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Abstract. It is well known that a microperiodic function mapping a
topological group into reals, which is continuous at some point is con-

stant. We introduce the notion of a microperiodic multifunction, defined
on a topological group with values in a metric space, and study regular-
ity conditions implying an analogous result. We deal with Vietoris and

Hausdorff continuity concepts.
Stability of microperiodic multifunctions is considered, namely we

show that an approximately microperiodic multifunction is close to a con-
stant one, provided it is continuous at some point. As a consequence we

obtain stability result for an approximately microperiodic single-valued
function.
Keywords: Multifunction, microperiodic function, functional inequality,
functional inclusion.
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1. Introduction

It is known that every element of the set P = {np + mq : n,m ∈ Z} is a
period of a biperiodic real function f : R → R which is a function satisfying
the equalities

f(x+ p) = f(x) = f(x+ q), x ∈ R,
with p ̸= q. Moreover the above mentioned set P is dense provided p

q /∈ Q
(cf. [5, 19]). Biperiodic functions appear also as a solution of a system of two
difference equations

∆p(f) = 0 = ∆q(f),

where ∆p(f)(x) = f(x+ p)− f(x) is the difference operator (cf. [20]).
According to [19], we say a function f defined on a topological group (X, ·)

is microperiodic if there exists a dense set P ⊂ X with

f(px) = f(x), x ∈ X, p ∈ P.(1.1)
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It is known that a real microperiodic fuction f continuous at some point is
constant.

Analogous results for functions satisfying the weaker condition

f(px) ≥ f(x), x ∈ X, p ∈ P,(1.2)

were proved by P. Montel [21] (see also [22], [18, p. 228]). Those results have
been generalized and extended in several ways in [5,6,8,14–17,19] (in particular
in a connection with some problem arising in a characterization of Lp norm).

J. Brzdȩk has asked whether a multifunction in some sense microperiodic is
constant. Motivated by this question, we introduce the notion of microperiodic
set-valued maps (called multifunctions for brevity), replacing equality in (1.1)
by an inclusion. In the third section, applying the above mentioned results for
single-valued functions, we present sufficient regularity conditions which imply
that such multifunctions are constant.

Section 4 contains some stability results for microperiodic multifunctions
corresponding to the notion of Hyers-Ulam stability (see [1, 11, 23] and for the
recent results and more references see e.g. [4,12,13]). Namely we show that, un-
der some regularity conditions, an approximately microperiodic multifunction
is close (in some sense) to a constant one.

For the convenience of the reader, in the following section some needful facts
concerning two kinds of continuity of multifunctions are collected.

2. Preliminaries and auxiliary results

Denote by P (X) the family of nonempty subsets of X ̸= ∅. If X is a
Hausdorff topological space (linear or metric space, when appropriate) Pf (X),
Pc(X), Pfc(X), Pbf (X), Pbc, Pbfc, Pk(X) the families of closed, convex, closed
convex, bounded closed, bounded convex, bounded closed convex, and finally
compact members of P (X), respectively.

Given topological spaces X,Y we say that a multifunction F : X → 2Y

is upper semicontinuous at x0 ∈ X if for every open set V ⊂ Y such that
F (x0) ⊂ V there exists U ∈ N (x0) (an open neighbourhood of x0) such that
F (x) ⊂ V for every x ∈ U . F is lower semicontinuous at x0 ∈ X if for every
open set V ⊂ Y such that F (x0) ∩ V ̸= ∅ there exists U ∈ N (x0) such that
F (x) ∩ V ̸= ∅ for every x ∈ U . We say that F is continuous at x0 if it is both
upper and lower semicontinuous at this point (see [2, 3, 10]). F is said to be
semicontinuous on a set A ⊂ X if it is semicontinuous at every point x ∈ A.

Here and subsequently, R stands for the extended real line R ∪ {−∞,+∞}.
A single-valued function f : X → R on a topological space X is lower semi-
continuous at x0 ∈ X if for every ε > 0 there exists U ∈ N (x0) such that
f(x) ≥ f(x0)− ε for all x ∈ U . The function f is upper semicontinuous if −f
is lower semicontinuous (cf. Definition A.1.29 and Proposition A.1.30 in [10]).
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We will abbreviate upper and lower semicontinuity to usc and lsc, respec-
tively.

If Y is a topological vector space, then Y ∗ denotes the topological dual
of Y , i.e., the space of all continuous linear functionals on Y . In this case,
semicontinuity of a multifunction is related to semicontinuity of the support
function x 7→ σ(y∗, F (x)) := sup{(y∗, y) : y ∈ F (x)}, x ∈ X, y∗ ∈ Y ∗. It is
easy to proof the following local versions of Prop. I.2.29, I.2.35 form [10].

Lemma 2.1. Let Y be a normed space furnished with the weak topology. If
F : X → P (Y ) is usc at x0, then for every y∗ ∈ Y ∗ the support function is usc
at x0.

Lemma 2.2. Let Y be a locally convex topological space. If F : X → Pfc(Y )
is lsc at x0, then for every y∗ ∈ Y ∗ the support function is lsc at x0.

To define another concept of continuity for multifunctions, recall the Haus-
dorff pseudometric. If (Y, d) is a metric space, following [10, Def. I.1.1] (cf.
also [9]), for every A,B ⊂ Y define excess of A over B and the Hausdorff
distance between A,B

e(A,B) := sup{d(a,B) : a ∈ A},
h(A,B) := max{e(A,B), e(B,A)},

where d(a,B) := inf{d(a, b), b ∈ B}. It is easily seen that the excess has the
following properties.

Remark 2.3. If A,B,C ∈ P (X), then

A ⊂ B =⇒ e(A,C) ≤ e(B,C),(2.1)

B ⊂ C =⇒ e(A,B) ≥ e(A,C).(2.2)

The function h : P (Y ) × P (Y ) → [0,+∞] is a pseudometric on P (Y ) with
the property

h(A,B) = 0 =⇒ A = B, A,B ∈ P (Y ).

Therefore (Pbf (Y ), h) h is a metric space. Furthermore we have the following
formulas.

Lemma 2.4. [10, Th. I.1.13, Rem. I.1.14] If Y is a normed space A,B ∈
Pbfc(Y ), then

e(A,B) = sup{σ(y∗, A)− σ(y∗, B) : ∥y∗∥ ≤ 1},
h(A,B) = sup{|σ(y∗, A)− σ(y∗, B)| : ∥y∗∥ ≤ 1}.

Here we assume that X is a Hausdorff topological space, Y is a metric space.
A multifunction F : X → P (Y ) is said to be h-upper semicontinuous (h-usc
for short) at x0 ∈ X if x 7→ e(F (x), F (x0)) is continuous at x0, it is h-lower
semicontinuous (h-lsc for short) at x0 if x 7→ e(F (x0), F (x)) is continuous at
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x0. We say that F is h-continuous if it is h-upper semicontinuous and h-lower
semicontinuous at x0.

The notions of semicontinuity and h-semicontinuity are not equivalent in
general. For the convenience of the reader we remind some theorems comparing
the continuity concepts (cf. [10, Prop. I.2.61, I.2.66]) and recal some usefull
properties.

Lemma 2.5. If F : X → P (Y ) is usc at x0 ∈ X, then it is h-usc at x0.

Lemma 2.6. If F : X → P (Y ) is h-lsc at x0 ∈ X, then it is lsc at x0.

In the case of compact-valued multifunctions the notions of semicontinuity
and h-semicontinuity are equivalent (see [10, Prop. I.2.68 and I.2.69]). If F
is single-valued, then the mentioned above concepts of continuity reduce to
continuity.

If Y is a topological space we denote by A the closure of A ⊂ Y . Given a
multifunction F : X → P (Y ) we define the multifunction F : X → Pf (Y ) by

F (x) := F (x), x ∈ X.

3. Microperiodic multifunctions

Let (X, ·) be a topological group and let P ⊂ X. Observe that a function
f : X → R satisfying the condition

f(px) ≤ f(x), x ∈ X, p ∈ P,(m)

satisfies (1.2) with the set P−1 = {p−1 : p ∈ P}. Moreover, if the set P is
dense in X, then P−1 is dense as well. Therefore without loss of generality we
consider functions fulfilling the condition (m).

We first prove elementary properties of semicontinuous microperiodic func-
tions.

Lemma 3.1. Let (X, ·) be a topological group, P dense subset of X. If f :
X → R satisfying (m) is lsc (usc respectively) at some x0 ∈ X, then

f(x) ≥ (≤)f(x0) x ∈ X.

Proof. Assume that f is lsc at x0 ∈ X. Fix x ∈ X and take any ε > 0. By
the semicontinuity of f , there exists an open neighborhood U of x0 such that
f(y) ≥ f(x0) − ε for every y ∈ U . Since P is dense, there exists p ∈ P with
px ∈ U . From the above and (m) we have

f(x) ≥ f(px) ≥ f(x0)− ε.

Letting ε → 0 we obtain our assertion.
The proof for usc function f is similar or we an capply the previous case for

the function −f , which is microperiodic and lsc. □
As a consequence of the above lemma we get the following generalization of

Theorem 2 in [5] to the class of functions with values in the extended real line.
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Proposition 3.2. Let (X, ·) be a topological group, P dense subset of X. If
f : X → R satisfying (m) is continuous at some x0 ∈ X, then it is constant.

We introduce the notion of microperiodic multifunction, replacing in (1.1)
the equality by an inclusion.

Definition 3.3. We say that a multifunction F : X → 2Y is microperiodic if
there exists a dense subset P of X such that

(M) F (px) ⊂ F (x), x ∈ X, p ∈ P.

Observe that, similarly to single-valued functions, the inclusion in the above
condition can be replaced by the opposite one, which holds with the dense set
P−1.

Let A,B ⊂ Y . Observe that a multifunction F : R → 2Y of the form

F (x) =

{
A for x ∈ Q,
B for x /∈ Q(3.1)

is microperiodic. The following examples present microperiodic multifunctions
F : R → P (R) which are not constant, although they are semicontinuous or
even continuous at some point.

Example 3.4. The multifunction F (x) =

{
[0, 1] for x ∈ Q,
{0} for x /∈ Q is microperi-

odic, usc on Q (h-usc on Q in view of Lemma 2.5), h-lsc on R\Q (lsc on R\Q,
according to Lemma 2.6).

Example 3.5. The multifunction F (x) =

{
[0, 1] for x ∈ Q,
(0, 1) for x /∈ Q is micrope-

riodic, h-continuous on R, since h([0, 1], (0, 1)) = 0, therefore it is lsc on R. It
is easy to show that it is usc only on Q.

Example 3.6. The multifunction F (x) =

{
(0, 1) for x ∈ Q,
(0, 1) \ { 1

2} for x /∈ Q is mi-

croperiodic, h-continuous on R, since h((0, 1), (0, 1) \ { 1
2}) = 0, therefore it is

lsc on R. It is easy to show that it is usc only on Q.

Example 3.7. The multifunction F (x) =

{
[0, 1] for x ∈ Q,
Q ∩ [0, 1] for x /∈ Q is mi-

croperiodic, h-continuous on R, since h([0, 1], [0, 1] ∩Q) = 0, therefore it is lsc
on R. It is easy to show that it is usc only on Q.

Remark 3.8. Same as in [5], it is easily seen that a multifunction F defined
on a commutative group (X,+) satisfying the inclusions

F (x+ pi) ⊂ F (x), x ∈ X, i ∈ {1, . . . , k}
F (x+ qi) ⊃ F (x), x ∈ X, i ∈ {1, . . . , j},
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where k, j ∈ N, p1, . . . pk, q1, . . . , qj ∈ X fulfills (M) with the set

P := {
k∑

i=1

nipi −
j∑

i=1

miqi : n1, . . . nk,m1, . . .mj ∈ N}.

F is microperiodic provided P is dense in the topological group X.
Particulary, a multifunction F : R → P (R) such that

F (x+ 1) ⊂ F (x) ⊂ F (x+ q), x ∈ X,

where q ∈ (0,+∞) \Q is microperiodic.

Theorem 3.9. Let X be a topological group, Y a metric space, F : X →
P (Y ) a microperiodic multifunction. If F is h-continuous at some x0, then the
multifunction F is constant.

Proof. Define f(x) := e(F (x0), F (x)), x ∈ X. According to (M) and (2.2)

(3.2) f(x) ≤ f(px), x ∈ X, p ∈ P.

Since F is h-continuous at x0, f is continuous at x0. Therefore by Proposition
[5], f is constant. Consequently

e(F (x0), F (x)) = f(x) = f(x0) = e(F (x0), F (x0)) = 0, x ∈ X.

Thus

(3.3) F (x0) ⊂ F (x), x ∈ X.

On the other hand, from (2.1) the function g(x) := e(F (x), F (x0)), x ∈ X
satisfies

(3.4) g(px) ≤ g(x), x ∈ X, p ∈ P.

Moreover, by h-continuity of F , g is continuous and therefore constant (see
Proposition 3.2. It follows that

e(F (x), F (x0)) = g(x) = g(x0) = e(F (x0), F (x0)) = 0, x ∈ X,

which yields

(3.5) F (x) ⊂ F (x0), x ∈ X.

Combining (3.3) and (3.5), we get for every x ∈ X

F (x) ⊂ F (x0) ⊂ F (x),

hence

F (x) ⊂ F (x0) ⊂ F (x),

which completes the proof. □

According to Lemma 2.5 we have what follows.
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Corollary 3.10. Let X be a topological group, Y a metric space, F : X →
P (Y ) a microperiodic multifunction. If F is usc and h-lsc at some x0, then the
multifunction F is constant.

The case of multifunctions with closed values is analogous to the case of
single valued functions.

Corollary 3.11. Let X be a topological group, Y a metric space and let mul-
tifunction F : X → Pf (Y ) be microperiodic. If F is h-continuous at some x0,
then it is constant.

Observe that if values of F are singletons, h-continuity is just continuity of
a single-valued function. Therefore the above proposition is a generalization
of the fact that a microperiodic function continuous at some point is constant.
If F has compact values, then continuity is equivalent to h-continuity, and we
get what follows.

Corollary 3.12. Let X be a topological group, Y a metric space and let mul-
tifunction F : X → Pk(Y ) be microperiodic. If F is continuous at some x0,
then it is constant.

Theorem 3.13. Assume that X is a topological group, Y a normed space,
F : X → Pfc(Y ) is a microperiodic multifunction. If F is lsc at x0 and usc at
x0 (Y endowed with the weak topology), then it is constant.

Proof. Fix y∗ ∈ Y ∗. By our assumptions and Lemmas 2.1 and 2.2, the support
function fy∗(x) := σ(y∗, F (x)), x ∈ X is continuous at x0. According to
condition (M),

fy∗(px) = σ(y∗, F (px)) ≤ σ(y∗, F (x)) = fy∗(x), x ∈ X, p ∈ P.

Therefore on account of Proposition 3.2, fy∗ is constant. Consequently for
every x ∈ X

σ(y∗, F (x)) = σ(y∗, F (x0)), y∗ ∈ Y ∗.

By the separation theorem (cf. [2, Th. 2.4.2]) F (x) = F (x0), x ∈ X, since
values of F are closed and convex. □

If multifunction F with convex values is continuous at some point, then F
satisfies assumptions of the above theorem (see [10, Prop. 2.38, 2.40]), therefore
we have the following corollary.

Corollary 3.14. Assume that X is a topological group, Y a normed space,
F : X → Pc(Y ) is a microperiodic multifunction. If F is continuous at x0,
then F is constant.

Examples 3.5 – 3.7, show that lower semicontinuity on the whole domain
of a microperiodic multifunction do not imply it is constant, as well as up-
per semicontinuity on a dense set. Below we give sufficient conditions for a
multifunction with open values.
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Theorem 3.15. Assume that X is a topological group, Y a topological space,
F : X → P (Y ) a microperiodic multifunction with open values. If F is usc on
some open neighborhood of x0, then it is constant.

Proof. Let U ∈ Nx0 be an open neighborhood of x0 such that F is usc on U .
Since F (x0) is open, there exists W ∈ Nx0 such that

F (x) ⊂ F (x0), x ∈ W.

We show that f is constant on U ∩ W . Fix x ∈ U ∩ W . Then F is usc at x
and F (x) ⊂ V := F (x). Therefore there exists Ux ∈ Nx satisfying

F (y) ⊂ V = F (x), y ∈ Ux.

Since P is dense, there exists p ∈ P with p−1x0 ∈ Ux and thus

F (x0) = F (pp−1x0) ⊂ F (p−1x0) ⊂ F (x) ⊂ F (x0).

Now take any y ∈ X. Then there exists p, q ∈ P such that p−1y, qy ∈ U ∩W
and

F (y) = F (pp−1y) ⊂ F (p−1y) = F (x0) = F (qy) ⊂ F (y),

which completes the proof. □

4. Approximately microperiodic multifunctions

The notion of approximately microperiodic functions is connected to the
issue of Hyers-Ulam type stability and its generalizations (see e.g. [4, 12, 13]).
This section is motivated by the paper [7]. We show that, under some continuity
assumptions, a multifunction satisfying the inclusion (M) approximately in
some sense is close to a constant multifunction, which is a solution of this
inclusion (as was shown in the previous section).

From now on we will need the following assumptions

(A)

{
(X, ·) is a topological group, P ⊂ X is a dense set,
(Y, d) is a metric space, ε : X → [0,+∞).

Theorem 4.1. Under the assumptions (A), let F : X → P (Y ) satisfies

e(F (px), F (x)) ≤ ε(x), x ∈ X, p ∈ P(4.1) (
e(F (x), F (px)) ≤ ε(x), x ∈ X, p ∈ P

)
.(4.2)

If F is h-continuous at some x0, then

e(F (x0), F (x)) ≤ ε(x), x ∈ X(
e(F (x), F (x0)) ≤ ε(x), x ∈ X respectively

)
.
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Proof. Assume that (4.1) holds. Fix n ∈ N. Since F is continuous at x0 ∈ X,
there exists an open neighbourhood Un of x0 such that

h(F (x), F (x0)) <
1

n
, x ∈ Un.

Take any x ∈ X. By the density of P , there exists pn ∈ P , such that pnx ∈ Un.
Therefore for every n ∈ N

e(F (x0), F (x)) ≤ e(F (x0), F (pnx)) + e(F (pnx), F (x)) <
1

n
+ ε(x).

Letting n → ∞ we obtain the first assertion. The proof of the second one is
simlar. □

Below we give an example, which shows that the assumption on h-continuity
of F is essential in the above theorem.

Example 4.2. Multifunction F : R → P (R) of the form (3.1) with A = {1},
B = {0} is microperiodic with P = Q. It is not h-continuous at each x0 ∈ R,
and satisfies

h(F (px), F (x)) = 0 <
1

2
=: ε(x), x ∈ X, p ∈ P.

On the other hand, h(F (x), F (y)) > 1
2 for all x ∈ Q and y /∈ Q.

Note that applying [7, Th. 2], we immediately obtain its counterpart for
multifunctions with bounded closed values and a constant function ε. By our
Theorem 4.1, we obtain a more general result.

Corollary 4.3. Under the assumptions (A), let F : X → P (Y ) satisfy

h(F (px), F (x)) ≤ ε(x), x ∈ X, p ∈ P.(4.3)

If F is h-continuous at some x0, then

h(F (x), F (x0)) ≤ ε(x), x ∈ X.

Applying the above corollary for the multifunction F (x) = {f(x)}, where
f : X → Y , we have a kind of a generalization of the result for single-valued
functions.

Corollary 4.4. Under the assumptions (A), let f : X → Y satisfy the inequal-
ity

d(f(px), f(x)) ≤ ε(x), x ∈ X, p ∈ P.

If f is continuous at some x0, then

d(f(x), f(x0)) ≤ ε(x), x ∈ X.

In order to relax the assumption (4.3) (replacing the Hausdorff metric by an
excess), we prove the following theorem.
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Theorem 4.5. Assume (A). Let ε be usc at some x0 and let F : X → P (Y )
satisfy the inequality (4.1) (or satisfies (4.2)). If F is h-continuous at x0, then

e(F (x), F (x0)) ≤ ε(x0), x ∈ X(
e(F (x0), F (x)) ≤ ε(x0), x ∈ X respectively.

)
Proof. Assume that (4.1) holds and substitute x by p−1x in this condition. It
follows that

e(F (x), F (p−1x)) ≤ ε(p−1x), x ∈ X, p ∈ P.

Fix n ∈ N. Since F is continuous at x0 ∈ X, there exists Un ∈ N (x0) with

h(F (x), F (x0)) <
1

n
, x ∈ Un.

By the upper semicontinuity of ε, there exists Vn ∈ N (x0) such that

ε(x) ≤ ε(x0) +
1

n
, x ∈ Vn.

Take any x ∈ X. As P−1 is dense, there exists pn ∈ P such that p−1
n x ∈ Un∩Vn.

Therefore for every n ∈ N

e(F (x), F (x0)) ≤ e(F (x), F (p−1
n x)) + e(F (p−1

n x), F (x0))+ < ε(p−1
n x) +

1

n

≤ ε(x0) +
1

n
+

1

n
.

Letting n → ∞ we obtain our assertion. Similar proof works for the second
one. □

Combining Theorems 4.1 and 4.5 we obtain what follows.

Corollary 4.6. Under the assumptions (A), let ε be usc at some x0 and let
F : X → P (Y ) satisfy one of the conditions (4.1) or (4.2). If F is h-continuous
at x0, then

h(F (x), F (x0)) ≤ max{ε(x), ε(x0)}, x ∈ X.

We now apply the above result, to get a counterpart of Corollary 4.4 for
single-valued functions with real values, which generalizes [7, Th. 1].

Corollary 4.7. Under the assumptions (A), let ε be usc at some x0 and let
f : X → R satisfy one of the conditions

f(px)− f(x) ≤ ε(x), x ∈ X, p ∈ P,(4.4)

f(x)− f(px) ≤ ε(x), x ∈ X, p ∈ P.

If f is continuous at x0, then

| f(x)− f(x0) |≤ max{ε(x), ε(x0)}, x ∈ X.
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Proof. Assume that (4.4) is fulfilled and define F (x) := (−∞, f(x)], x ∈ X.
Then | f(x) − f(x0) |= h(F (x), F (x0)), x ∈ X. It is easy to check that F
satisfies the assumptions of Corollary 4.6, which completes the proof. □

Note that taking subsets A,B,C of a normed space such that A ⊂ B + C
we have e(A,B) ≤ ∥C∥, where ∥C∥ = sup{∥c∥ : c ∈ C}. Therefore Corollary
4.6 may be formulated in the following way.

Corollary 4.8. Let (A) holds. Assume that Y is a normed space, G : X →
P (Y ) is a multifunction such that ∥G∥ is usc at some x0 ∈ X. If F : X → P (Y )
is h-continuous at x0 and satisfies one of the conditions

F (px) ⊂ F (x) +G(x), x ∈ X, p ∈ P,(4.5)

F (x) ⊂ F (px) +G(x), x ∈ X, p ∈ P,(4.6)

then

h(F (x), F (x0)) ≤ max{G(x), G(x0)), x ∈ X.

As a consequence of the above we get some kind of a generalization of [7, Th.
2].

Corollary 4.9. Assume that X is a topological group, P ⊂ X a dense set, Y
is a normed space. Let C ⊂ Y and let f : X → Y satisfy one of the conditions

f(px) ∈ f(x) + C, x ∈ X, p ∈ P,

f(x) ∈ f(px) + C, x ∈ X, p ∈ P,

If f is continuous at some x0, then

∥f(x)− f(x0)∥ ≤ ∥C∥, x ∈ X.

In the case of Vietoris continuity, we appply Corollary 4.7 and properties of
the support function for multifunctions with closed convex and bounded values.

Theorem 4.10. Under the assumptions (A), let ε be usc at some x0 ∈ X and
let F : X → Pbfc(Y ) satisfy (4.1) or (4.2). If F is lsc at x0 and usc at x0 (Y
endowed with the weak topology), then

h(F (x), F (x0)) ≤ max{ε(x), ε(x0)}, x ∈ X.

Proof. Assume that (4.1) is fulfilled. By Lemma 2.4, for every y∗ ∈ Y ∗, x ∈ X,
p ∈ P

σ(y∗, F (px))− σ(y∗, F (x)) ≤ ε(x).

Take y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1 and set f(x) := σ(y∗, F (x)) ∈ R, x ∈ X. It
follows that f(px) − f(x) ≤ ε(x) for every x ∈ X. By our assumptions and
Lemmas 2.1 and 2.2, f is continuous at x0. On account of Corollary 4.7

| f(x)− f(x0) |≤ max{ε(x), ε(x0)}, x ∈ X,
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and consequently for every x ∈ X and y∗ ∈ Y ∗ with ∥y∗∥ ≤ 1 we have

| σ(y∗, F (x))− σ(y∗, F (x0)) |≤ max{ε(x), ε(x0)}.

Lemma 2.4 completes the proof. □

Finally we have a counterpart of Corollary 4.8 for a multifunction continuous
in the sense of Vietoris.

Corollary 4.11. Let (A) holds. Assume that Y is a normed space, G : X →
P (Y ) is a multifunction such that ∥G∥ is usc at some x0 ∈ X. If F : X →
Pbc(Y ) is continuous at x0 and satisfies (4.5) or (4.6), then

h(F (x), F (x0)) ≤ max{∥G(x)∥, ∥G(x0)∥), x ∈ X.

Proof. Assume that (4.5) holds. Since F is continuous at x0 so F is (see [10,
Prop. 2.41]). Therefore F is usc at x0 with respect to the weak topology in Y
and its values belong to Pbfc(Y ). Moreover

e(F (px), F (x) = e(F (px), F (x)) ≤ ∥G(x)∥, x ∈ X, p ∈ P.

Applying the above theorem, we have

h(F (x), F (x0)) = h(F (x), F (x0)) ≤ max{∥G(x)∥, ∥G(x0))∥, x ∈ X,

which finishes the proof. □
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rélle, Mathematica, Cluj 12 (1936) 5–12.
[23] T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.

Math. Soc. 72 (1978), no. 2, 297–300.

(Jolanta Olko) AGH University of Science and Technology, Faculty of Applied
Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland.

E-mail address: olko@agh.edu.pl


	1. Introduction
	2. Preliminaries and auxiliary results
	3. Microperiodic multifunctions
	4. Approximately microperiodic multifunctions
	Acknowledgments
	References

