, we define αt+1 = 0.
In this situation, we have at least one αi, 1 ≤ i ≤ t, such that αi >
αi+1 + 1. Let τ ′ = τ1 · · · τi−1τ

2
i τi+1 · · · τt, then τ ′ ∈ An. We may write

τi
2 = π1π2, where π1 and π2 are distinct cycles of length 2αi−1 > 2αi+1 .

Hence τ ′ ∈ An. Since π1 and π2 are the only cycles in τ ′ with equal
length, by Lemma 3.2, the order of |CSn(τ ′)| is a power of 2 and the
result follows.
For the second part it is enough to show that if a 2-element τ ∈ An

contains three cycles with the same length, then it is not a C22-element
in An. This is clear if |Fix(τ)| ≥ 3. Hence let |Fix(τ)| ≤ 2, by defining
ρ as above, we conclude that 3 divides |CAn(τ)| and we are done. �

Remark 3.11. The set of C22-elements of An coinsides with the set of
C22-elements of Sn if and only if n = 22k+1 − 1 for some k ∈ N and it
is constituted by the elements in 2-form. Suppose that n = 22k+1 − 1,
and let τ be a C22-element in Sn. If τ has 2-form in Sn, then τ belongs
to An and we are finished. Suppose that τ does not have the 2-form.
Since n is odd, |Fix(τ)| must be odd and since CSn(τ) is a 2-group,
we get |Fix(τ)| = 1. If τ is the product of disjoint cycles of lengths
2a1 , ..., 2as , 1, we obtain 2a1 + ... + 2as = 22k + 22k−1 + ... + 2 and these
two representations are different. Thus by Lemma 3.9, there are three
cycles with the same length, against the fact that CSn(τ) is a 2-group.
Now suppose that n 6= 22k+1 − 1, and let τ be a C22-element in Sn with
2-form. If τ does not belong to An we are finished. Let τ ∈ An. Then
n 6= 22k − 1, and hence at least one zero appears in n(2). Define τ ′ as in
the cases (i) or (ii) of the last theorem. Now τ ′ is a C22-element in Sn

which does not belong to An.
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Corollary 3.12. For n ≥ 3, the alternating group An has a 2-Sylow
covering if and only if n does not have the form 22k − 1, for any k ∈ N.

Theorem 3.13. Let n ≥ 4. For each odd prime p dividing |An|, An

has a Cpp-element if and only if 0, 1 and 2 are the only digits appearing
in the representation of n to the basis p, and 2 appears at most once.
Moreover in this situation, τ ∈ An is a Cpp-element, for a prime p ≥ 5
if and only if τ has the p-form in Sn, and τ ∈ An is a C33-element if
and only if τ is the product of disjoint 3k-cycles such that their lengths
are pairwise different except at most three of them.

Proof. Let p ≤ n be a prime and let τ ∈ An be a Cpp-element consisting
of ai ≥ 1 i-cycles, where i is a power of p. Remembering that for
each σ ∈ An, |CSn(σ)| = ε|CAn(σ)|, with ε = 1 or 2, by Lemma 3.2,
|CSn(τ)| =

∏
i(ai!)iai = εpm, where m is a positive integer. Now either

we have ai = 1 for all i or there exists just one j such that aj 6= 1. In
the second case if p = 3, then aj = 2 or 3 and if p 6= 3, then aj = 2.
Thus n = pb1 + ...+pbk , where bi ∈ N and at most two of them are equal.
Therefore the digits of n(p) consist of 0, 1 and at most one 2.
Conversely, by the hypothesis, in the p-representation of n either r = 0,
1 and at most αj and αj+1 are equal or r = 2 and αi’s are pairwise
distinct. Consider a permutation τ with the p-form in Sn. If 2 does not
appear in n(p), then τ is a Cpp-element in An. Otherwise τ commutes
with a cycle of length 2pαj or 2, hence CAn(τ) has index 2 in CSn(τ). On
the other hand, by Lemma 3.2, |CSn(τ)| = 2pm, where m is a positive
integer, whence |CAn(τ)| is a power of p.
Now suppose n(p) has the right digits. Let p 6= 3, we know that each
permutation in An with p-form is a Cpp-element in An. Now suppose
τ ∈ An does not have the p-form. Therefore there exist at least p cycles
with equal length pm1 , so 3 divides |CAn(τ)| and τ is not a Cpp-element.
Now let p = 3. If τ has at most three cycles of equal length 3m1 , then
the only elements in CSn(τ) which are not 3-element are products of
cycles of length 3k and 3m2 cycles of length 2.3m3 where m2 +m3 = m1,
but these permutations do not belong to An. If τ does not satisfy the
hypothesis, then it includes four disjoint cycles σi, i = 1, 2, 3, 4, such
that o(σ1) = o(σ2) = 3m4 and o(σ3) = o(σ4) = 3m5 ( not necessarily
m4 6= m5). Now we have two disjoint cycles with lengthes 2.3m4 and
2.3m5 in CSn(τ) and their product belongs to An so we are done. �
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Corollary 3.14. Let n ≥ 4 and let p ≤ n be an odd prime. Then An has
a p-Sylow covering if and only if 0,1 and 2 are the only digits appearing
in the representation of n to the basis p, and 2 appears at most once.

Theorem 3.15. The groups An for n ∈ {4, 5, 6, 7} are the only alter-
nating groups which have a p-Sylow covering for each prime p dividing
|An|.

Proof. For n ≤ 8 we can directly check the result by Corollaries 3.12 and
3.14. Let n ≥ 9. If n− 3 has a prime divisor q > 3, then n ≡ 3(mod q)
and by Corollary 3.14, the q-Sylow covering does not exist. Otherwise 2
and 3 are the only prime divisors of n−3. If n−3 is not a prime power,
then n − 4 has an odd prime divisor r ≥ 5, so n ≡ 4(mod r) and again
the result follows form Corollary 3.14. So let n− 3 is a power of 2 or 3.
From Lemma 3.7, there exists a prime p > 3 such that p + 4 ≤ n < 3p.
Let P be a p-Sylow subgroup of An. If |P | = p then the result follows
by the same argument as in Theorem 3.8. Let |P | = p2. Suppose that
τ is a Cpp-element in P . Clearly |Fix(τ)| ≤ 2 and τ is a product of two
cycles of length p. So |CSn(τ)| = 2|CAn(τ)| = 2p2.|Fix(τ)|!. Therefore
n = 2p or n = 2p+1. Now the only possible case is n−3 = 2p−2 = 2α,
where α is a positive integer. But in this case n − 4 has an odd prime
divisor grater than 3 and this completes the proof. �
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