FINITE GROUPS WITH p-SYLOW COVERINGS

K. MEHRABADI AND A. IRANMANESH*

Communicated by Jamshid Moori

ABSTRACT. In this paper we characterize the finite groups with an irredundant covering containing some p-Sylow subgroups. In particular we analyze the symmetric and alternating groups, finding their p-elements having a p-subgroup as centralizer.

1. Introduction

A group G is said to have a covering by subgroups if G is the settheoretic union of its proper subgroups. These subgroups are called components of the covering. The covering is called irredundant if each proper sub-collection of those subgroups fails to cover G. We will always assume that coverings are irredundant. Covering aspects of groups have been studied by many authors from several different perspectives [2, 3, 9, 13]. A more specific question is covering a group by some special subgroups. For example in [4] the coverings of infinite groups consisting of normal subgroups are investigated and in [8] the authors studied the groups having Hall coverings. See also [5] and [6] for components consisting of conjugates of two subgroups. Here we study the finite groups with components containing Sylow subgroups. Let G be a finite group and F0 a prime, by F1 and F2 we mean an irredundant

MSC(2000): Primary 20D20, 20D50; Secondary 20B30, 20B35, 20D06, 20E45 Keywords: Covering, Sylow subgroups, Symmetric group, Alternating group

Received: 15 February 2007 , Revised: 25 April 2007

 $[*] Corresponding \ author$

[©] 2007 Iranian Mathematical Society.

covering of G containing some p-Sylow subgroups. Some examples are in order.

Example 1.1. • In the Symmetric group S_3 , the family $\{A_3, \langle (1\ 2)\rangle, \langle (1\ 3)\rangle, \langle (2\ 3)\rangle\}$ is a covering of S_3 whose components are Sylow subgroups of S_3 .

- Let $G = S_3 \times C_2$. Then G has no 3-Sylow covering, but there is a 2-Sylow covering. Of course this covering consists of all Sylow 2-subgroups of G and the subgroup $A_3 \times C_2$.
- Let $G = C_2 \times C_2 \times C_3$. There is no 2 or 3-Sylow covering of G.

These examples raise the following questions:

- (1) Could one cover a given group by its Sylow subgroups?
- (2) Let G be a group and p a prime dividing |G|. When there exists a p-Sylow covering?
- (3) For a given group G, is there a p-Sylow covering for any prime number p dividing |G|?

The first problem has been studied independently by Higman ([7]) and Zacher ([14], [15]) when G is soluble, by Suzuki ([11]) in the case of a simple group and by Brandl ([1]) in general. A missing case of the last paper was studied by Jabara and Lucido ([8]). In section 2, we provide a necessary and sufficient condition on G for affirmative answers to the next questions.

If G is a finite group and p a prime, a p-element is an element whose order is a power of p. A p-element in G is called a C_{pp} -element if its centralizer in G is a p-subgroup. Note that $a \in G$ is a C_{pp} -element if and only if every conjugate of a is a C_{pp} -element. In section 3, we use the results of section 2 to characterize all symmetric and alternating groups with p-Sylow coverings. Furthermore we find all C_{pp} -elements in these groups. Let τ be a permutation in S_n or S_n ; when we use the statements S_n or S_n which appear in the decomposition of S_n into the product of disjoint cycles. Supp(S_n) is the set of point in S_n or S_n such that S_n moves them and S_n is the set of point in S_n all unexplained notation is standard (see [12]). It is clear that we have to restrict ourselves to the groups with a proper Sylow subgroup, therefore the groups in this paper are not S_n -groups.

2. Coverings containing Sylow subgroups

We begin this section by the following theorem providing an answer to the question 2 raised in the previous section.

Theorem 2.1. Let G be a non-cyclic finite group, and let p be a prime dividing |G|. Then G has a p-Sylow covering if and only if there exists a Cpp-element in G.

Proof. Suppose that G has a covering containing Sylow p-subgroup P. If each $a \in P$ is not a C_{pp} -element, then there exists an element $x \in C_G(a)$ such that o(x) = q, where q is a prime distinct from p. Therefore ax belongs to a component of the covering which is not a Sylow p-subgroup. So $(ax)^q = a^q$ belongs to this component and consequently a does. Therefore each element of P belongs to another component of the covering, against the irredundancy of the covering.

Conversely, let $a \in G$ be a C_{pp} -element. Suppose by contradiction that G has no p-Sylow covering. Let A_1 be a Sylow p-subgroup of G containing a. Now we make a covering as follows: First consider $\{A_1\}$ and then add other Sylow p-subgroups to this set one by one until they cover all the p-elements of G. Then for any other prime qwith q dividing |G|, do the same procedure. By this way we obtain a set like $\mathcal{A} = \{A_1, A_2, \dots, A_n\}$ which is an irredundant covering for the elements of G whose orders have at most one prime divisor. Define $\mathcal{B} = \{\langle g \rangle \mid g \in G \setminus \bigcup_{i=1}^n A_i \}$. Order \mathcal{B} by inclusion and add the maximal member of each chain in \mathcal{B} to \mathcal{A} . Now \mathcal{A} is a covering for G. But we supposed that G has no p-Sylow covering, therefore all Sylow p-subgroups of G can be omitted from A. In particular A_1 is a subset of union of some other members in A. But then the union of some elements of Bincludes A_1 . Thus there exists a subgroup $B \in \mathcal{B}$ such that $a \in B$. Now by definition of elements of \mathcal{B} , we have $B \subseteq C_G(a)$, against the fact that B is not a p-group.

It is clear that whenever we mention a p-Sylow covering for a given group G, it is not important which Sylow p-subgroup of G is chosen. The following corollary of Theorem 2.1 gives an answer to the third question:

Corollary 2.2. Let G be a non-cyclic finite group. Then G has a p-Sylow covering for each prime p dividing |G| if and only if for each p, there exists a C_{pp} -element in G.

3. The symmetric and alternating groups

Let n be a positive integer and let p be a prime. Suppose that α_1 is the largest positive integer with $n \geq p^{\alpha_1}$ and α_2 is the largest positive integer with $n - p^{\alpha_1} \geq p^{\alpha_2}$ and so on. Thus we have $n = p^{\alpha_1} + p^{\alpha_2} + \cdots + p^{\alpha_t} + r$, where t and r are positive integer, $0 \leq r \leq p-1$ and $\alpha_1 \geq \alpha_2 \geq \dots \alpha_t \geq 0$. We call this representation the p-representation of n. Observe that in any p-representation the maximum numbers of equal exponents α_i is p-1. Moreover collecting the p-powers with the same exponent we pass from the p-representation of n to the unique representation $n_{(p)}$ of n to the basis p. Now let $\tau = \tau_1 \tau_2 \cdots \tau_t \in S_n$, where $\tau_1 = (a_1 \ a_2 \cdots a_{p^{\alpha_1}}), \ \tau_2 = (a_{p^{\alpha_1}+1} \ a_{p^{\alpha_1}+2} \cdots a_{p^{\alpha_1}+p^{\alpha_2}}), \ \dots \ \tau_t = (a_{p^{\alpha_1}+\dots+p^{\alpha_{t-1}}+1} \cdots a_{p^{\alpha_1}+\dots+p^{\alpha_t}})$, such that a_i 's are in $\{1, 2, \dots, n\}$ and pairwise distinct. If a permutation in S_n has the above form we say it has the p-form in S_n .

Remark 3.1. Let n be a positive integer and let p be a prime. If a representation $n = p^{a_1} + p^{a_2} + \cdots + p^{a_k} + s$ of n is not the p-representation, then at least p integers among the a_i are equal or $s \ge p$.

The following lemma is a corollary in [12], p 297.

Lemma 3.2. If τ is a permutation in S_n and decomposition of τ contains exactly a_i i-cycles, with $a_i \geq 0$, then $|C_{S_n}(\tau)| = \prod (a_i!)i^{a_i}$, where $n = a_1 + 2a_2 + ... + na_n$.

Corollary 3.3. For each $n \geq 3$, the symmetric group S_n has a C_{22} -element. Moreover $\tau \in S_n$ is a C_{22} -element if and only if τ is a product of 2^k -cycles, with $k \in \mathbb{N}$, such that at most two of them have the same length.

Proof. By Lemma 3.2, each permutation with 2-form is a C_{22} -element in S_n , so for each n, S_n has a C_{22} -element. The second part follows directly from Lemma 3.2.

Corollary 3.4. For each $n \geq 3$, the symmetric group S_n has a 2-Sylow covering.

Theorem 3.5. Let G be the symmetric group S_n for $n \geq 3$ and let $p \leq n$ be an odd prime. Then G has a C_{pp} -element if and only if 0 and 1 are the only digits appearing in the representation of n to the basis p. Moreover in this situation, $\tau \in S_n$ is a C_{pp} -element if and only if τ has the p-form in S_n .

Proof. Suppose G has a C_{pp} -element τ and τ consists of a_i i-cycles with $i = p^{b_i}$. By Lemma 3.2, $\prod_i (a_i!)i^{a_i}$ is a power of p and $a_i's$ are all equal to 1 or 0. Thus $n = p^{b_1} + p^{b_2} + ... + p^{b_k} + r$, where b_i 's are pairwise distinct and r = 0 or 1. Hence the only digits appearing in the representation of n in basis p are 0 and 1.

Conversely suppose 0 and 1 are the only digits appearing in the representation of n to the basis p. Under this condition, by Lemma 3.2, each permutation with p-form is a C_{pp} -element. On the other hand if the p-element $\tau \in S_n$ has not the p-form, then there are at least p cycles with the same length. Thus Lemma 3.2 completes the proof.

Corollary 3.6. Let G be the symmetric group S_n for $n \geq 3$ and let p be an odd prime divisor of |G|. Then G has a p-Sylow covering if and only if 0 and 1 are the only digits which appear in the representation of n to the basis p.

Lemma 3.7. For any integer number $n \ge 7$, there exists a prime $p \ge 3$ such that $p + 4 \le n < 3p$.

Proof. We proceed by induction on n. If n=7, then take p=3. Now let n>7 and p be a prime such that $p+4 \le n < 3p$. If n+1 < 3p, then p satisfies the property for n+1. So let n+1=3p. Then by Bertrand theorem, there exists a prime q such that p< q< 2p. For such a q we have $q+4 \le 2p+3 \le 3p=n+1 < 3q$.

In the Example 1.1, we had a p-Sylow covering of S_3 for each prime p dividing |G|. Also we have $4_{(3)} = 11$, and therefore by Corollaries 3.4 and 3.6, S_4 has a p-Sylow covering for each prime p dividing |G| too.

Theorem 3.8. The groups S_3 and S_4 are the only symmetric groups which have a p-Sylow covering for each prime $p \leq n$.

Proof. In the last paragraph we saw the result for n=3 and 4. For $n \in \{5,6,7,8\}$, 2 appears in $n_{(3)}$ hence S_n does not have the covering containing a 3-Sylow subgroup. So let $n \geq 9$. By Lemma 3.7, there exists a prime p > 3 such that $p+4 \leq n < 3p$. Let P be a p-Sylow subgroup of S_n . Then $|P| \leq p^2$. If |P| = p, then $S_4 \leq C_{S_n}(P)$, hence an element of order 3 centralizes each element in P. So let $|P| = p^2$. If τ is an arbitrary element in P, then τ is a p-cycle or a product of two p-cycles. In both cases, 2 divides $|C_{S_n}(\tau)|$ and the result follows from Corollary 3.6.

Now we are going to find similar results for the alternating groups.

Lemma 3.9. Let $2^n + 2^{n-1} + \cdots + 2^2 + 2 = 2^{a_1} + 2^{a_2} + \cdots + 2^{a_s}$, where $a_i \ge 1$. If these two representations are not the same, then at least three of a_i 's are equal.

proof. By induction on n.

Theorem 3.10. For $n \geq 3$, the alternating group A_n has a C_{22} -element if and only if n does not have the form $2^{2k}-1$, for any $k \in \mathbb{N}$. Moreover in this situation, $\tau \in A_n$ is a C_{22} -element if and only if τ is a C_{22} -element in S_n .

Proof. First suppose that $n=2^{2k}-1$, where k is a positive integer. Hence $n-1=2^m+2^{m-1}+\ldots+2$, where m is an odd number. Let τ be a 2-element in A_n . We show that τ is not a C_{22} -element. If $|\operatorname{Fix}(\tau)| > 2$, then τ commutes with a cycle of length 3. If $|\operatorname{Fix}(\tau)| \leq 2$, then since n is an odd number, we get $|\operatorname{Fix}(\tau)| = 1$. Let $\tau = \tau_1 \cdots \tau_s$ be the product of disjoint cycles τ_i of length 2^{a_i} . Then $2^{a_1}+2^{a_2}+\cdots+2^{a_s}=n-1=2^m+2^{m-1}+\cdots+2$. These two representations of n-1 are not the same, since s is even and m is odd. Hence by Lemma 3.9, three $a_i's$ are equal. Without loss of generality we may assume that τ_1, τ_2 and τ_3 are three disjoint cycles in τ with equal length. Now there exists a $\pi \in S_n$ such that $\pi^3 = \tau_1 \tau_2 \tau_3$ with $\pi \in C_{S_n}(\tau)$ and by defining $\rho = \pi \tau_j$ with $j \neq 1, 2, 3, \rho$ is an element in $C_{A_n}(\tau)$. So 3 divides $|C_{A_n}(\tau)|$.

For the converse suppose that n does not have the form $2^{2k} - 1$ for any $k \in \mathbb{N}$. This condition can be mentioned as: At least one 0 appears in

the representation of n to the basis 2 or the number of 1's is odd. Take a permutation $\tau = \tau_1 \tau_2 \cdots \tau_t$ in S_n with 2-form. By definition of 2-form, each length of cycle appears at most one time, thus according to Lemma 3.2, we have that τ is a C_{22} -element in S_n . If all the digits of n to the basis 2 are 1, then $|\operatorname{Fix}(\tau)| = 1$ and the number of cycles in τ are even, so $\tau \in A_n$ is a C_{22} -element. Hence suppose that at least one 0 appears in the representation of n to the basis 2 and $\tau \not\in A_n$. Then we have two cases:

Case (i). If we have just one 0 in the right side digit of $n_{(2)}$, i.e., $n_{(2)} = 11 \cdots 10$, then we put $\tau' = \tau_1 \cdots \tau_{t-1}$. Now τ' is a permutation in A_n with $|\operatorname{Fix}(\tau')| = 2$ and the result follows from Lemma 3.2.

Case (ii). If the digit 0 appears in another position, we define $\alpha_{t+1} = 0$. In this situation, we have at least one α_i , $1 \leq i \leq t$, such that $\alpha_i > \alpha_{i+1} + 1$. Let $\tau' = \tau_1 \cdots \tau_{i-1} \tau_i^2 \tau_{i+1} \cdots \tau_t$, then $\tau' \in A_n$. We may write $\tau_i^2 = \pi_1 \pi_2$, where π_1 and π_2 are distinct cycles of length $2^{\alpha_i - 1} > 2^{\alpha_{i+1}}$. Hence $\tau' \in A_n$. Since π_1 and π_2 are the only cycles in τ' with equal length, by Lemma 3.2, the order of $|C_{S_n}(\tau')|$ is a power of 2 and the result follows.

For the second part it is enough to show that if a 2-element $\tau \in A_n$ contains three cycles with the same length, then it is not a C_{22} -element in A_n . This is clear if $|\operatorname{Fix}(\tau)| \geq 3$. Hence let $|\operatorname{Fix}(\tau)| \leq 2$, by defining ρ as above, we conclude that 3 divides $|C_{A_n}(\tau)|$ and we are done. \square

Remark 3.11. The set of C_{22} -elements of A_n coinsides with the set of C_{22} -elements of S_n if and only if $n=2^{2k+1}-1$ for some $k\in\mathbb{N}$ and it is constituted by the elements in 2-form. Suppose that $n=2^{2k+1}-1$, and let τ be a C_{22} -element in S_n . If τ has 2-form in S_n , then τ belongs to A_n and we are finished. Suppose that τ does not have the 2-form. Since n is odd, $|\operatorname{Fix}(\tau)|$ must be odd and since $C_{S_n}(\tau)$ is a 2-group, we get $|\operatorname{Fix}(\tau)|=1$. If τ is the product of disjoint cycles of lengths $2^{a_1},\ldots,2^{a_s},1$, we obtain $2^{a_1}+\ldots+2^{a_s}=2^{2k}+2^{2k-1}+\ldots+2$ and these two representations are different. Thus by Lemma 3.9, there are three cycles with the same length, against the fact that $C_{S_n}(\tau)$ is a 2-group. Now suppose that $n\neq 2^{2k+1}-1$, and let τ be a C_{22} -element in S_n with 2-form. If τ does not belong to A_n we are finished. Let $\tau\in A_n$. Then $n\neq 2^{2k}-1$, and hence at least one zero appears in $n_{(2)}$. Define τ' as in the cases (i) or (ii) of the last theorem. Now τ' is a C_{22} -element in S_n which does not belong to A_n .

Corollary 3.12. For $n \geq 3$, the alternating group A_n has a 2-Sylow covering if and only if n does not have the form $2^{2k} - 1$, for any $k \in \mathbb{N}$.

Theorem 3.13. Let $n \geq 4$. For each odd prime p dividing $|A_n|$, A_n has a C_{pp} -element if and only if 0, 1 and 2 are the only digits appearing in the representation of n to the basis p, and 2 appears at most once. Moreover in this situation, $\tau \in A_n$ is a C_{pp} -element, for a prime $p \geq 5$ if and only if τ has the p-form in S_n , and $\tau \in A_n$ is a C_{33} -element if and only if τ is the product of disjoint 3^k -cycles such that their lengths are pairwise different except at most three of them.

Proof. Let $p \leq n$ be a prime and let $\tau \in A_n$ be a C_{pp} -element consisting of $a_i \geq 1$ *i*-cycles, where i is a power of p. Remembering that for each $\sigma \in A_n$, $|C_{S_n}(\sigma)| = \epsilon |C_{A_n}(\sigma)|$, with $\epsilon = 1$ or 2, by Lemma 3.2, $|C_{S_n}(\tau)| = \prod_i (a_i!) i^{a_i} = \epsilon p^m$, where m is a positive integer. Now either we have $a_i = 1$ for all i or there exists just one j such that $a_j \neq 1$. In the second case if p = 3, then $a_j = 2$ or 3 and if $p \neq 3$, then $a_j = 2$. Thus $n = p^{b_1} + \ldots + p^{b_k}$, where $b_i \in \mathbb{N}$ and at most two of them are equal. Therefore the digits of $n_{(p)}$ consist of 0, 1 and at most one 2.

Conversely, by the hypothesis, in the p-representation of n either r=0, 1 and at most α_j and α_{j+1} are equal or r=2 and α_i 's are pairwise distinct. Consider a permutation τ with the p-form in S_n . If 2 does not appear in $n_{(p)}$, then τ is a C_{pp} -element in A_n . Otherwise τ commutes with a cycle of length $2p^{\alpha_j}$ or 2, hence $C_{A_n}(\tau)$ has index 2 in $C_{S_n}(\tau)$. On the other hand, by Lemma 3.2, $|C_{S_n}(\tau)| = 2p^m$, where m is a positive integer, whence $|C_{A_n}(\tau)|$ is a power of p.

Now suppose $n_{(p)}$ has the right digits. Let $p \neq 3$, we know that each permutation in A_n with p-form is a C_{pp} -element in A_n . Now suppose $\tau \in A_n$ does not have the p-form. Therefore there exist at least p cycles with equal length p^{m_1} , so 3 divides $|C_{A_n}(\tau)|$ and τ is not a C_{pp} -element. Now let p=3. If τ has at most three cycles of equal length 3^{m_1} , then the only elements in $C_{S_n}(\tau)$ which are not 3-element are products of cycles of length 3^k and 3^{m_2} cycles of length 2.3^{m_3} where $m_2+m_3=m_1$, but these permutations do not belong to A_n . If τ does not satisfy the hypothesis, then it includes four disjoint cycles σ_i , i=1,2,3,4, such that $o(\sigma_1)=o(\sigma_2)=3^{m_4}$ and $o(\sigma_3)=o(\sigma_4)=3^{m_5}$ (not necessarily $m_4\neq m_5$). Now we have two disjoint cycles with lengthes 2.3^{m_4} and 2.3^{m_5} in $C_{S_n}(\tau)$ and their product belongs to A_n so we are done. \square

Corollary 3.14. Let $n \ge 4$ and let $p \le n$ be an odd prime. Then A_n has a p-Sylow covering if and only if 0,1 and 2 are the only digits appearing in the representation of n to the basis p, and 2 appears at most once.

Theorem 3.15. The groups A_n for $n \in \{4, 5, 6, 7\}$ are the only alternating groups which have a p-Sylow covering for each prime p dividing $|A_n|$.

Proof. For $n \leq 8$ we can directly check the result by Corollaries 3.12 and 3.14. Let $n \geq 9$. If n-3 has a prime divisor q > 3, then $n \equiv 3 \pmod{q}$ and by Corollary 3.14, the q-Sylow covering does not exist. Otherwise 2 and 3 are the only prime divisors of n-3. If n-3 is not a prime power, then n-4 has an odd prime divisor $r \geq 5$, so $n \equiv 4 \pmod{r}$ and again the result follows form Corollary 3.14. So let n-3 is a power of 2 or 3. From Lemma 3.7, there exists a prime p > 3 such that $p+4 \leq n < 3p$. Let P be a p-Sylow subgroup of A_n . If |P| = p then the result follows by the same argument as in Theorem 3.8. Let $|P| = p^2$. Suppose that τ is a C_{pp} -element in P. Clearly $|\operatorname{Fix}(\tau)| \leq 2$ and τ is a product of two cycles of length p. So $|C_{S_n}(\tau)| = 2|C_{A_n}(\tau)| = 2p^2.|\operatorname{Fix}(\tau)|!$. Therefore n = 2p or n = 2p+1. Now the only possible case is $n-3 = 2p-2 = 2^{\alpha}$, where α is a positive integer. But in this case n-4 has an odd prime divisor grater than 3 and this completes the proof.

Acknowledgements

The authors would like to thank Prof. L. Serena for his useful comments and presenting Lemma 3.7 and the referee for corrections and suggestions.

References

- [1] R. Brandl, Finite groups all of whose elements are of prime power order, *Boll. Un. Mat. Ital.* 18 A (57) (1981), 491-493.
- [2] R. Brandl, Integer polynomials with roots mod p for all primes p, J. of Algebra **240** (2001), 822-835.
- [3] R. Brandl, D. Bubboloni and I. Hupp, Polynomials with roots mod p for all primes p, J. Group Theory 4 (2001), 233-239.
- [4] M. A. Brodie, R. F. Chamberlain and L. C. Kappe, Finite coverings by normal subgroups, Proc. Amer. Math. Soc., 104 (3) (1988), 669-671.
- [5] D. Bubboloni, Coverings of the symmetric and alternating groups, *Dipartimento di Matematica U. Dini, Universita' di Firenze*, 7 (1998).
- [6] D. Bubboloni, M. S. Lucido, Coverings of linear groups, Comm. Algebra, 30(5) (2002), 2143-2159.

- [7] G. Higman, Finite groups in which every element has prime power order, *J. London Math. Soc.* **32** (1957), 335-342.
- [8] E. Jabara and M. S. Lucido, Finite groups with Hall coverings, *Aust. Math. Soc.* **78**(1) (2005), 1-16.
- [9] G. James and M. Liebeck, Representations and Characters of Groups, Cambridge University Press, Cambridge, 1993.
- [10] L. C. Kappe, Finite coverings by 2-Engles groups, Bull. Austral. Math. Soc. 38 (1988), 141-150.
- [11] M. Suzuki, On a class of doubly transitive groups, Ann. Math. 75 (1962), 105-145.
- [12] M. Suzuki, Group Theory, vol. I, Springer-Verlag, New York, 1982.
- [13] M. J. Tomkinson, Hypercenter-by-finite groups, Publ. Debrecen 40 (1992), 313-321.
- [14] G. Zacher, Sull' ordine di un gruppo finito risolubile somma dei sottogruppi di Sylow, Atti. Acc. Naz. Lincei 20(8) (1956), 171-174.
- [15] G. Zacher, Sui gruppi finiti somma dei loro sottogruppi di Sylow, Rend. Sem. Mat. Padova 27 (1957), 267-275.

K. Mehrabadi and A. Iranmanesh

Department of Mathematics Tarbiat Modares University

P.O.Box: 14115-137

Tehran, Iran

e-mail: kmehr@modares.ac.ir
e-mail: iranmana@modares.ac.ir