Remarks on microperiodic multifunctions

Document Type : Research Paper


AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland.


It is well known that a microperiodic function mapping a topological group into reals, which is continuous at some point is constant. We introduce the notion of a microperiodic multifunction, defined on a topological group with values in a metric space, and study regularity conditions implying an analogous result. We deal with Vietoris and Hausdorff continuity concepts.

Stability of microperiodic multifunctions is considered, namely we show that an approximately microperiodic multifunction is close to a constant one, provided it is continuous at some point. As a consequence we obtain stability result for an approximately microperiodic single-valued function.


Main Subjects

T. Aoki, On the stability of the linear transformation in Banach spaces, Math. Soc. Japan 2 (1950) 64--66.
J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, Basel, Berlin, 1990.
C. Berge, Topological Spaces: Including a Treatment of Multi-Valued Functions, Vector Spaces and Convexity, Dover Books, 2010.
N. Brillouet-Belluot, J. Brzdęk and K. Cieplinski, On some recent developments in Ulam's type stability Abstr. Appl. Anal. (2012), Article ID 716936, 41 pages.
J. Brzdęk, On Functions Satisfying some Inequalities, Abh. Math. Sem. Hamburg 63 (1993) 277--281.
J. Brzdęk, Generalizations of some results concerning microperiodic mappings, Manuscripta Math. 121 (2006), no. 2, 265--276.
J. Brzdęk, On approximately microperiodic mappings, Acta. Math. Hungar. 117 (2007), no. 1-2, 179--186.
A. Bahyrycz and J. Brzdęk, Remarks on some systems of two simultaneous functional inequalities, Ann. Univ. Sci. Budapest. Sect. Comput. 40 (2013) 81--93.
C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Math. 580, Springer, Berlin-New York, 1977.
S. Hu and N. S. Papageorgiu, Handbook of Multivalued Analysis, Vol. I: Theory, Mathematics and Its Applications, 419, Kluwer Academic Publishers, Dordrecht, Boston, London, 1977.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A 27 (1941) 222--224.
D. H. Hyers, G. Isac and T. M. Rassias, Stability of functional equations in several variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkäuser Boston, Inc., Boston, 1998.
S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
D. Krassowska, J. Matkowski, A pair of functional inequalities of iterative type related to a Cauchy functional equation, In: (Th.M. Rassias ed.) Functional Equations, Inequalities and Applications, pp. 73--89, Kluwer Academic Publishers, Dordrecht, 2003.
D. Krassowska and J. Matkowski, A pair of linear functional inequalities and a characterization of Lp-norm, Ann. Polon. Math. 85 (2005), no. 1, 1--11.
D. Krassowska and J. Matkowski, A simultaneous system of functional inequalities and mappings which are weakly of a constant sign, JIPAM J. Inequal. Pure Appl. Math. 8 (2007), no. 2, 9 pages.
D. Krassowska, T. Ma lolepszy, J. Matkowski, A pair of functional inequalities characterizing polynomials and Bernoulli numbers, Aequationes Math. 75 (2008), no. 3, 276--288.
M. Kuczma, Functional Equations in a Single Variable, Monograe Matematyczne, Tom 46 Pastwowe Wydawnictwo Naukowe, Warsaw, 1968.
M. Kuczma, Note on microperiodic functions, Rad. Mat. 5 (1989), no. 1, 127--140.
M. Laczkovich, Operators commuting with translations, and systems of difference equations, Colloq. Math. 80 (1999), no. 1, 1--22.
P. Montel, Sur le proprietes periodiques des fonctions, C.R. Acad. Sci. Paris 251 (1960) 2111--2112.
T. Popoviciu, Remarques sur la defnition fonctionnelle d'un polynome d'une variable relle, Mathematica, Cluj 12 (1936) 5--12.
T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297--300.